Details

Sustainable Surface Water Management


Sustainable Surface Water Management

A Handbook for SUDS
1. Aufl.

von: Susanne M. Charlesworth, Colin A. Booth

103,99 €

Verlag: Wiley-Blackwell
Format: EPUB
Veröffentl.: 13.09.2016
ISBN/EAN: 9781118897683
Sprache: englisch
Anzahl Seiten: 432

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<I>Sustainable Surface Water Management: a handbook for SUDS</I> addresses issues as diverse as flooding, water quality, amenity and biodiversity but also mitigation of, and adaptation to, global climate change, human health benefits and reduction in energy use. Chapters are included to cover issues from around the world, but they also address particular designs associated with the implementation of SUDS in tropical areas, problems with retrofitting SUDS devices, SUDS modelling, water harvesting in drought-stricken countries using SUDS and the inclusion of SUDS in the climate change strategies of such cities as Tokyo, New York and Strasbourg.
<p>List of Contributors xv</p> <p>About the Editors xix</p> <p><b>Section 1 Introduction to the Book 1</b></p> <p><b>Chapter 1 An Overture of Sustainable Surface Water Management 3<br /></b><i>Colin A. Booth and Susanne M. Charlesworth</i></p> <p>1.1 Introduction 3</p> <p>1.2 Surface Water Management 3</p> <p>1.3 Sustainable Surface Water Management 5</p> <p>1.4 Organisation of the Book 5</p> <p>References 9</p> <p><b>Section 2 Sustainable Surface Water Management in Context 11</b></p> <p><b>Chapter 2 Back to the Future? History and Contemporary Application of Sustainable Drainage Techniques 13<br /></b><i>Susanne M. Charlesworth, Luis Angel Sanudo Fontaneda and Larry W. Mays</i></p> <p>2.1 Introduction 13</p> <p>2.2 ‘Sustainability’? 14</p> <p>2.3 Rainwater Harvesting in Antiquity 15</p> <p>2.4 Water Quality Improvement 19</p> <p>2.5 Water Quantity Reduction: Sub‐Surface Drainage 23</p> <p>2.6 Water Storage 24</p> <p>2.7 Reduction in Water Demand: Greywater Recycling 24</p> <p>2.8 Reducing Water Velocity 25</p> <p>2.9 Non‐Structural Approaches to Sustainable Water Management 26</p> <p>2.10 Conclusions 28</p> <p>References 28</p> <p><b>Chapter 3 Surface Water Strategy, Policy and Legislation 31<br /></b><i>Frank Warwick</i></p> <p>3.1 Introduction 31</p> <p>3.2 Legislative Hierarchies 32</p> <p>3.3 Case Study – The United Kingdom 33</p> <p>3.4 Comparison of UK Approaches with Other Countries 41</p> <p>3.5 Conclusions 42</p> <p>References 42</p> <p><b>Chapter 4 Sustainable Drainage Systems: Operation and Maintenance 45<br /></b><i>Neil Berwick</i></p> <p>4.1 Introduction 45</p> <p>4.2 What is Operation and Maintenance and Why is it Important? 46</p> <p>4.3 Inspection, Reporting and Maintenance 47</p> <p>4.4 Maintenance Schedules and Planned Maintenance 50</p> <p>4.5 Other Considerations that Will Impact on Maintenance 52</p> <p>4.6 Conclusions 54</p> <p>References 55</p> <p><b>Section 3 Functions of Sustainable Drainage Systems 57</b></p> <p><b>Chapter 5 Water Quantity: Attenuation of the Storm Peak 59<br /></b><i>Craig Lashford, Susanne M. Charlesworth and Frank Warwick</i></p> <p>5.1 Introduction 59</p> <p>5.2 Conventional Drainage, Water Flow and Volume 59</p> <p>5.3 Existing Flood Management 60</p> <p>5.4 Water Quantity 61</p> <p>5.5 History of SuDS Implementation 62</p> <p>5.6 The Management Train 65</p> <p>5.7 Retrofit 70</p> <p>5.8 New Build 71</p> <p>5.9 Flow Control 72</p> <p>5.10 Conclusions 72</p> <p>References 74</p> <p><b>Chapter 6 Urban Water and Sediment Quality 79<br /></b><i>Lian Lundy</i></p> <p>6.1 Introduction 79</p> <p>6.2 Sources of Pollutants Mobilised by Urban Runoff 79</p> <p>6.3 Quality of Urban