Details

Sustainable Steel Buildings


Sustainable Steel Buildings

A Practical Guide for Structures and Envelopes
1. Aufl.

von: Bernhard Hauke, Markus Kuhnhenne, Mark Lawson, Milan Veljkovic

73,99 €

Verlag: Wiley-Blackwell
Format: EPUB
Veröffentl.: 24.08.2016
ISBN/EAN: 9781118740811
Sprache: englisch
Anzahl Seiten: 384

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<i>Sustainable Steel Buildings</i> reviews steel and its potential as a sustainable building material and shows how steel can be used to deliver buildings and structures with a high level of sustainability. The book's main focus is on the advantages and disadvantages of steel and how those characteristics can be used under a range of international certification systems (DGNB, LEED, BREEAM, openhouse etc).
<p>List of contributors xi</p> <p>Preface xvii</p> <p><b>1 What does ‘sustainable construction’ mean? An overview 1</b></p> <p>1.1 Introduction 1</p> <p>1.1.1 The influence of the building sector 3</p> <p>1.1.2 Can we afford sustainability? 6</p> <p>1.1.3 How can we achieve sustainability in the building sector? 6</p> <p>1.2 Aims of sustainable construction 7</p> <p>1.2.1 Ecological aims 8</p> <p>1.2.2 Social aims 10</p> <p>1.2.3 Economic aims 11</p> <p>References 12</p> <p><b>2 Legal background and codes in Europe 13</b></p> <p>2.1 Normative background 14</p> <p>2.2 Comments on EN 15804 and EN 15978 14</p> <p>2.2.1 Modular life?-cycle stages 14</p> <p>2.2.2 Comparability of EPDs for construction products 16</p> <p>2.2.3 Functional equivalent 17</p> <p>2.2.4 Scenarios at product or building level 17</p> <p>2.2.5 Reuse and recycling in module D 18</p> <p>2.2.6 Aggregation of the information modules 19</p> <p>2.3 Legal framework 19</p> <p>2.3.1 EU waste framework directive and waste management acts in European countries: product responsibility 19</p> <p>2.3.2 EU construction products regulation 22</p> <p>2.3.3 EU building directive and energy saving ordinance 23</p> <p>2.3.4 Focus increasingly on construction products 26</p> <p>2.3.5 EU industrial emissions directive 26</p> <p>References 27</p> <p><b>3 Basic principles of sustainability assessment 29</b></p> <p>3.1 The life?-cycle concept 29</p> <p>3.1.1 What is the meaning of the life?-cycle concept? 29</p> <p>3.1.2 Life?-cycle phases of a building 29</p> <p>3.2 Life?-cycle planning 32</p> <p>3.2.1 Building Information Modeling in steel construction 32</p> <p>3.2.2 Integrated and life?-cycle?-oriented planning 39</p> <p>3.3 Life?-cycle assessment and functional unit 45</p> <p>3.3.1 Environmental impact categories 47</p> <p>3.4 Life?-cycle costing 48</p> <p>3.4.1 Life?-cycle costing – cost application including cost planning 51</p> <p>3.4.2 Net present value method 52</p> <p>3.4.3 Life?-cycle cost analysis 53</p> <p>3.5 Energy efficiency 59</p> <p>3.6 Environmental product declarations 60</p> <p>3.6.1 Institute Construction and Environment (IBU) – Program Operator for EPDs in Germany 62</p> <p>3.6.2 The ECO Platform 63</p> <p>3.7 Background databases 65</p> <p>3.8 European open LCA data network 66</p> <p>3.8.1 ÖKOBAUDAT 66</p> <p>3.8.2 eLCA, an LCA tool for buildings 68</p> <p>3.8.3 LCA – a European approach 71</p> <p>3.9 Environmental data for steel construction products 72</p> <p>3.9.1 The recycling potential concept 72</p> <p>3.9.2 EPD for structural steel 78</p> <p>3.9.3 EPD for hot?-dip galvanized structural steel 80</p> <p>3.9.4 EPDs for profiled sheets and sandwich panels 81</p> <p>3.10 KBOB?-recommendation – LCA database from Switzerland 85</p> <p>3.10.1 KBOB?-recommendation as a basis for planning tools 86</p> <p>3.10.2 Environmental impact assessment within the KBOB?-recommendation 87</p> <p>3.10.3 Environmental impacts of hot?-rolled steel products 88</p> <p>3.10.4 Example using data from the KBOB?