Details

Synthetic Biology


Synthetic Biology

Parts, Devices and Applications
Advanced Biotechnology 1. Aufl.

von: Christina Smolke, Sang Yup Lee, Jens Nielsen, Gregory Stephanopoulos

142,99 €

Verlag: Wiley-Blackwell
Format: PDF
Veröffentl.: 20.02.2018
ISBN/EAN: 9783527688081
Sprache: englisch
Anzahl Seiten: 432

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>A review of the interdisciplinary field of synthetic biology, from genome design to spatial engineering.</b></p> <p>Written by an international panel of experts, <i>Synthetic Biology</i> draws from various areas of research in biology and engineering and explores the current applications to provide an authoritative overview of this burgeoning field. The text reviews the synthesis of DNA and genome engineering and offers a discussion of the parts and devices that control protein expression and activity. The authors include information on the devices that support spatial engineering, RNA switches and explore the early applications of synthetic biology in protein synthesis, generation of pathway libraries, and immunotherapy.</p> <p>Filled with the most recent research, compelling discussions, and unique perspectives, <i>Synthetic Biology</i> offers an important resource for understanding how this new branch of science can improve on applications for industry or biological research.</p>
<p>About the Series Editors xv</p> <p><b>Part I DNA Synthesis and Genome Engineering 1</b></p> <p><b>1 Competition and the Future of Reading and Writing DNA 3<br /></b><i>Robert Carlson</i></p> <p>1.1 Productivity Improvements in Biological Technologies 3</p> <p>1.2 The Origin of Moore’s Law and Its Implications for Biological Technologies 5</p> <p>1.3 Lessons from Other Technologies 6</p> <p>1.4 Pricing Improvements in Biological Technologies 7</p> <p>1.5 Prospects for New Assembly Technologies 8</p> <p>1.6 Beyond Programming Genetic Instruction Sets 10</p> <p>1.7 Future Prospects 10</p> <p>References 11</p> <p><b>2 Trackable Multiplex Recombineering (TRMR) and Next-Generation Genome Design Technologies:</b> <b>Modifying Gene Expression in E. coli by Inserting Synthetic DNA Cassettes and Molecular Barcodes 15<br /></b><i>Emily F. Freed, Gur Pines, Carrie A. Eckert, and Ryan T. Gill</i></p> <p>2.1 Introduction 15</p> <p>2.2 Current Recombineering Techniques 16</p> <p>2.2.1 Recombineering Systems 17</p> <p>2.2.2 Current Model of Recombination 17</p> <p>2.3 Trackable Multiplex Recombineering 19</p> <p>2.3.1 TRMR and T2RMR Library Design and Construction 19</p> <p>2.3.2 Experimental Procedure 23</p> <p>2.3.3 Analysis of Results 24</p> <p>2.4 Current Challenges 25</p> <p>2.4.1 TRMR and T2RMR are Currently Not Recursive 26</p> <p>2.4.2 Need for More Predictable Models 26</p> <p>2.5 Complementing Technologies 27</p> <p>2.5.1 MAGE 27</p> <p>2.5.2 CREATE 27</p> <p>2.6 Conclusions 28</p> <p>Definitions 28</p> <p>References 29</p> <p><b>3 Site-Directed Genome Modification with Engineered Zinc Finger Proteins 33<br /></b><i>Lauren E. Woodard, Daniel L. Galvan, and Matthew H. Wilson</i></p> <p>3.1 Introduction to Zinc Finger DNA-Binding Domains and Cellular Repair Mechanisms 33</p> <p>3.1.1 Zinc Finger Proteins 33</p> <p>3.1.2 Homologous Recombination 34</p> <p>3.1.3 Non-homologous End Joining 35</p> <p>3.2 Approaches for Engineering or Acquiring Zinc Finger Proteins 36</p> <p>3.2.1 Modular Assembly 37</p> <p>3.2.2 OPEN and CoDA Selection Systems 37</p> <p>3.2.3 Purchase via Commercial Avenues 38</p> <p>3.3 Genome Modification with Zinc Finger Nucleases 38</p> <p>3.4 