Runoff Originating from a Range of Land Use Types 80</p> <p>6.4 Quality and Behaviour of Sediment in Urban Receiving Water Bodies 82</p> <p>6.5 Treatment of Urban Runoff Using SuDS 83</p> <p>6.6 Pollutant Removal Processes that Occur in SuDS 85</p> <p>6.7 Quality and Behaviour of Sediment in SuDS 87</p> <p>References 88</p> <p><b>Chapter 7 Sustainable Drainage Systems: Delivering Multiple Benefits for People and Wildlife 91<br /></b><i>Andy Graham</i></p> <p>7.1 Introduction 91</p> <p>7.2 Getting Better SuDS 92</p> <p>7.3 SuDS and How They Support Biodiversity 93</p> <p>7.4 Involving People 95</p> <p>7.5 Designing SuDS for People and Wildlife 96</p> <p>7.6 SuDS Management Trains and Their Wildlife Benefits 98</p> <p>7.7 Community Managed and Wildlife‐Rich SuDS – a Case Study of Springhill Cohousing, Stroud, Gloucestershire 103</p> <p>References 104</p> <p><b>Chapter 8 Amenity: Delivering Value for Society 105<br /></b><i>Stella Apostolaki and Alison Duffy</i></p> <p>8.1 Emergence of the Amenity Concept 105</p> <p>8.2 Amenity, Recreation and Biodiversity in the Built Environment 107</p> <p>8.3 SuDS Amenity and Sustainable Development 110</p> <p>8.4 Reviewing the Public Perception of the Concept of Amenity and SuDS 111</p> <p>8.5 Conclusions 112</p> <p>References 112</p> <p><b>Chapter 9 Biodegradation in Green Infrastructure 115<br /></b><i>Alan P. Newman and Stephen J. Coupe</i></p> <p>9.1 Introduction 115</p> <p>9.2 Environmental Conditions and Requirements for Biodegradation 116</p> <p>9.3 Biofilms: What They Are, What They Do and How They Work 118</p> <p>9.4 Biodegradation in Green SuDS 119</p> <p>9.5 Nitrogen in Green SuDS 122</p> <p>9.6 Conclusions 123</p> <p>References 124</p> <p><b>Chapter 10 Hydrocarbon Biodegradation in Hard Infrastructure 127<br /></b><i>Stephen J. Coupe, Alan P. Newman and Luis Angel Sanudo Fontaneda</i></p> <p>10.1 Introduction 127</p> <p>10.2 Hard SuDS Structure, Design and Related Technologies 128</p> <p>10.3 Evidence of Biodegradation in Hard SuDS 130</p> <p>10.4 Hard SuDS Microbiology and Biofilms 132</p> <p>10.5 Design and Diversification from Standard Hard SuDS 134</p> <p>10.6 Other Hard SuDS Biodegradation Studies 135</p> <p>10.7 Design Optimisation for Catastrophic Pollution Events 136</p> <p>10.8 Conclusions 138</p> <p>References 139</p> <p><b>Chapter 11 Use of Geosynthetics for Sustainable Drainage 142<br /></b><i>Luis Angel Sanudo Fontaneda, Elena Blanco‐Fernandez, Stephen J. Coupe, Jaime Carpio, Alan P. Newman and Daniel Castro‐Fresno</i></p> <p>11.1 Introduction to Geosynthetics 142</p> <p>11.2 Classifications, Functions and Applications of Geosynthetics 143</p> <p>11.3 Application of Geotextiles in SuDS 145</p> <p>11.4 Secondary Uses for Urban Water 150</p> <p>11.5 Conclusions 151</p> <p>References 152</p> <p><b>Section 4 Multiple Benefits of Sustainable Drainage Systems 157</b></p> <p><b>Chapter 12 Natural Flood Risk Management and its Role in Working with Natural Processes 159<br /></b><i>Tom Lavers and Susanne M. Charlesworth</i></p> <p>12.1 Introduction 159</p> <p>12.2 Defining NFRM 159</p> <p>12.3 Examples of NFRM Studies 161</p> <p>12.4 Significance of NFRM in Meeting Policy Agendas 171</p> <p>12.5 Conclusions 172</p> <p>References 172</p> <p>Statuses 176</p> <p><b>Chapter 13 Sustainable Drainage Systems and Energy: Generation and Reduction 177<br /></b><i>Amal Faraj‐Lloyd, Susanne M. Charlesworth and Stephen J. Coupe</i></p> <p>13.1 Introduction 177</p> <p>13.2 Ground Source Heat Extraction 178</p> <p>13.3 Pervious Paving Systems 178</p> <p>13.4 Results of Monitoring the EcoHouse 182</p> <p>13.5 The Hanson Stewartby Office, Bedford, UK 184</p> <p>13.6 