Details

System Health Management


System Health Management

with Aerospace Applications
Aerospace Series 1. Aufl.

von: Stephen B. Johnson, Thomas J. Gormley, Seth S. Kessler, Charles D. Mott, Ann Patterson-Hine, Karl M. Reichard, Philip S. Scandura

166,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 01.06.2011
ISBN/EAN: 9781119998730
Sprache: englisch
Anzahl Seiten: 664

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b><i>System Health Management: with Aerospace Applications</i></b> provides the first complete reference text for System Health Management (SHM), the set of technologies and processes used to improve system dependability. Edited by a team of engineers and consultants with SHM design, development, and research experience from NASA, industry, and academia, each heading up sections in their own areas of expertise and co-coordinating contributions from leading experts, the book collates together in one text the state-of-the-art in SHM research, technology, and applications. It has been written primarily as a reference text for practitioners, for those in related disciplines, and for graduate students in aerospace or systems engineering. <p>There are many technologies involved in SHM and no single person can be an expert in all aspects of the discipline.<b><i>System Health Management: with Aerospace Applications</i></b> provides an introduction to the major technologies, issues, and references in these disparate but related SHM areas. Since SHM has evolved most rapidly in aerospace, the various applications described in this book are taken primarily from the aerospace industry. However, the theories, techniques, and technologies discussed are applicable to many engineering disciplines and application areas.</p> <p>Readers will find sections on the basic theories and concepts of SHM, how it is applied in the system life cycle (architecture, design, verification and validation, etc.), the most important methods used (reliability, quality assurance, diagnostics, prognostics, etc.), and how SHM is applied in operations (commercial aircraft, launch operations, logistics, etc.), to subsystems (electrical power, structures, flight controls, etc.) and to system applications (robotic spacecraft, tactical missiles, rotorcraft, etc.).</p>
<b>About the Editors xxiii</b> <p><b>List of Contributors xxv</b></p> <p><b>Foreword xxix</b></p> <p><b>Preface xxxiii</b></p> <p><b>Part One THE SOCIO-TECHNICAL CONTEXT OF SYSTEM HEALTH MANAGEMENT<br /> </b><i>Charles D. Mott</i></p> <p><b>1 The Theory of System Health Management 3<br /> </b><i>Stephen B. Johnson</i></p> <p>Overview 3</p> <p>1.1 Introduction 3</p> <p>1.2 Functions, Off-Nominal States, and Causation 7</p> <p>1.3 Complexity and Knowledge Limitations 10</p> <p>1.4 SHM Mitigation Strategies 11</p> <p>1.5 Operational Fault Management Functions 12</p> <p>1.6 Mechanisms 19</p> <p>1.7 Summary of Principles 22</p> <p>1.8 SHM Implementation 23</p> <p>1.9 Some Implications 24</p> <p>1.10 Conclusion 26</p> <p>Bibliography 26</p> <p><b>2 Multimodal Communication 29<br /> </b><i>Beverly A. Sauer</i></p> <p>Overview 29</p> <p>2.1 Multimodal Communication in SHM 31</p> <p>2.2 Communication Channels 34</p> <p>2.3 Learning from Disaster 36</p> <p>2.4 Current Communication in the Aerospace Industry 37</p> <p>2.5 The Problem of Sense-making in SHM Communication 37</p> <p>2.6 The Costs of Faulty Communication 38</p> <p>2.7 Implications 39</p> <p>2.8 Conclusion 41</p> <p>Acknowledgments 43</p> <p>Bibliography 43</p> <p><b>3 Highly Reliable