Details

The History of Mathematics


The History of Mathematics

A Brief Course
3. Aufl.

von: Roger L. Cooke

109,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 08.11.2012
ISBN/EAN: 9781118460290
Sprache: englisch
Anzahl Seiten: 648

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>Praise for the <i>Second Edition</i></b></p> <p>"An amazing assemblage of worldwide contributions in mathematics and, in addition to use as a course book, a valuable resource . . . essential."<br /> <i>—CHOICE</i></p> <p>This <i>Third Edition</i> of <i>The History of Mathematics</i> examines the elementary arithmetic, geometry, and algebra of numerous cultures, tracing their usage from Mesopotamia, Egypt, Greece, India, China, and Japan all the way to Europe during the Medieval and Renaissance periods where calculus was developed.</p> <p>Aimed primarily at undergraduate students studying the history of mathematics for science, engineering, and secondary education, the book focuses on three main ideas: the facts of who, what, when, and where major advances in mathematics took place; the type of mathematics involved at the time; and the integration of this information into a coherent picture of the development of mathematics. In addition, the book features carefully designed problems that guide readers to a fuller understanding of the relevant mathematics and its social and historical context. Chapter-end exercises, numerous photographs, and a listing of related websites are also included for readers who wish to pursue a specialized topic in more depth. Additional features of <i>The History of Mathematics, Third Edition</i> include:</p> <ul> <li>Material arranged in a chronological and cultural context</li> <li>Specific parts of the history of mathematics presented as individual lessons</li> <li>New and revised exercises ranging between technical, factual, and integrative</li> <li>Individual PowerPoint presentations for each chapter and a bank of homework and test questions (in addition to the exercises in the book)</li> <li>An emphasis on geography, culture, and mathematics</li> </ul> <p>In addition to being an ideal coursebook for undergraduate students, the book also serves as a fascinating reference for mathematically inclined individuals who are interested in learning about the history of mathematics.</p>
<p><b>PREFACE xxiii</b></p> <p>Changes from the Second Edition xxiii</p> <p>Elementary Texts on the History of Mathematics xxiv</p> <p><b>PART I. WHAT IS MATHEMATICS?</b></p> <p>Contents of Part I 1</p> <p><b>1. Mathematics and its History 3</b></p> <p>1.1. Two Ways to Look at the History of Mathematics 3</p> <p>1.2. The Origin of Mathematics 5</p> <p>1.3. The Philosophy of Mathematics 8</p> <p>1.4. Our Approach to the History of Mathematics 11</p> <p><b>2. Proto-mathematics 14</b></p> <p>2.1. Number 14</p> <p>2.2. Shape 16</p> <p>2.3. Symbols 18</p> <p>2.4. Mathematical Reasoning 20</p> <p><b>PART II. THE MIDDLE EAST, 2000–1500</b> <b>BCE</b></p> <p>Contents of Part II 25</p> <p><b>3. Overview of Mesopotamian Mathematics 27</b></p> <p>3.1. A Sketch of Two Millennia of Mesopotamian History 27</p> <p>3.2. Mathematical Cuneiform Tablets 29</p> <p>3.3. Systems of Measuring and Counting 