Reducing Energy Use: The Use of Green and Blue Infrastructure on Buildings 186</p> <p>13.7 Conclusions 188</p> <p>References 189</p> <p><b>Chapter 14 Carbon Sequestration and Storage: The Case for Green Roofs in Urban Areas 193<br /></b><i>Brad Rowe</i></p> <p>14.1 Introduction 193</p> <p>14.2 The Importance of Carbon Sequestration 193</p> <p>14.3 Coupling the Stormwater Management Benefits of Green Roofs with Carbon Sequestration 195</p> <p>14.4 Carbon Sequestration on Green Roofs 197</p> <p>14.5 Embodied Energy 198</p> <p>14.6 Improving Carbon Sequestration Potential 199</p> <p>14.7 Conclusions 201</p> <p>References 201</p> <p><b>Chapter 15 Dual‐Purpose Rainwater Harvesting System Design 205<br /></b><i>Peter Melville‐Shreeve, Sarah Ward and David Butler</i></p> <p>15.1 Introduction 205</p> <p>15.2 RWH and SuDS in England and Wales 206</p> <p>15.3 Approaches to Stormwater Source Control Using RwH in England and Wales 207</p> <p>15.4 Integrating Stormwater Source Control into RwH System Design 209</p> <p>15.5 Conclusions 215</p> <p>Acknowledgements 216</p> <p>References 216</p> <p><b>Chapter 16 Progress with Integration of Ecosystem Services in SuDS 218<br /></b><i>Mark Everard, Robert J. McInnes and Hazem Gouda</i></p> <p>16.1 Introduction 218</p> <p>16.2 Potential Contribution of SuDS Types to Ecosystem Services 220</p> <p>16.3 Analysis of Ecosystem Service Outcomes from SuDS Schemes 221</p> <p>16.4 Recognising the Multi‐Functional Opportunities of SuDS 228</p> <p>16.5 Conclusions and Recommendations 230</p> <p>References 230</p> <p><b>Section 5 Integrating Sustainable Surface Water Management into the Built Environment 233</b></p> <p><b>Chapter 17 Whole Life Costing and Multiple Benefits of Sustainable Drainage 235<br /></b><i>Jessica E. Lamond</i></p> <p>17.1 Introduction 235</p> <p>17.2 Whole Life Costing 236</p> <p>17.3 Multiple Benefits of SuDS 238</p> <p>17.4 Conclusions 241</p> <p>Acknowledgement 242</p> <p>References 242</p> <p><b>Chapter 18 Green Roof and Permeable Paving Retrofit to Mitigate Pluvial Flooding 245<br /></b><i>Sara Wilkinson, David G. Proverbs and Jessica E. Lamond</i></p> <p>18.1 Introduction 245</p> <p>18.2 Types of Green Roof for Stormwater Management 246</p> <p>18.3 Building Retrofit Characteristics 247</p> <p>18.4 Drivers and Barriers to the Uptake of SuDS in Melbourne 253</p> <p>18.5 Estimation of Runoff Under Different Scenarios 255</p> <p>18.6 Conclusions and Further Research 255</p> <p>Acknowledgements 256</p> <p>References 256</p> <p><b>Chapter 19 Contemporary Landscapes and Buildings of Motorway Service Areas 259<br /></b><i>Colin A. Booth and Anne‐Marie McLaughlin</i></p> <p>19.1 Introduction 259</p> <p>19.2 Motorway Service Areas in the UK 259</p> <p>19.3 Exemplar Motorway Service Areas 260</p> <p>19.4 Conclusions 267</p> <p>References 267</p> <p><b>Chapter 20 Modelling for Design 270<br /></b><i>Craig Lashford, Susanne M. Charlesworth and Frank Warwick</i></p> <p>20.1 Introduction 270</p> <p>20.2 One‐Dimensional Modelling 270</p> <p>20.3 Two‐Dimensional Flood Modelling 271</p> <p>20.4 One‐Dimensional and Two‐Dimensional Modelling 271</p> <p>20.5 Three‐Dimensional Modelling 271</p> <p>20.6 Modelling Uncertainty 271</p> <p>20.7 Validation of Models: Monitoring of SuDS Management Trains 272</p> <p>20.8 Scale of Drainage Modelling 272</p> <p>20.9 Issues with SuDS Modelling 274</p> <p>20.10 Case Study: Modelling the Impacts of a SuDS Management Train at Prior Deram Park, Coventry, UK, Using MicrodrainageR 276</p> <p>20.11 Case Study: Decision Support Tool for Coventry, UK 278</p> <p>20.12 Site Design 280</p> <p>20.13 Conclusions 281</p> <p>References 