Organizations 49<br /> </b><i>Andrew Wiedlea</i></p> <p>Overview 49</p> <p>3.1 The Study of HROs and Design for Dependability 49</p> <p>3.2 Lessons from the Field: HRO Patterns of Behavior 52</p> <p><i>3.2.1 Inseparability of Systemic Equipment and Anthropologic Hazards</i> 53</p> <p><i>3.2.2 Dynamic Management of System Risks</i> 54</p> <p><i>3.2.3 Social Perceptions of Benefits and Hazards</i> 56</p> <p>3.3 Dependable Design, Organizational Behavior, and Connections to the HRO Project 57</p> <p>3.4 Conclusion 60</p> <p>Bibliography 61</p> <p><b>4 Knowledge Management 65<br /> </b><i>Edward W. Rogers</i></p> <p>Overview 65</p> <p>4.1 Systems as Embedded Knowledge 66</p> <p>4.2 KM and Information Technology 66</p> <p>4.3 Reliability and Sustainability of Organizational Systems 67</p> <p>4.4 Case Study of Building a Learning Organization: Goddard Space Flight Center 69</p> <p>4.5 Conclusion 75</p> <p>Bibliography 75</p> <p><b>5 The Business Case for SHM 77<br /> </b><i>Kirby Keller and James Poblete</i></p> <p>Overview 77</p> <p>5.1 Business Case Processes and Tools 78</p> <p>5.2 Metrics to Support the Decision Process 80</p> <p>5.3 Factors to Consider in Developing an Enterprise Model 82</p> <p>5.4 Evaluation of Alternatives 86</p> <p>5.5 Modifications in Selected Baseline Model 86</p> <p>5.6 Modeling Risk and Uncertainty 87</p> <p>5.7 Model Verification and Validation 88</p> <p>5.8 Evaluation Results 88</p> <p>5.9 Conclusion 90</p> <p>Bibliography 91</p> <p><b>Part Two SHM AND THE SYSTEM LIFECYCLE<br /> </b><i>Seth S. Kessler</i></p> <p><b>6 Health Management Systems Engineering and Integration 95<br /> </b><i>Timothy J. Wilmering and Charles D. Mott</i></p> <p>Overview 95</p> <p>6.1 Introduction 95</p> <p>6.2 Systems Thinking 96</p> <p>6.3 Knowledge Management 97</p> <p>6.4 Systems Engineering 98</p> <p>6.5 Systems Engineering Lifecycle Stages 99</p> <p>6.6 Systems Engineering, Dependability, and Health Management 100</p> <p>6.7 SHM Lifecycle Stages 103</p> <p>6.8 SHM Analysis Models and Tools 110</p> <p>6.9 Conclusion 112</p> <p>Acknowledgments 112</p> <p>Bibliography 112</p> <p><b>7 Architecture 115<br /> </b><i>Ryan W. Deal and Seth S. Kessler</i></p> <p>Overview 115</p> <p>7.1 Introduction 115</p> <p>7.2 SHM System Architecture Components 117</p> <p>7.3 Examples of Power and Data Considerations 119</p> <p>7.4 SHM System Architecture Characteristics 120</p> <p>7.5 SHM System Architecture Advanced Concepts 126</p> <p>7.6 Conclusion 126</p> <p>Bibliography 127</p> <p><b>8 System Design and Analysis Methods 129<br /> </b><i>Irem Y. Tumer</i></p> <p>Overview 129</p> <p>8.1 Introduction 129</p> <p>8.2 Lifecycle Considerations 130</p> <p>8.3 Design Methods and Practices for Effective SHM 132</p> <p>8.4 Conclusion 141</p> <p>Acknowledgments 142</p> <p>Bibliography 142</p> <p><b>9 Assessing and Maturing Technology Readiness Levels 145<br /> </b><i>Ryan M. Mackey</i></p> <p>Overview 145</p> <p>9.1 Introduction 145</p> <p>9.2 Motivating Maturity Assessment 146</p> <p>9.3 Review of Technology Readiness Levels 147</p> <p>9.4 Special Needs of SHM 149</p> <p>9.5 Mitigation Approaches 151</p> <p>9.6 TRLs for SHM 153</p> <p>9.7 A Sample Maturation Effort 154</p> <p>9.8 Conclusion 156</p> <p>Bibliography 157</p> <p><b>10 Verification and Validation 159<br /> </b><i>Lawrence Z. Markosian, Martin S. Feather and David E. Brinza</i></p> <p>Overview 159</p> <p>10.1 Introduction 159</p> <p>10.2 Existing Software V&V 160</p> <p>10.3 Feasibility and Sufficiency of Existing Software V&V Practices for SHM 