Validating Zinc Finger Nuclease-Induced Genome Alteration and Specificity 40</p> <p>3.5 Methods for Delivering Engineered Zinc Finger Nucleases into Cells 41</p> <p>3.6 Zinc Finger Fusions to Transposases and Recombinases 41</p> <p>3.7 Conclusions 42</p> <p>References 43</p> <p><b>4 Rational Efforts to Streamline the Escherichia coli Genome 49<br /></b><i>Gabriella Balikó, Viktor Vernyik, Ildikó Karcagi, Zsuzsanna Györfy, Gábor Draskovits, Tamás Fehér, and</i> <i>György Pósfai</i></p> <p>4.1 Introduction 49</p> <p>4.2 The Concept of a Streamlined Chassis 50</p> <p>4.3 The E. coli Genome 51</p> <p>4.4 Random versus Targeted Streamlining 54</p> <p>4.5 Selecting Deletion Targets 55</p> <p>4.5.1 General Considerations 55</p> <p>4.5.1.1 Naturally Evolved Minimal Genomes 55</p> <p>4.5.1.2 Gene Essentiality Studies 55</p> <p>4.5.1.3 Comparative Genomics 56</p> <p>4.5.1.4 In silico Models 56</p> <p>4.5.1.5 Architectural Studies 56</p> <p>4.5.2 Primary Deletion Targets 57</p> <p>4.5.2.1 Prophages 57</p> <p>4.5.2.2 Insertion Sequences (ISs) 57</p> <p>4.5.2.3 Defense Systems 57</p> <p>4.5.2.4 Genes of Unknown and Exotic Functions 58</p> <p>4.5.2.5 Repeat Sequences 58</p> <p>4.5.2.6 Virulence Factors and Surface Structures 58</p> <p>4.5.2.7 Genetic Diversity-Generating Factors 59</p> <p>4.5.2.8 Redundant and Overlapping Functions 59</p> <p>4.6 Targeted Deletion Techniques 59</p> <p>4.6.1 General Considerations 59</p> <p>4.6.2 Basic Methods and Strategies 60</p> <p>4.6.2.1 Circular DNA-Based Method 60</p> <p>4.6.2.2 Linear DNA-Based Method 62</p> <p>4.6.2.3 Strategy for Piling Deletions 62</p> <p>4.6.2.4 New Variations on Deletion Construction 63</p> <p>4.7 Genome-Reducing Efforts and the Impact of Streamlining 64</p> <p>4.7.1 Comparative Genomics-Based Genome Stabilization and Improvement 64</p> <p>4.7.2 Genome Reduction Based on Gene Essentiality 66</p> <p>4.7.3 Complex Streamlining Efforts Based on Growth Properties 67</p> <p>4.7.4 Additional Genome Reduction Studies 68</p> <p>4.8 Selected Research Applications of Streamlined-Genome E. coli 68</p> <p>4.8.1 Testing Genome Streamlining Hypotheses 68</p> <p>4.8.2 Mobile Genetic Elements, Mutations, and Evolution 69</p> <p>4.8.3 Gene Function and Network Regulation 69</p> <p>4.8.4 Codon Reassignment 70</p> <p>4.8.5 Genome Architecture 70</p> <p>4.9 Concluding Remarks, Challenges, and Future Directions 71</p> <p>References 73</p> <p><b>5 Functional Requirements in the Program and the Cell Chassis for Next-Generation Synthetic Biology 81<br /></b><i>Antoine Danchin, Agnieszka Sekowska, and Stanislas Noria</i></p> <p>5.1 A Prerequisite to Synthetic Biology: An Engineering Definition of What Life Is 81</p> <p>5.2 Functional Analysis: Master Function and Helper Functions 83</p> <p>5.3 A Life-Specific Master Function: Building Up a Progeny 85</p> <p>5.4 Helper Functions 86</p> <p>5.4.1 Matter: Building Blocks and Structures (with Emphasis on DNA) 87</p> <p>5.4.2 Energy 91</p> <p>5.4.3 Managing Space 92</p> <p>5.4.4 Time 95</p> <p>5.4.5 Information 96</p> <p>5.5 Conclusion 97</p> <p>Acknowledgments 98</p> <p>References 98</p> <p><b>Part II Parts and Devices Supporting Control of Protein Expression and Activity 107</b></p> <p><b>6 Constitutive and Regulated Promoters in Yeast: How to Design and Make Use of Promoters in S.