281</p> <p><b>Chapter 21 Public Perceptions of Sustainable Drainage Devices 285<br /></b><i>Glyn Everett</i></p> <p>21.1 Introduction 285</p> <p>21.2 Public Preferences and Understanding of Flood Risk Management 286</p> <p>21.3 The Sustainability of SuDS 286</p> <p>21.4 Attitudes and Behaviour: Portland, Oregon, USA 288</p> <p>21.5 Co‐development and Co‐ownership 292</p> <p>21.6 Conclusions 293</p> <p>References 293</p> <p><b>Section 6 Global Sustainable Surface Water Management 299</b></p> <p><b>Chapter 22 Sustainable Drainage Out of the Temperate Zone: The Humid Tropics 301<br /></b><i>Susanne M. Charlesworth and Margaret Mezue</i></p> <p>22.1 Introduction 301</p> <p>22.2 Modification of the Urban Hydrological Cycle by Urbanisation in Tropical Countries 303</p> <p>22.3 Vegetated Devices 303</p> <p>22.4 Case Study: Sustainable Drainage in Malaysia 308</p> <p>22.5 Conclusions 312</p> <p>References 313</p> <p><b>Chapter 23 Sustainable Drainage Systems in Brazil 315<br /></b><i>Marcelo Gomes Miguez and Aline Pires Verol</i></p> <p>23.1 Introduction 315</p> <p>23.2 The History of SuDS in Brazil – an Academic Perspective 316</p> <p>23.3 Legal Framework 319</p> <p>23.4 Case Examples 320</p> <p>23.5 Concluding Remarks 325</p> <p>References 326</p> <p><b>Chapter 24 Interim Measures Towards Sustainable Drainage in the Informal Settlements of South Africa 328<br /></b><i>Kevin Winter</i></p> <p>24.1 Introduction 328</p> <p>24.2 Overview of the Development of Informal Settlements in South Africa 330</p> <p>24.3 Co‐Management of Drainage 330</p> <p>24.4 Langrug: A Case Study of an Informal Settlement 331</p> <p>24.5 Research‐Led Efforts: First Approach 333</p> <p>24.6 Discussion on Research‐Led Approach to Drainage 335</p> <p>24.7 Building Partnerships: A Second Approach 337</p> <p>24.8 Provincial Government Intervention 339</p> <p>24.9 Biomimicry at Work: Greywater Swales 339</p> <p>24.10 Sustainable Urban Drainage Centre 339</p> <p>24.11 Discussion 341</p> <p>24.12 Conclusions 343</p> <p>References 343</p> <p><b>Chapter 25 Low Impact Development in the USA 345<br /></b><i>Bruce K. Ferguson</i></p> <p>25.1 Introduction 345</p> <p>25.2 Unifying Legislation 345</p> <p>25.3 Stormwater Management Practices 346</p> <p>25.4 Low‐Impact Development 348</p> <p>25.5 Stormwater and Urban Agendas 350</p> <p>25.6 Choices in Challenging Urban Districts 352</p> <p>References 354</p> <p><b>Chapter 26 Sustainable Drainage Systems in Spain 355<br /></b><i>Valerio C. Andres‐Valeri, Sara Perales‐Momparler, Luis Angel Sanudo Fontaneda, Ignacio Andres‐Domenech, Daniel Castro‐Fresno and Ignacio Escuder‐Bueno</i></p> <p>26.1 Introduction 355</p> <p>26.2 SuDS Case Studies in the Northern Regions of Spain 357</p> <p>26.3 Integration of SuDS into New Urban Developments 361</p> <p>26.4 SuDS Retrofitting Case Studies in the Mediterranean Region 362</p> <p>26.5 Conclusions 366</p> <p>References 368</p> <p><b>Chapter 27 Sustainable Drainage at the City Scale: A Case Study in Glasgow, Scotland 370<br /></b><i>Neil McLean</i></p> <p>27.1 Introduction 370</p> <p>27.2 SuDS and Legislation 371</p> <p>27.3 The Importance of Multi‐Functionality 372</p> <p>27.4 Design Studies 373</p> <p>27.5 Nitshill Design Study 375</p> <p>27.6 City Centre Surface Water Management 376</p> <p>27.7 Funding 377</p> <p>27.8 The Future 378</p> <p>References 378</p> <p><b>Chapter 28 Water Sensitive Design in Auckland, New Zealand 380<br /></b><i>Robyn Simcock</i></p> <p>28.1 Introduction 380</p> <p>28.2 WSD in Auckland: Drivers of Design 382</p> <p>28.3 Case Study: Wynyard Quarter 388</p> <p>28.4 Conclusions and Parting Thought 389</p> <p>References 390</p> <p><b>Section 7 Summary of the Book 393</b></p> <p><b>Chapter 29 Challenges for the Future: Are Sustainable Drainage Systems Really Sustainable? 395<br /></b><i>Susanne M. Charlesworth and Colin A. Booth</i></p> <p>29.1 Introduction 395</p> <p>29.2 Barriers and Drivers 396</p> <p>29.3 What is the Future for SuDS? 398</p> <p>29.4 Conclusions 399</p> <p>References 399</p> <p>Index 400</p>