30</p> <p>3.4. The Mesopotamian Numbering System 31</p> <p><b>4. Computations in Ancient Mesopotamia 38</b></p> <p>4.1. Arithmetic 38</p> <p>4.2. Algebra 40</p> <p><b>5. Geometry in Mesopotamia 46</b></p> <p>5.1. The Pythagorean Theorem 46</p> <p>5.2. Plane Figures 48</p> <p>5.3. Volumes 49</p> <p>5.4. Plimpton 322 49</p> <p><b>6. Egyptian Numerals and Arithmetic 56</b></p> <p>6.1. Sources 56</p> <p>6.2. The Rhind Papyrus 58</p> <p>6.3. Egyptian Arithmetic 58</p> <p>6.4. Computation 59</p> <p><b>7. Algebra and Geometry in Ancient Egypt 66</b></p> <p>7.1. Algebra Problems in the Rhind Papyrus 66</p> <p>7.2. Geometry 68</p> <p>7.3. Areas 69</p> <p><b>PART III. GREEK MATHEMATICS FROM 500</b> <b>BCE</b> <b>TO 500</b> <b>CE</b></p> <p>Contents of Part III 77</p> <p><b>8. An Overview of Ancient Greek Mathematics 79</b></p> <p>8.1. Sources 80</p> <p>8.2. General Features of Greek Mathematics 82</p> <p>8.3. Works and Authors 87</p> <p><b>9. Greek Number Theory 91</b></p> <p>9.1. The Euclidean Algorithm 92</p> <p>9.2. The <i>Arithmetica</i> of Nicomachus 93</p> <p>9.3. Euclid’s Number Theory 97</p> <p>9.4. The <i>Arithmetica</i> of Diophantus 97</p> <p><b>10. Fifth-Century Greek Geometry 103</b></p> <p>10.1. “Pythagorean” Geometry 103</p> <p>10.2. Challenge No. 1: Unsolved Problems 106</p> <p>10.3. Challenge No. 2: The Paradoxes of Zeno of Elea 107</p> <p>10.4. Challenge No. 3: Irrational Numbers and Incommensurable Lines 108</p> <p><b>11. Athenian Mathematics I: The Classical Problems 115</b></p> <p>11.1. Squaring the Circle 116</p> <p>11.2. Doubling the Cube 117</p> <p>11.3. Trisecting the Angle 122</p> <p><b>12. Athenian Mathematics II: Plato and Aristotle 128</b></p> <p>12.1. The Influence of Plato 128</p> <p>12.2. Eudoxan Geometry 130</p> <p>12.3. Aristotle 134</p> <p><b>13. Euclid of Alexandria 140</b></p> <p>13.1. The <i>Elements</i> 140</p> <p>13.2. The <i>Data</i> 144</p> <p><b>14. Archimedes of Syracuse 148</b></p> <p>14.1. The Works of Archimedes 149</p> <p>14.2. The Surface of a Sphere 150</p> <p>14.3. The Archimedes Palimpsest 153</p> <p>14.4. Quadrature of the Parabola 155</p> <p><b>15. Apollonius of Perga 160</b></p> <p>15.1. History of the <i>Conics</i> 161</p> <p>15.2. Contents of the <i>Conics</i> 162</p> <p>15.3. Foci and the Three- and Four-Line Locus 165</p> <p><b>16. Hellenistic and Roman Geometry 169</b></p> <p>16.1. Zenodorus 169</p> <p>16.2. The Parallel Postulate 171</p> <p>16.3. Heron 172</p> <p>16.4. Roman Civil Engineering 174</p> <p><b>17. Ptolemy’s Geography and Astronomy 177</b></p> <p>17.1. Geography 177</p> <p>17.2. Astronomy 180</p> <p>17.3. The <i>Almagest</i> 184</p> <p><b>18. Pappus and the Later Commentators 190</b></p> <p>18.1. The <i>Collection</i> of Pappus 190</p> <p>18.2. The Later Commentators: Theon and Hypatia 196</p> <p><b>PART IV. INDIA, CHINA, AND JAPAN 500</b> <b>BCE</b><b>–1700</b> <b>CE</b></p> <p>Contents of Part IV 201</p> <p><b>19. Overview of Mathematics in India 203</b></p> <p>19.1. The <i>Sulva Sutras</i> 205</p> <p>19.2. Buddhist and Jain Mathematics 206</p> <p>19.3. The Bakshali Manuscript 206</p> <p>19.4. The <i>Siddhantas</i> 206</p> <p>19.5. Hindu–Arabic Numerals 206</p> <p>19.6. Aryabhata I 207</p> <p>19.7. Brahmagupta 