</b> <b>cerevisiae 109<br /></b><i>Diana S. M. Ottoz and Fabian Rudolf</i></p> <p>6.1 Introduction 109</p> <p>6.2 Yeast Promoters 110</p> <p>6.3 Natural Yeast Promoters 113</p> <p>6.3.1 Regulated Promoters 113</p> <p>6.3.2 Constitutive Promoters 115</p> <p>6.4 Synthetic Yeast Promoters 116</p> <p>6.4.1 Modified Natural Promoters 116</p> <p>6.4.2 Synthetic Hybrid Promoters 117</p> <p>6.5 Conclusions 121</p> <p>Definitions 122</p> <p>References 122</p> <p><b>7 Splicing and Alternative Splicing Impact on Gene Design 131<br /></b><i>Beatrix Suess, Katrin Kemmerer, and Julia E. Weigand</i></p> <p>7.1 The Discovery of “Split Genes” 131</p> <p>7.2 Nuclear Pre-mRNA Splicing in Mammals 132</p> <p>7.2.1 Introns and Exons: A Definition 132</p> <p>7.2.2 The Catalytic Mechanism of Splicing 132</p> <p>7.2.3 A Complex Machinery to Remove Nuclear Introns: The Spliceosome 132</p> <p>7.2.4 Exon Definition 134</p> <p>7.3 Splicing in Yeast 135</p> <p>7.3.1 Organization and Distribution of Yeast Introns 135</p> <p>7.4 Splicing without the Spliceosome 136</p> <p>7.4.1 Group I and Group II Self-Splicing Introns 136</p> <p>7.4.2 tRNA Splicing 137</p> <p>7.5 Alternative Splicing in Mammals 137</p> <p>7.5.1 Different Mechanisms of Alternative Splicing 137</p> <p>7.5.2 Auxiliary Regulatory Elements 139</p> <p>7.5.3 Mechanisms of Splicing Regulation 140</p> <p>7.5.4 Transcription-Coupled Alternative Splicing 142</p> <p>7.5.5 Alternative Splicing and Nonsense-Mediated Decay 143</p> <p>7.5.6 Alternative Splicing and Disease 144</p> <p>7.6 Controlled Splicing in S. cerevisiae 145</p> <p>7.6.1 Alternative Splicing 145</p> <p>7.6.2 Regulated Splicing 146</p> <p>7.6.3 Function of Splicing in S. cerevisiae 147</p> <p>7.7 Splicing Regulation by Riboswitches 147</p> <p>7.7.1 Regulation of Group I Intron Splicing in Bacteria 148</p> <p>7.7.2 Regulation of Alternative Splicing by Riboswitches in Eukaryotes 148</p> <p>7.8 Splicing and Synthetic Biology 150</p> <p>7.8.1 Impact of Introns on Gene Expression 150</p> <p>7.8.2 Control of Splicing by Engineered RNA-Based Devices 151</p> <p>7.9 Conclusion 153</p> <p>Acknowledgments 153</p> <p>Definitions 153</p> <p>References 153</p> <p><b>8 Design of Ligand-Controlled Genetic Switches Based on RNA Interference 169<br /></b><i>Shunnichi Kashida and Hirohide Saito</i></p> <p>8.1 Utility of the RNAi Pathway for Application in Mammalian Cells 169</p> <p>8.2 Development of RNAi Switches that Respond to Trigger Molecules 170</p> <p>8.2.1 Small Molecule-Triggered RNAi Switches 171</p> <p>8.2.2 Oligonucleotide-Triggered RNAi Switches 173</p> <p>8.2.3 Protein-Triggered RNAi Switches 174</p> <p>8.3 Rational Design of Functional RNAi Switches 174</p> <p>8.4 Application of the RNAi Switches 175</p> <p>8.5 Future Perspectives 177</p> <p>Definitions 178</p> <p>References 178</p> <p><b>9 Small Molecule-Responsive RNA Switches (Bacteria): Important Element of Programming Gene Expression in Response to Environmental Signals in Bacteria 181<br /></b><i>Yohei Yokobayashi</i></p> <p>9.1 Introduction 181</p> <p>9.2 Design Strategies 181</p> <p>9.2.1 Aptamers 181</p> <p>9.2.2 Screening and Genetic Selection 182</p> <p>9.2.3 Rational Design 183</p> <p>9.3 Mechanisms 183</p> <p>9.3.1 Translational Regulation 183</p> <p>9.3.2 Transcriptional Regulation 184</p> <p>9.4 Complex Riboswitches 185</p> <p>9.5 Conclusions 185</p> <p>Keywords with Definitions 185</p> <p>References 186</p> <p><b>10 Programming Gene Expression by Engineering Transcript Stability Control and Processing in Bacteria</b> <b>189<br /></b><i>Jason T. Stevens and James M. Carothers</i></p> <p>10.1 An Introduction to Transcript Control 189</p> <p>10.1.1 Why Consider Transcript Control? 