-recommendation 90</p> <p>References 93</p> <p><b>4 Sustainable steel construction 97</b></p> <p>4.1 Environmental aspects of steel production 97</p> <p>4.2 Planning and constructing 99</p> <p>4.2.1 Sustainability aspects of tender and contracting 99</p> <p>4.3 Sustainable building quality 102</p> <p>4.3.1 Space efficiency 102</p> <p>4.3.2 Flexibility and building conversion 105</p> <p>4.3.3 Design for deconstruction, reuse and recycling 108</p> <p>4.4 Multistorey buildings 117</p> <p>4.4.1 Introduction 117</p> <p>4.4.2 Building forms 120</p> <p>4.4.3 Floor plan design 122</p> <p>4.4.4 Building height and height between floors 124</p> <p>4.4.5 Flexibility and variability 124</p> <p>4.4.6 Demands placed on the structural system 126</p> <p>4.4.7 Floor systems 128</p> <p>4.4.8 Columns 132</p> <p>4.4.9 Innovative joint systems 133</p> <p>4.5 High strength steel 134</p> <p>4.5.1 Metallurgical background 136</p> <p>4.5.2 Designing in accordance with Eurocodes 141</p> <p>4.6 Batch hot?-dip galvanizing 141</p> <p>4.6.1 Introduction 141</p> <p>4.6.2 The galvanizing process 144</p> <p>4.6.3 Batch galvanized coatings 144</p> <p>4.6.4 Sustainability 146</p> <p>4.6.5 Example: 72 years young – the Lydlinch Bridge 150</p> <p>4.7 UPE channels 152</p> <p>4.8 Optimisation of material consumption in steel columns 155</p> <p>4.9 Composite beams 157</p> <p>4.9.1 Composite beams with moderate high strength materials 159</p> <p>4.9.2 Examples for high strength composite beams 160</p> <p>4.9.3 Economic application of composite beams 161</p> <p>4.10 Fire?-protective coatings in steel construction 166</p> <p>4.10.1 Possible ways of designing the fire protection system 166</p> <p>4.10.2 Fire protection of steel using intumescent coatings 166</p> <p>4.10.3 The structure of fire?-protective coating systems 167</p> <p>4.10.4 Sustainability of fire?-protection systems 168</p> <p>4.11 Building envelopes in steel 171</p> <p>4.11.1 Energy?-efficient building envelope design 171</p> <p>4.11.2 Thermal performance and air-tightness of sandwich constructions 173</p> <p>4.11.3 Effective thermal insulation by application of steel cassette profiles 182</p> <p>4.12 Floor systems 190</p> <p>4.12.1 Steel as key component for multifunctional flooring systems 190</p> <p>4.12.2 Slimline floor system 197</p> <p>4.12.3 Profiled composite decks for thermal inertia 203</p> <p>4.12.4 Thermal activation of steel floor systems 208</p> <p>4.12.5 Steel decks supporting zero energy concepts 210</p> <p>4.12.6 Optimisation of multistorey buildings with beam?-slab systems 213</p> <p>4.13 Sustainability analyses and assessments of steel bridges 219</p> <p>4.13.1 State of the art 219</p> <p>4.13.2 Methods for bridge analyses 224</p> <p>4.13.3 External effects and external costs 225</p> <p>4.13.4 Life?-cycle assessment 226</p> <p>4.13.5 Uncertainty 227</p> <p>4.14 Steel construction for renewable energy 229</p> <p>4.14.1 Sustainability assessment concept 232</p> <p>4.14.2 Sustainability characteristics 235</p> <p>References 237</p> <p><b>5 Sustainability certification labels for buildings 247</b></p> <p>5.1 Major certification schemes 248</p> <p>5.1.1 DGNB and BNB 249</p> <p>5.1.2 LEED 256</p> <p>5.1.3 BREEAM 257</p> <p>5.2 Effect of structural design in the certification schemes 266</p> <p>5.2.1 Life?-cycle assessments and environmental product declarations 266</p> <p>5.2.2 Risks to the environment and humans 271</p> <p>5.2.3 Costs during the life cycle 274</p> <p>5.2.4 Flexibility of the building 277</p> <p>5.2.5 Recycling of construction materials, dismantling and demolition capability 280</p> <p>5.2.6 Execution of construction work and building site 284</p> <p>References 288</p> <p><b>6 Case studies and life?-cycle assessment comparisons 289</b></p> <p>6.1 LCA comparison of single?-storey buildings 289</p> <p>6.1.1 Structural systems 289</p> <p>6.1.2 LCA information 293</p> <p>6.1.3 Frame and foundations – structural system 294</p> <p>6.1.4 Column without foundation – single structural member 298</p> <p>6.1.5 Girder – single structural member 300</p> <p>6.1.6 Building envelope 300</p> <p>6.1.7 Comparison in the operational phase 301</p> <p>6.1.8 Conclusions for single-storey buildings 303</p> <p>6.2 LCA comparison of low rise office buildings 305</p> <p>6.2.1 The low rise model building 305</p> <p>6.2.2 LCA comparison of the structural system 307</p> <p>6.3 LCA comparison of office buildings 310</p> <p>6.3.1 LCA information 312</p> <p>6.3.2 Results of the LCA for the building systems 312</p> <p>6.3.3 Results of the LCA for a reference building 312</p> <p>6.4 Material efficiency 317</p> <p>6.4.1 Effective application of high strength steels 317</p> <p>6.5 Sustainable office designer 323</p> <p>6.5.1 Database 325</p> <p>6.5.2 Example using sustainable office designer 325</p> <p>6.6 Sustainability comparison of highway bridges 331</p> <p>6.6.1 Calculation of LCC for highway bridges 331</p> <p>6.6.2 Calculation of external cost for highway bridges 335</p> <p>6.6.3 Calculation of LCA for highway bridges 338</p> <p>6.6.4 Additional indicators 342</p> <p>6.7 Sustainability of steel construction for renewable energy 344</p> <p>6.7.1 Offshore wind energy 344</p> <p>6.7.2 Digester for biogas power plants 348</p> <p>6.8 Consideration of transport and construction 352</p> <p>6.8.1 Environmental impacts according to the origin of structural steel products 352</p> <p>6.8.2 Comparison of expenses for transport and hoisting of large girders 354</p> <p>References 357</p> <p>Index 361</p>
<b><br>The Editors</b></br> <br>Bernhard Hauke is CEO of bauforumstahl, the association of the German Steel Construction Industry</br> <br>Markus Kuhnhenne is Professor of Sustainability of Metal Constructions at RWTH Aachen University</br> <br>Mark Lawson is Professor of Construction Systems at the University of Surrey</br> <br>Milan Veljkovic is Professor of Steel and Composite Structures at the Technical University of Delft</br>
<b>Sustainable Steel Buildings: A Practical Guide for Structures and Envelopes Edited by Bernhard Hauke, Markus Kuhnhenne, Mark Lawson and Milan Veljkovic</b> <p>Sustainability is a high priority for all professionals involved in the design, construction and operation of buildings, yet detailed information on the sustainability credentials of steel as a construction material is scattered over a wide range of publications, reports and company data. <i>Sustainable Steel Buildings: A Practical Guide for Structures and Envelopes</i> provides a thorough review of steel as a sustainable building material, bringing together detailed information on its sustainability credentials, focusing on the advantages and drawbacks of steel in construction applications, and illustrating how its characteristics are assessed under a range of international certification systems.</p> <p>It covers: ? The background of sustainable building ? Basic concepts of sustainable construction ? Methods and design tools for the delivery of sustainable buildings ? Steel and its performance in certification systems ? Information and data on relevant steel construction products ? Examples of sustainable steel buildings</p> <p>Sustainable Steel Buildings shows specifiers, contractors, building authorities, lecturers and students how steel can be used to deliver buildings and structures with a high level of inherent sustainability.</p>

Diese Produkte könnten Sie auch interessieren:

Finite-Elemente-Methoden im Stahlbau
Finite-Elemente-Methoden im Stahlbau
von: Rolf Kindmann, Matthias Kraus
PDF ebook
52,99 €
Stahlbau
Stahlbau
von: Rolf Kindmann
PDF ebook
52,99 €
Bauphysik - Klima Wärme Feuchte Schall
Bauphysik - Klima Wärme Feuchte Schall
von: Peter Häupl
PDF ebook
34,99 €