208</p> <p>19.8. Bhaskara II 209</p> <p>19.9. Muslim India 210</p> <p>19.10. Indian Mathematics in the Colonial Period and After 210</p> <p><b>20. From the</b> <b><i>Vedas</i></b> <b>to Aryabhata I 213</b></p> <p>20.1. Problems from the <i>Sulva Sutras</i> 213</p> <p>20.2. Aryabhata I: Geometry and Trigonometry 219</p> <p><b>21. Brahmagupta, the</b> <b><i>Kuttaka</i></b><b>, and Bhaskara II 227</b></p> <p>21.1. Brahmagupta’s Plane and Solid Geometry 227</p> <p>21.2. Brahmagupta’s Number Theory and Algebra 228</p> <p>21.3. The <i>Kuttaka</i> 230</p> <p>21.4. Algebra in the Works of Bhaskara II 233</p> <p>21.5. Geometry in the Works of Bhaskara II 235</p> <p><b>22. Early Classics of Chinese Mathematics 239</b></p> <p>22.1. Works and Authors 240</p> <p>22.2. China’s Encounter with Western Mathematics 243</p> <p>22.3. The Chinese Number System 244</p> <p>22.4. Algebra 246</p> <p>22.5. Contents of the <i>Jiu Zhang Suan Shu</i> 247</p> <p>22.6. Early Chinese Geometry 249</p> <p><b>23. Later Chinese Algebra and Geometry 255</b></p> <p>23.1. Algebra 255</p> <p>23.2. Later Chinese Geometry 262</p> <p><b>24. Traditional Japanese Mathematics 267</b></p> <p>24.1. Chinese Influence and Calculating Devices 267</p> <p>24.2. Japanese Mathematicians and Their Works 268</p> <p>24.3. Japanese Geometry and Algebra 270</p> <p>24.4. <i>Sangaku</i> 277</p> <p><b>PART V. ISLAMIC MATHEMATICS, 800–1500</b></p> <p>Contents of Part V 281</p> <p><b>25. Overview of Islamic Mathematics 283</b></p> <p>25.1. A Brief Sketch of the Islamic Civilization 283</p> <p>25.2. Islamic Science in General 285</p> <p>25.3. Some Muslim Mathematicians and Their Works 287</p> <p><b>26. Islamic Number Theory and Algebra 292</b></p> <p>26.1. Number Theory 292</p> <p>26.2. Algebra 294</p> <p><b>27. Islamic Geometry 302</b></p> <p>27.1. The Parallel Postulate 302</p> <p>27.2. Thabit ibn-Qurra 302</p> <p>27.3. Al-Biruni: Trigonometry 304</p> <p>27.4. Al-Kuhi 305</p> <p>27.5. Al-Haytham and Ibn-Sahl 305</p> <p>27.6. Omar Khayyam 307</p> <p>27.7. Nasir al-Din al-Tusi 308</p> <p><b>PART VI. EUROPEAN MATHEMATICS, 500–1900</b></p> <p>Contents of Part VI 311</p> <p><b>28. Medieval and Early Modern Europe 313</b></p> <p>28.1. From the Fall of Rome to the Year 1200 313</p> <p>28.2. The High Middle Ages 318</p> <p>28.3. The Early Modern Period 321</p> <p>28.4. Northern European Advances 322</p> <p><b>29. European Mathematics: 1200–1500 324</b></p> <p>29.1. Leonardo of Pisa (Fibonacci) 324</p> <p>29.2. Hindu–Arabic Numerals 328</p> <p>29.3. Jordanus Nemorarius 329</p> <p>29.4. Nicole d’Oresme 330</p> <p>29.5. Trigonometry: Regiomontanus and Pitiscus 331</p> <p>29.6. A Mathematical Skill: <i>Prosthaphæresis</i> 333</p> <p>29.7. Algebra: Pacioli and Chuquet 335</p> <p><b>30. Sixteenth-Century Algebra 338</b></p> <p>30.1. Solution of Cubic and Quartic Equations 338</p> <p>30.2. Consolidation 340</p> <p>30.3. Logarithms 343</p> <p>30.4. Hardware: Slide Rules and Calculating Machines 345</p> <p><b>31. Renaissance Art and Geometry 348</b></p> <p>31.1. The Greek Foundations 348</p> <p>31.2. The Renaissance Artists and Geometers 349</p> <p>31.3. Projective Properties 350</p> <p><b>32. The Calculus Before Newton and Leibniz 358</b></p> <p>32.1. Analytic