189</p> <p>10.1.2 The RNA Degradation Process in E. coli 190</p> <p>10.1.3 The Effects of Translation on Transcript Stability 192</p> <p>10.1.4 Structural and Noncoding RNA-Mediated Transcript Control 193</p> <p>10.1.5 Polyadenylation and Transcript Stability 195</p> <p>10.2 Synthetic Control of Transcript Stability 195</p> <p>10.2.1 Transcript Stability Control as a “Tuning Knob” 195</p> <p>10.2.2 Secondary Structure at the 5′ and 3′ Ends 196</p> <p>10.2.3 Noncoding RNA-Mediated 197</p> <p>10.2.4 Model-Driven Transcript Stability Control for Metabolic Pathway Engineering 198</p> <p>10.3 Managing Transcript Stability 201</p> <p>10.3.1 Transcript Stability as a Confounding Factor 201</p> <p>10.3.2 Anticipating Transcript Stability Issues 201</p> <p>10.3.3 Uniformity of 5′ and 3′ Ends 202</p> <p>10.3.4 RBS Sequestration by Riboregulators and Riboswitches 203</p> <p>10.3.5 Experimentally Probing Transcript Stability 204</p> <p>10.4 Potential Mechanisms for Transcript Control 205</p> <p>10.4.1 Leveraging New Tools 205</p> <p>10.4.2 Unused Mechanisms Found in Nature 206</p> <p>10.5 Conclusions and Discussion 207</p> <p>Acknowledgments 208</p> <p>Definitions 208</p> <p>References 209</p> <p><b>11 Small Functional Peptides and Their Application in Superfunctionalizing Proteins 217<br /></b><i>Sonja Billerbeck</i></p> <p>11.1 Introduction 217</p> <p>11.2 Permissive Sites and Their Identification in a Protein 218</p> <p>11.3 Functional Peptides 220</p> <p>11.3.1 Functional Peptides that Act as Binders 220</p> <p>11.3.2 Peptide Motifs that are Recognized by Labeling Enzymes 221</p> <p>11.3.3 Peptides as Protease Cleavage Sites 222</p> <p>11.3.4 Reactive Peptides 223</p> <p>11.3.5 Pharmaceutically Relevant Peptides: Peptide Epitopes, Sugar Epitope Mimics, and Antimicrobial Peptides 223</p> <p>11.3.5.1 Peptide Epitopes 224</p> <p>11.3.5.2 Peptide Mimotopes 224</p> <p>11.3.5.3 Antimicrobial Peptides 225</p> <p>11.4 Conclusions 227</p> <p>Definitions 228</p> <p>Abbreviations 228</p> <p>Acknowledgment 229</p> <p>References 229</p> <p><b>Part III Parts and Devices Supporting Spatial Engineering 237</b></p> <p><b>12 Metabolic Channeling Using DNA as a Scaffold 239<br /></b><i>Mojca Beneina, Jerneja Mori, Rok Gaber, and Roman Jerala</i></p> <p>12.1 Introduction 239</p> <p>12.2 Biosynthetic Applications of DNA Scaffold 242</p> <p>12.2.1 l-Threonine 242</p> <p>12.2.2 trans-Resveratrol 245</p> <p>12.2.3 1,2-Propanediol 246</p> <p>12.2.4 Mevalonate 246</p> <p>12.3 Design of DNA-Binding Proteins and Target Sites 247</p> <p>12.3.1 Zinc Finger Domains 248</p> <p>12.3.2 TAL-DNA Binding Domains 249</p> <p>12.3.3 Other DNA-Binding Proteins 250</p> <p>12.4 DNA Program 250</p> <p>12.4.1 Spacers between DNA-Target Sites 250</p> <p>12.4.2 Number of DNA Scaffold Repeats 252</p> <p>12.4.3 DNA-Target Site Arrangement 253</p> <p>12.5 Applications of DNA-Guided Programming 254</p> <p>Definitions 255</p> <p>References 256</p> <p><b>13 Synthetic RNA Scaffolds for Spatial Engineering in Cells 261<br /></b><i>Gairik Sachdeva, Cameron Myhrvold, Peng Yin, and Pamela A. Silver</i></p> <p>13.1 Introduction 261</p> <p>13.2 Structural Roles of Natural RNA 261</p> <p>13.2.1 RNA as a Natural Catalyst 262</p> <p>13.2.2 RNA Scaffolds in Nature 263</p> <p>13.3 Design Principles for RNA Are Well Understood 263</p> <p>13.3.1 RNA Secondary Structure is Predictable 264</p> <p>13.3.2 RNA can Self-Assemble into Structures 265</p> <p>13.3.3 Dynamic RNAs can be Rationally Designed 265</p> <p>13.3.4 RNA can be Selected in vitro to Enhance Its Function 266</p> <p>13.4 Applications of Designed RNA Scaffolds 266</p> <p>13.4.1 Tools for RNA Research 266</p> <p>13.4.2 Localizing Metabolic Enzymes