165</p> <p>10.4 Opportunities for Emerging V&V Techniques Suited to SHM 167</p> <p>10.5 V&V Considerations for SHM Sensors and Avionics 170</p> <p>10.6 V&V Planning for a Specific SHM Application 171</p> <p>10.7 A Systems Engineering Perspective on V&V of SHM 180</p> <p>10.8 Conclusion 181</p> <p>Acknowledgments 181</p> <p>Bibliography 181</p> <p><b>11 Certifying Vehicle Health Monitoring Systems 185<br /> </b><i>Seth S. Kessler, Thomas Brotherton and Grant A. Gordon</i></p> <p>Overview 185</p> <p>11.1 Introduction 185</p> <p>11.2 Durability for VHM Systems 186</p> <p>11.3 Mechanical Design for Structural Health Monitoring Systems 189</p> <p>11.4 Reliability and Longevity of VHM Systems 190</p> <p>11.5 Software and Hardware Certification 190</p> <p>11.6 Airworthiness Certification 191</p> <p>11.7 Health and Usage Monitoring System Certification Example 191</p> <p>11.8 Conclusion 194</p> <p>Acknowledgments 194</p> <p>Bibliography 194</p> <p><b>Part Three ANALYTICAL METHODS<br /> </b><i>Ann Patterson-Hine</i></p> <p><b>12 Physics of Failure 199<br /> </b><i>Kumar V. Jata and Triplicane A. Parthasarathy</i></p> <p>Overview 199</p> <p>12.1 Introduction 200</p> <p>12.2 Physics of Failure of Metals 201</p> <p>12.3 Physics of Failure of CMCs 212</p> <p>12.4 Conclusion 216</p> <p>Bibliography 216</p> <p><b>13 Failure Assessment 219<br /> </b><i>Robyn Lutz and Allen Nikora</i></p> <p>Overview 219</p> <p>13.1 Introduction 219</p> <p>13.2 FMEA 220</p> <p>13.3 SFMEA 221</p> <p>13.4 FTA 222</p> <p>13.5 SFTA 222</p> <p>13.6 BDSA 223</p> <p>13.7 Safety Analysis 225</p> <p>13.8 Software Reliability Engineering 225</p> <p>13.9 Tools and Automation 228</p> <p>13.10 Future Directions 229</p> <p>13.11 Conclusion 229</p> <p>Acknowledgments 230</p> <p>Bibliography 230</p> <p><b>14 Reliability 233<br /> </b><i>William Q. Meeker and Luis A. Escobar</i></p> <p>Overview 233</p> <p>14.1 Time-to-Failure Model Concepts and Two Useful Distributions 233</p> <p>14.2 Introduction to System Reliability 236</p> <p>14.3 Analysis of Censored Life Data 239</p> <p>14.4 Accelerated Life Testing 243</p> <p>14.5 Analysis of Degradation Data 244</p> <p>14.6 Analysis of Recurrence Data 246</p> <p>14.7 Software for Statistical Analysis of Reliability Data 249</p> <p>Acknowledgments 250</p> <p>Bibliography 250</p> <p><b>15 Probabilistic Risk Assessment 253<br /> </b><i>William E. Vesely</i></p> <p>Overview 253</p> <p>15.1 Introduction 253</p> <p>15.2 The Space Shuttle PRA 254</p> <p>15.3 Assessing Cumulative Risks to Assist Project Risk Management 254</p> <p>15.4 Quantification of Software Reliability 257</p> <p>15.5 Description of the Techniques Used in the Space Shuttle PRA 260</p> <p>15.6 Conclusion 263</p> <p>Bibliography 263</p> <p><b>16 Diagnosis 265<br /> </b><i>Ann Patterson-Hine, Gordon B. Aaseng, Gautam Biswas, Sriram Narashimhan and Krishna Pattipati</i></p> <p>Overview 265</p> <p>16.1 Introduction 266</p> <p>16.2 General Diagnosis Problem 267</p> <p>16.3 Failure Effect Propagation and Impact 267</p> <p>16.4 Testability Analysis 268</p> <p>16.5 Diagnosis Techniques 268</p> <p>16.6 Automation Considerations for Diagnostic Systems 276</p> <p>16.7 Conclusion 277</p> <p>Acknowledgments 277</p> <p>Bibliography 277</p> <p><b>17 Prognostics 281<br /> </b><i>Michael J. Roemer, Carl S. Byington, Gregory J. Kacprzynski, George Vachtsevanos and Kai Goebel</i></p> <p>Overview 281</p> <p>17.1 Background 282</p> <p>17.2 Prognostic Algorithm Approaches 282</p> <p>17.3 Prognosis RUL Probability Density Function 287</p> <p>17.4 