Geometry 358</p> <p>32.2. Components of the Calculus 363</p> <p><b>33. Newton and Leibniz 373</b></p> <p>33.1. Isaac Newton 373</p> <p>33.2. Gottfried Wilhelm von Leibniz 375</p> <p>33.3. The Disciples of Newton and Leibniz 379</p> <p>33.4. Philosophical Issues 379</p> <p>33.5. The Priority Dispute 381</p> <p>33.6. Early Textbooks on Calculus 382</p> <p><b>34. Consolidation of the Calculus 386</b></p> <p>34.1. Ordinary Differential Equations 387</p> <p>34.2. Partial Differential Equations 390</p> <p>34.3. Calculus of Variations 391</p> <p>34.4. Foundations of the Calculus 397</p> <p><b>PART VII. SPECIAL TOPICS</b></p> <p>Contents of Part VII 404</p> <p><b>35. Women Mathematicians 405</b></p> <p>35.1. Sof’ya Kovalevskaya 406</p> <p>35.2. Grace Chisholm Young 408</p> <p>35.3. Emmy Noether 411</p> <p><b>36. Probability 417</b></p> <p>36.1. Cardano 418</p> <p>36.2. Fermat and Pascal 419</p> <p>36.3. Huygens 420</p> <p>36.4. Leibniz 420</p> <p>36.5. The <i>Ars Conjectandi</i> of James Bernoulli 421</p> <p>36.6. De Moivre 423</p> <p>36.7. The Petersburg Paradox 424</p> <p>36.8. Laplace 425</p> <p>36.9. Legendre 426</p> <p>36.10. Gauss 426</p> <p>36.11. Philosophical Issues 427</p> <p>36.12. Large Numbers and Limit Theorems 428</p> <p><b>37. Algebra from 1600 to 1850 433</b></p> <p>37.1. Theory of Equations 433</p> <p>37.2. Euler, D’Alembert, and Lagrange 437</p> <p>37.3. The Fundamental Theorem of Algebra and Solution by Radicals 439</p> <p><b>38. Projective and Algebraic Geometry and Topology 448</b></p> <p>38.1. Projective Geometry 448</p> <p>38.2. Algebraic Geometry 453</p> <p>38.3. Topology 456</p> <p><b>39. Differential Geometry 464</b></p> <p>39.1. Plane Curves 464</p> <p>39.2. The Eighteenth Century: Surfaces 468</p> <p>39.3. Space Curves: The French Geometers 469</p> <p>39.4. Gauss: Geodesics and Developable Surfaces 469</p> <p>39.5. The French and British Geometers 473</p> <p>39.6. Grassmann and Riemann: Manifolds 473</p> <p>39.7. Differential Geometry and Physics 476</p> <p>39.8. The Italian Geometers 477</p> <p><b>40. Non-Euclidean Geometry 481</b></p> <p>40.1. Saccheri 482</p> <p>40.2. Lambert and Legendre 484</p> <p>40.3. Gauss 485</p> <p>40.4. The First Treatises 486</p> <p>40.5. Lobachevskii’s Geometry 487</p> <p>40.6. J´anos B´olyai 489</p> <p>40.7. The Reception of Non-Euclidean Geometry 489</p> <p>40.8. Foundations of Geometry 491</p> <p><b>41. Complex Analysis 495</b></p> <p>41.1. Imaginary and Complex Numbers 495</p> <p>41.2. Analytic Function Theory 500</p> <p>41.3. Comparison of the Three Approaches 508</p> <p><b>42. Real Numbers, Series, and Integrals 511</b></p> <p>42.1. Fourier Series, Functions, and Integrals 512</p> <p>42.2. Fourier Series 514</p> <p>42.3. Fourier Integrals 516</p> <p>42.4. General Trigonometric Series 518</p> <p><b>43. Foundations of Real Analysis 521</b></p> <p>43.1. What is a Real Number? 521</p> <p>43.2. Completeness of the Real Numbers 525</p> <p>43.3. Uniform Convergence and Continuity 525</p> <p>43.4. General Integrals and Discontinuous Functions 526</p> <p>43.5. The Abstract and the Concrete 527</p> <p>43.6. Discontinuity as a Positive Property 529</p> <p><b>44. Set Theory 532</b></p> <p>44.1. Technical Background 532</p> <p>44.2. Cantor's Work on Trigonometric Series 533</p> <p>44.3. The Reception of Set Theory 536</p> <p>44.4. Existence and the Axiom of Choice 537</p> <p><b>45. Logic 542</b></p> <p>45.1. From Algebra to Logic 542</p> <p>45.2. Symbolic Calculus 545</p> <p>45.3. Boole’s <i>Mathematical Analysis of Logic</i> 546</p> <p>45.4. Boole’s <i>Laws of Thought</i> 547</p> <p>45.5. Jevons 548</p> <p>45.6. Philosophies of Mathematics 548</p> <p>45.7. Doubts About Formalized Mathematics: Gödel’s Theorems 554</p> <p><b>Literature 559</b></p> <p><b>Name Index 575</b></p> <p><b>Subject Index</b></p>
<p><b>ROGER L. COOKE, PhD, </b>is Williams Professor of Mathematics at the University of Vermont. His research interests include the history of mathematics and Fourier analysis, and he has taught a general introduction to the history and development of mathematics for many years.</p>
<p><b>Praise for the <i>Second Edition</i></b></p> <p>"An amazing assemblage of worldwide contributions in mathematics and, in addition to use as a course book, a valuable resource . . . essential."<br /> <i>—CHOICE</i></p> <p>This <i>Third Edition</i> of <i>The History of Mathematics</i> examines the elementary arithmetic, geometry, and algebra of numerous cultures, tracing their usage from Mesopotamia, Egypt, Greece, India, China, and Japan all the way to Europe during the Medieval and Renaissance periods where calculus was developed.</p> <p>Aimed primarily at undergraduate students studying the history of mathematics for science, engineering, and secondary education, the book focuses on three main ideas: the facts of who, what, when, and where major advances in mathematics took place; the type of mathematics involved at the time; and the integration of this information into a coherent picture of the development of mathematics. In addition, the book features carefully designed problems that guide readers to a fuller understanding of the relevant mathematics and its social and historical context. Chapter-end exercises, numerous photographs, and a listing of related websites are also included for readers who wish to pursue a specialized topic in more depth. Additional features of <i>The History of Mathematics, Third Edition</i> include:</p> <ul> <li>Material arranged in a chronological and cultural context</li> <li>Specific parts of the history of mathematics presented as individual lessons</li> <li>New and revised exercises ranging between technical, factual, and integrative</li> <li>Individual PowerPoint presentations for each chapter and a bank of homework and test questions (in addition to the exercises in the book)</li> <li>An emphasis on geography, culture, and mathematics</li> </ul> <p>In addition to being an ideal coursebook for undergraduate students, the book also serves as a fascinating reference for mathematically inclined individuals who are interested in learning about the history of mathematics.</p>

Diese Produkte könnten Sie auch interessieren:

Globale Optimierung von Niveaulinien
Globale Optimierung von Niveaulinien
von: Ludwig Stammler, Edeltraud Buchsteiner-Kießling
PDF ebook
39,99 €
Classical Algebra
Classical Algebra
von: Roger L. Cooke
PDF ebook
71,99 €
The Ellipse
The Ellipse
von: Arthur Mazer
PDF ebook
61,99 €