on RNA 267</p> <p>13.4.3 Packaging Therapeutics on RNA Scaffolds 269</p> <p>13.4.4 Recombinant RNA Technology 269</p> <p>13.5 Conclusion 270</p> <p>13.5.1 New Applications 270</p> <p>13.5.2 Technological Advances 270</p> <p>Definitions 271</p> <p>References 271</p> <p><b>14 Sequestered: Design and Construction of Synthetic Organelles 279<br /></b><i>Thawatchai Chaijarasphong and David F. Savage</i></p> <p>14.1 Introduction 279</p> <p>14.2 On Organelles 281</p> <p>14.3 Protein-Based Organelles 283</p> <p>14.3.1 Bacterial Microcompartments 283</p> <p>14.3.1.1 Targeting 285</p> <p>14.3.1.2 Permeability 287</p> <p>14.3.1.3 Chemical Environment 288</p> <p>14.3.1.4 Biogenesis 289</p> <p>14.3.2 Alternative Protein Organelles: A Minimal System 290</p> <p>14.4 Lipid-Based Organelles 292</p> <p>14.4.1 Repurposing Existing Organelles 293</p> <p>14.4.1.1 The Mitochondrion 293</p> <p>14.4.1.2 The Vacuole 294</p> <p>14.5 De novo Organelle Construction and Future Directions 295</p> <p>Acknowledgments 297</p> <p>References 297</p> <p><b>Part IV Early Applications of Synthetic Biology: Pathways, Therapies, and Cell-Free Synthesis 307</b></p> <p><b>15 Cell-Free Protein Synthesis: An Emerging Technology for Understanding, Harnessing, and Expanding the Capabilities of Biological Systems 309<br /></b><i>Jennifer A. Schoborg and Michael C. Jewett</i></p> <p>15.1 Introduction 309</p> <p>15.2 Background/Current Status 311</p> <p>15.2.1 Platforms 311</p> <p>15.2.1.1 Prokaryotic Platforms 311</p> <p>15.2.1.2 Eukaryotic Platforms 312</p> <p>15.2.2 Trends 314</p> <p>15.3 Products 316</p> <p>15.3.1 Noncanonical Amino Acids 316</p> <p>15.3.2 Glycosylation 316</p> <p>15.3.3 Antibodies 318</p> <p>15.3.4 Membrane Proteins 318</p> <p>15.4 High-Throughput Applications 320</p> <p>15.4.1 Protein Production and Screening 320</p> <p>15.4.2 Genetic Circuit Optimization 321</p> <p>15.5 Future of the Field 321</p> <p>Definitions 322</p> <p>Acknowledgments 322</p> <p>References 323</p> <p><b>16 Applying Advanced DNA Assembly Methods to Generate Pathway Libraries 331<br /></b><i>Dawn T. Eriksen, Ran Chao, and Huimin Zhao</i></p> <p>16.1 Introduction 331</p> <p>16.2 Advanced DNA Assembly Methods 333</p> <p>16.3 Generation of Pathway Libraries 334</p> <p>16.3.1 In vitro Assembly Methods 335</p> <p>16.3.2 In vivo Assembly Methods 339</p> <p>16.3.2.1 In vivo Chromosomal Integration 339</p> <p>16.3.2.2 In vivo Plasmid Assembly and One-Step Optimization Libraries 340</p> <p>16.3.2.3 In vivo Plasmid Assembly and Iterative Multi-step Optimization Libraries 341</p> <p>16.4 Conclusions and Prospects 343</p> <p>Definitions 343</p> <p>References 344</p> <p><b>17 Synthetic Biology in Immunotherapy and Stem Cell Therapy Engineering 349<br /></b><i>Patrick Ho and Yvonne Y. Chen</i></p> <p>17.1 The Need for a New Therapeutic Paradigm 349</p> <p>17.2 Rationale for Cellular Therapies 350</p> <p>17.3 Synthetic Biology Approaches to Cellular Immunotherapy Engineering 351</p> <p>17.3.1 CAR Engineering for Adoptive T-Cell Therapy 352</p> <p>17.3.2 Genetic Engineering to Enhance T-Cell Therapeutic Function 357</p> <p>17.3.3 Generating Safer T-Cell Therapeutics with Synthetic Biology 359</p> <p>17.4 Challenges and Future Outlook 362</p> <p>Acknowledgment 364</p> <p>Definitions 364</p> <p>References 365</p> <p><b>Part V Societal Ramifications of Synthetic Biology 373</b></p> <p><b>18 Synthetic Biology: From Genetic Engineering 2.0 to Responsible Research and Innovation 375<br /></b><i>Lei Pei and Markus Schmidt</i></p> <p>18.1 Introduction 375</p> <p>18.2 Public Perception