<p><b>The Editors</b> <p><b>Susanne M. Charlesworth</b> is Professor of Urban Physical Geography at Coventry University in the Centre for Agroecology, Water and Resilience. <p><b>Colin A. Booth</b> is Associate Head of Research and Scholarship for the School of Architecture and the Built Environment and is Deputy Director of the Centre for Floods, Communities and Resilience at the University of the West of England, Bristol.
<p><b>SUSTAINABLE SURFACE WATER MANAGEMENT</b><br> <b>A HANDBOOK FOR SUDS</b> <p>Water management is a key environmental issue for controlling floods and reducing droughts; sustainable drainage systems provide a clear alternative to traditional hard infrastructure. <p>The built environment has become more susceptible to flooding because urbanisation has meant that landscapes that were once porous and allowed surface water to in ltrate, have been stripped of vegetation and soil and have been covered with impermeable roads, pavements and buildings. <p><i>Sustainable Surface Water Management: A Handbook for SuDS</i> emphasises the SuDS philosophy and explains the sustainable surface water management agenda with a wealth of insights brought together through the experts who have contributed chapters. By integrating physical and environmental sciences, and combining social, economic and political considerations, the book provides a unique resource for a wide range of policy specialists, scientists, engineers and subject enthusiasts. <p>It brings together experts across the whole field of SuDS from the social to the hard physical sciences in order to both highlight the breadth of the subject itself, but also to show the flexibility and multiple bene ts that such an approach can bring to the management of surface water. By integrating the physical and environmental sciences, and combining social, economic and political considerations, a unique resource has been produced. <p>This approach addresses issues as diverse as flooding, water quality, amenity and biodiversity, together with the mitigation of, and adaptation to, global climate change, human health bene ts and reduction in energy use. In straightened economic times, ef ciency and ef cacy of approaches are paramount; value for money, payback and whole life costing underlie all undertakings, and SuDS is no exception. <p>Many of the chapters have a UK focus, but globally the UK (and particularly England and Wales) lag behind such countries as the USA and New Zealand. Hence, chapters are included to cover issues from around the world, alongside particular designs associated with the implementation of SuDS in tropical areas, problems with retro tting SuDS devices, SuDS modelling, water harvesting in droughtstricen countries using SuDS and the inclusion of SuDS in the climate change strategies of many large cities. Such issues and technologies are far-reaching and, as such, can easily be extended to other European and global nations.

Diese Produkte könnten Sie auch interessieren:

Finite-Elemente-Methoden im Stahlbau
Finite-Elemente-Methoden im Stahlbau
von: Rolf Kindmann, Matthias Kraus
PDF ebook
52,99 €
Stahlbau
Stahlbau
von: Rolf Kindmann
PDF ebook
52,99 €
Bauphysik - Klima Wärme Feuchte Schall
Bauphysik - Klima Wärme Feuchte Schall
von: Peter Häupl
PDF ebook
34,99 €