Adaptive Prognosis 287</p> <p>17.5 Performance Metrics 289</p> <p>17.6 Distributed Prognosis System Architecture 292</p> <p>17.7 Conclusion 292</p> <p>Bibliography 293</p> <p><b>Part Four OPERATIONS<br /> </b><i>Karl M. Reichard</i></p> <p><b>18 Quality Assurance 299<br /> </b><i>Brian K. Hughitt</i></p> <p>Overview 299</p> <p>18.1 NASA QA Policy Requirements 300</p> <p>18.2 Quality System Criteria 302</p> <p>18.3 Quality Clauses 303</p> <p>18.4 Workmanship Standards 304</p> <p>18.5 Government Contract Quality Assurance 304</p> <p>18.6 Government Mandatory Inspection Points 305</p> <p>18.7 Quality System Audit 306</p> <p>18.8 Conclusion 307</p> <p>Bibliography 308</p> <p><b>19 Maintainability: Theory and Practice 309<br /> </b><i>Gary O’Neill</i></p> <p>Overview 309</p> <p>19.1 Definitions of Reliability and Maintainability 310</p> <p>19.2 Reliability and Maintainability Engineering 311</p> <p>19.3 The Practice of Maintainability 314</p> <p>19.4 Improving R&M Measures 315</p> <p>19.5 Conclusion 316</p> <p>Bibliography 317</p> <p><b>20 Human Factors 319<br /> </b><i>Robert S. McCann and Lilly Spirkovska</i></p> <p>Overview 319</p> <p>20.1 Background 320</p> <p>20.2 Fault Management on Next-Generation Spacecraft 323</p> <p>20.3 Integrated Fault Management Automation Today 325</p> <p>20.4 Human–Automation Teaming for Real-Time FM 328</p> <p>20.5 Operations Concepts for Crew–Automation Teaming 330</p> <p>20.6 Empirical Testing and Evaluation 333</p> <p>20.7 Future Steps 334</p> <p>20.8 Conclusion 336</p> <p>Bibliography 336</p> <p><b>21 Launch Operations 339<br /> </b><i>Robert D. Waterman, Patricia E. Nicoli, Alan J. Zide, Susan J. Waterman, Jose M. Perotti, Robert A. Ferrell and Barbara L. Brown</i></p> <p>Overview 339</p> <p>21.1 Introduction to Launch Site Operations 339</p> <p>21.2 Human-Centered Health Management 340</p> <p>21.3 SHM 346</p> <p>21.4 LS Abort and Emergency Egress 347</p> <p>21.5 Future Trends Post Space Shuttle 348</p> <p>21.6 Conclusion 349</p> <p>Bibliography 349</p> <p><b>22 Fault Management Techniques in Human Spaceflight Operations 351<br /> </b><i>Brian O’Hagan and Alan Crocker</i></p> <p>Overview 351</p> <p>22.1 The Flight Operations Team 352</p> <p>22.2 System Architecture Implications 353</p> <p>22.3 Operations Products, Processes and Techniques 358</p> <p>22.4 Lessons Learned from Space Shuttle and ISS Experience 364</p> <p>22.5 Conclusion 366</p> <p>Bibliography 367</p> <p><b>23 Military Logistics 369<br /> </b><i>Eddie C. Crow and Karl M. Reichard</i></p> <p>Overview 369</p> <p>23.1 Focused Logistics 371</p> <p>23.2 USMC AL 373</p> <p>23.3 Benefits and Impact of SHM on Military Operations and Logistics 378</p> <p>23.4 Demonstrating the Value of SHM in Military Operations and Logistics 381</p> <p>23.5 Conclusion 385</p> <p>Bibliography 386</p> <p><b>Part Five SUBSYSTEM HEALTH MANAGEMENT<br /> </b><i>Philip A. Scandura, Jr.</i></p> <p><b>24 Aircraft Propulsion Health Management 389<br /> </b><i>Al Volponi and Bruce Wood</i></p> <p>Overview 389</p> <p>24.1 Introduction 389</p> <p>24.2 Basic Principles 390</p> <p>24.3 Engine-Hosted Health Management 393</p> <p>24.4 Operating Conditions 394</p> <p>24.5 Computing Host 395</p> <p>24.6 Software 396</p> <p>24.7 On-Board Models 398</p> <p>24.8 Component Life Usage Estimation 398</p> <p>24.9 Design of an Engine Health Management System 399</p> <p>24.10 Supporting a Layered Approach 401</p> <p>24.11 Conclusion 401</p> <p>Bibliography 402</p> <p><b>25 Intelligent Sensors for Health Management 405<br /> </b><i>Gary W. Hunter, Lawrence G. Oberle, George Y. Baaklini, Jose M. Perotti and Todd Hong</i></p> <p>Overview 405</p> <p>25.1 Introduction 406</p> <p>25.2 Sensor Technology Approaches 407</p> <p>25.3 Sensor System Development 409</p> <p>25.4 Supporting Technologies: High-Temperature Applications Example 412</p> <p>25.5 Test Instrumentation and Non-destructive Evaluation (NDE) 413</p> <p>25.6 Transition of Sensor Systems to Flight 414</p> <p>25.7 Supporting a Layered Approach 415</p> <p>25.8 Conclusion 416</p> <p>Acknowledgments 417</p> <p>Bibliography 417</p> <p><b>26 Structural Health Monitoring 419<br /> </b><i>Fu-Kuo Chang, Johannes F.C. Markmiller, Jinkyu Yang and Yujun Kim</i></p> <p>Overview 419</p> <p>26.1 Introduction 419</p> <p>26.2 Proposed Framework 421</p> <p>26.3 Supporting a Layered Approach 427</p> <p>26.4 Conclusion 427</p> <p>Acknowledgments 427</p> <p>Bibliography 427</p> <p><b>27 Electrical Power Health Management 429<br /> </b><i>Robert M. Button and Amy Chicatelli</i></p> <p>Overview 429</p> <p>27.1 Introduction 429</p> <p>27.2 Summary of Major EPS Components and their Failure Modes 431</p> <p>27.3 Review of Current Power System HM 437</p> <p>27.4 Future Power SHM 440</p> <p>27.5 Supporting a Layered Approach 441</p> <p>27.6 Conclusion 442</p> <p>Bibliography 442</p> <p><b>28 Avionics Health Management 445<br /> </b><i>Michael D. Watson, Kosta Varnavas, Clint Patrick, Ron Hodge, Carl S. Byington, Savio Chau and Edmund C. Baroth</i></p> <p>Overview 445</p> <p>28.1 Avionics Description 445</p> <p>28.2 Electrical, Electronic and Electromechanical (EEE) Parts Qualification 448</p> <p>28.3 Environments 450</p> <p>28.4 Failure Sources 453</p> <p>28.5 Current Avionics Health Management Techniques 453</p> <p>28.6 Avionics Health Management Requirements 460</p> <p>28.7 Supporting a Layered Approach 464</p> <p>28.8 Conclusion 464</p> <p>Bibliography 464</p> <p><b>29 Failure-Tolerant Architectures for Health Management 467<br /> </b><i>Daniel P. Siewiorek and Priya Narasimhan</i></p> <p>Overview 467</p> <p>29.1 Introduction 467</p> <p>29.2 System Failure Response Stages 468</p> <p>29.3 System-Level Approaches to Reliability 469</p> <p>29.4 Failure-Tolerant Software Architectures for Space Missions 470</p> <p>29.5 Failure-Tolerant Software Architectures for Commercial Aviation Systems 475</p> <p>29.6 Observations and Trends 477</p> <p>29.7 Supporting a Layered Approach 480</p> <p>29.8 Conclusion 480</p> <p>Acknowledgments 481</p> <p>Bibliography 481</p> <p><b>30 Flight Control Health Management 483<br /> </b><i>Douglas J. Zimpfer</i></p> <p>Overview 483</p> <p>30.1 A FC Perspective on System Health Management 483</p> <p>30.2 Elements of the FC System 485</p> <p>30.3 FC Sensor and Actuator HM 485</p> <p>30.4 FC/Flight Dynamics HM 490</p> <p>30.5 FC HM Benefits 493</p> <p>30.6 Supporting a Layered Approach 493</p> <p>30.7 Conclusion 493</p> <p>Bibliography 494</p> <p><b>31 Life Support Health Management 497<br /> </b><i>David Kortenkamp, Gautam Biswas and Eric-Jan Manders</i></p> <p>Overview 497</p> <p>31.1 Introduction 497</p> <p>31.2 Modeling 501</p> <p>31.3 System Architecture 504</p> <p>31.4 Future NASA Life Support Applications 509</p> <p>31.5 Supporting a Layered Approach 510</p> <p>31.6 Conclusion 510</p> <p>Bibliography 510</p> <p><b>32 Software 513</b></p> <p><i>Philip A. Scandura, Jr.</i></p> <p>Overview 513</p> <p>32.1 Sampling of Accidents Attributed to Software Failures 513</p> <p>32.2 Current Practice 514</p> <p>32.3 Challenges 517</p> <p>32.4 Supporting a Layered Approach 518</p> <p>32.5 Conclusion 518</p> <p>Bibliography 518</p> <p><b>Part Six SYSTEM APPLICATIONS<br /> </b><i>Thomas J. Gormley</i></p> <p><b>33 Launch Vehicle Health Management 523<br /> </b><i>Edward N. Brown, Anthony R. Kelley and Thomas J. Gormley</i></p> <p>Overview 523</p> <p>33.1 Introduction 523</p> <p>33.2 LVSHM Functionality and Scope 524</p> <p>33.3 LV Terminology and Operations 526</p> <p>33.4 LV Reliability Lessons Learned 527</p> <p>33.5 LV Segment Requirements and Architecture 528</p> <p>33.6 LVSHM Analysis and Design 529</p> <p>33.7 LV LVSHM System Descriptions 534</p> <p>33.8 LVSHM Future System Requirements 537</p> <p>33.9 Conclusion 540</p> <p>Bibliography 541</p> <p><b>34 Robotic Spacecraft Health Management 543<br /> </b><i>Paula S. Morgan</i></p> <p>Overview 543</p> <p>34.1 Introduction 544</p> <p>34.2 Spacecraft Health and Integrity Concerns for Deep-Space Missions 544</p> <p>34.3 Spacecraft SHM Implementation Approaches 546</p> <p>34.4 Standard FP Implementation 546</p> <p>34.5 Robotic Spacecraft SHM Allocations 547</p> <p>34.6 Spacecraft SHM Ground Rules and Requirements 548</p> <p>34.7 SFP and SIFP Architectures 550</p> <p>34.8 Conclusion 554</p> <p>Bibliography 554</p> <p><b>35 Tactical Missile Health Management 555<br /> </b><i>Abdul J. Kudiya and Stephen A. Marotta</i></p> <p>Overview 555</p> <p>35.1 Introduction 555</p> <p>35.2 Stockpile Surveillance Findings 556</p> <p>35.3 Probabilistic Prognostics Modeling 557</p> <p>35.4 Conclusion 563</p> <p>Bibliography 564</p> <p><b>36 Strategic Missile Health Management 565<br /> </b><i>Gregory A. Ruderman</i></p> <p>Overview 565</p> <p>36.1 Introduction 565</p> <p>36.2 Fundamentals of Solid Rocket Motors 566</p> <p>36.3 Motor Components 567</p> <p>36.4 Challenges for Strategic Rocket Health Management 568</p> <p>36.5 State of the Art for Solid Rocket System Health Management (SHM) 570</p> <p>36.6 Current Challenges Facing SRM SHM 572</p> <p>36.7 Conclusion 574</p> <p>Bibliography 574</p> <p><b>37 Rotorcraft Health Management 577<br /> </b><i>Paula J. Dempsey and James J. Zakrajsek</i></p> <p>Overview 577</p> <p>37.1 Introduction 577</p> <p>37.2 Rotorcraft System Health Management Standard Practices 579</p> <p>37.3 New Practices 582</p> <p>37.4 Lessons Learned 583</p> <p>37.5 Future Challenges 584</p> <p>37.6 Conclusion 585</p> <p>Bibliography 585</p> <p><b>38 Commercial Aviation Health Management 589<br /> </b><i>Philip A. Scandura, Jr., Michael Christensen, Daniel Lutz and Gary Bird</i></p> <p>Overview 589</p> <p>38.1 Commercial Aviation Challenge 590</p> <p>38.2 Layered Approach to SHM 590</p> <p>38.3 Evolution of Commercial Aviation SHM 591</p> <p>38.4 Commercial State of the Art 593</p> <p>38.5 The Next Generation: Intelligent Vehicles/Sense and Respond 600</p> <p>38.6 Conclusion 603</p> <p>Bibliography 603</p> <p><b>Glossary 605</b></p> <p><b>Acronyms 607</b></p> <p><b>Index 617</b></p>
<b>Dr Stephen B. Johnson</b> is a Heath Management Systems Engineer at the NASA Marshall Space Flight Center in the USA, as well as an associate research professor at the University of Colorado at Colorado Springs. He has been active in the field of SHM for over 20 years, and has authored many research papers on the topic. He has also authored or edited 3 books in the aerospace field including <i>The Secret of Apollo: Systems Management in American and European Space Programs</i>. <p><b>Mr Thomas Gormley</b> has been involved with the NASA Aerospace industry for over 20 years, and was the Integrated Vehicle Health Management Project Leader for Rockwell Space Systems during the early 1990s. He brings expertise in systems implementation to the project.</p> <p><b>Dr Seth S. Kessler</b> is president and owner of Metis Design Corporation, a design consulting firm specializing in custom sensing solutions. He brings expertise in structural health monitoring and composite materials to the project.</p> <p><b>Mr Charles Mott</b> is a business analyst with the Tauri group, currently under contract at NASA. He brings expertise in the socio-technical aspects of large-scale technological projects to the project.</p> <p><b>Dr Ann Patterson-Hine</b> is Group Leader of the Health Management Technologies Group at the Ames Research Center. She brings expertise on the use of engineering models for model-based reasoning in advanced monitoring and diagnostic systems to the project.</p> <p><b>Dr Karl Reichard</b> is head of the ARL Penn State Monitoring and Automation Department. He brings expertise in the implementation of signal processing, control and embedded diagnost</p> <p><b>Mr Philip A. Scandura, Jr</b> joined Honeywell in 1984 where he currently holds the position of Staff Scientist in their Advanced Technology Organization. He brings expertise in the system definition and implementation of real-time, embedded systems for use in safety-critical and mission-critical applications to the project.</p>
<i>System Health Management: with Aerospace Applications</i> provides the first complete reference text for System Health Management (SHM), the set of technologies and processes used to improve system dependability. Edited by a team of engineers and consultants with SHM design, development, and research experience from NASA, industry, and academia, each heading up sections in their own areas of expertise and co-coordinating contributions from leading experts, the book collates together in one text the state-of-the-art in SHM research, technology, and applications. It has been written primarily as a reference text for practitioners, for those in related disciplines, and for graduate students in aerospace or systems engineering. <p>There are many technologies involved in SHM and no single person can be an expert in all aspects of the discipline.<i>System Health Management: with Aerospace Applications</i> provides an introduction to the major technologies, issues, and references in these disparate but related SHM areas. Since SHM has evolved most rapidly in aerospace, the various applications described in this book are taken primarily from the aerospace industry. However, the theories, techniques, and technologies discussed are applicable to many engineering disciplines and application areas.</p> <p>Readers will find sections on the basic theories and concepts of SHM, how it is applied in the system life cycle (architecture, design, verification and validation, etc.), the most important methods used (reliability, quality assurance, diagnostics, prognostics, etc.), and how SHM is applied in operations (commercial aircraft, launch operations, logistics, etc.), to subsystems (electrical power, structures, flight controls, etc.) and to system applications (robotic spacecraft, tactical missiles, rotorcraft, etc.).</p>

Diese Produkte könnten Sie auch interessieren:

Computational Acoustics
Computational Acoustics
von: David R. Bergman
EPUB ebook
116,99 €
Applied Mechanical Design
Applied Mechanical Design
von: Ammar Grous
PDF ebook
144,99 €
Movement Equations 4
Movement Equations 4
von: Michel Borel, Georges Vénizélos
EPUB ebook
139,99 €