of the Nascent Field of Synthetic Biology 376</p> <p>18.2.1 Perception of Synthetic Biology in the United States 377</p> <p>18.2.2 Perception of Synthetic Biology in Europe 379</p> <p>18.2.2.1 European Union 379</p> <p>18.2.2.2 Austria 379</p> <p>18.2.2.3 Germany 381</p> <p>18.2.2.4 Netherlands 382</p> <p>18.2.2.5 United Kingdom 383</p> <p>18.2.3 Opinions from Concerned Civil Society Groups 384</p> <p>18.3 Frames and Comparators 384</p> <p>18.3.1 Genetic Engineering: Technology as Conflict 386</p> <p>18.3.2 Nanotechnology: Technology as Progress 387</p> <p>18.3.3 Information Technology: Technology as Gadget 387</p> <p>18.3.4 SB: Which Debate to Come? 388</p> <p>18.4 Toward Responsible Research and Innovation (RRI) in Synthetic Biology 389</p> <p>18.4.1 Engagement of All Societal Actors – Researchers, Industry, Policy Makers, and Civil Society – and Their Joint Participation in the Research and Innovation 390</p> <p>18.4.2 Gender Equality 391</p> <p>18.4.3 Science Education 392</p> <p>18.4.4 Open Access 392</p> <p>18.4.5 Ethics 394</p> <p>18.4.6 Governance 395</p> <p>18.5 Conclusion 396</p> <p>Acknowledgments 397</p> <p>References 397</p> <p>Index 403</p>
<p><b>Sang Yup Lee</b> is Distinguished Professor at the Department of Chemical and Biomolecular Engineering at the Korea Advanced Institute of Science and Technology (KAIST).</p> <p><b>Jens Nielsen</b> is Professor and Director to Chalmers University of Technology, Sweden. He has received numerous Danish and international awards including the Nature Mentor Award.</p> <p><b>Professor Gregory Stephanopoulos</b> is the W. H. Dow Professor of Chemical Engineering at the Massachusetts Institute of Technology and Director of the MIT Metabolic Engineering Laboratory. </p>
<p><b>A review of the interdisciplinary field of synthetic biology, from genome design to spatial engineering</b></p> <p>Written by an international panel of experts, <i>Synthetic Biology</i> draws from various areas of research in biology and engineering and explores the current applications to provide an authoritative overview of this burgeoning field. The text reviews the synthesis of DNA and genome engineering and offers a discussion of the parts and devices that control protein expression and activity. The authors include information on the devices that support spatial engineering, RNA switches and explore the early applications of synthetic biology in protein synthesis, generation of pathway libraries, and immunotherapy.</p> <p>Filled with the most recent research, compelling discussions, and unique perspectives, <i>Synthetic Biology</i> offers an important resource for understanding how this new branch of science can improve on applications for industry or biological research.</p> <p> <b> </b></p> <b>Advanced Biotechnology</b><br /> Biotechnology is a broad, interdisciplinary field of science, combining biological sciences and relevant engineering disciplines, that is becoming increasingly important as it benefits the environment and society. Recent years have seen substantial advances in all areas of biotechnology, resulting in the emergence of brand new fields. To reflect this progress, Sang Yup Lee (KAIST, South Korea), Jens Nielsen (Chalmers University, Sweden), and Gregory Stephanopoulos (MIT, USA) have joined forces as the editors of a new Wiley-VCH book series. Advanced Biotechnology will cover all pertinent aspects of the field and each volume will be prepared by eminent scientists who are experts on the topic in question.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €