Details

Structure Design and Degradation Mechanisms in Coastal Environments


Structure Design and Degradation Mechanisms in Coastal Environments


1. Aufl.

von: Abdelkarim Ait-Mokhtar, Olivier Millet

139,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 04.05.2015
ISBN/EAN: 9781119006091
Sprache: englisch
Anzahl Seiten: 370

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>This book provide a series of designs, materials, characterization and modeling, that will help create safer and stronger structures in coastal areas.</b></p> <p>The authors take a look at the different materials (porous, heterogeneous, concrete...), the moisture transfers in construction materials as well as the degradation caused by external attacks and put forth systems to monitor the structures or evaluate the performance reliability as well as degradation scenarios of coastal protection systems.</p>
<p>GENERAL INTRODUCTION xi</p> <p><b>CHAPTER 1. POROUS CONSTRUCTION MATERIALS: CHARACTERIZATIONS AND MODELING 1</b><br />Abdelkarim AÏT-MOKHTAR, Ameur HAMAMI, Philippe TURCRY and Ouali AMIRI</p> <p>1.1. Definition of porous media 1</p> <p>1.2. Different experimental tools for the characterization of porous materials 3</p> <p>1.2.1. Measurements of porosity 3</p> <p>1.2.2. Pore size distribution by sorption/desorption isotherms 6</p> <p>1.2.3. Characterization of pore structure by NMR 7</p> <p>1.2.4. Imaging techniques 10</p> <p>1.3. Some constructed models for porous microstructures 14</p> <p>1.3.1. Models based on pore size distribution 14</p> <p>1.3.2. Tridimensional-constructed microstructures 24</p> <p>1.4. Some approaches for linking microstructure data to permeability 27</p> <p>1.4.1. Permeability from MIP tests 29</p> <p>1.4.2. Permeability from constructed microstructures 32</p> <p>1.5. Bibliography 34</p> <p><b>CHAPTER 2. MOISTURE TRANSFERS IN POROUS CONSTRUCTION MATERIALS: MECHANISMS AND APPLICATIONS  41</b><br /><i>Rafik BELARBI, Kamilia ABAHRI and Abdelkarim TRABELSI</i></p> <p>2.1. Introduction 41</p> <p>2.2. Quantitative characteristics describing moisture in porous media 42</p> <p>2.3. Phenomenon of transfer and moisture storage 43</p> <p>2.3.1. Moisture diffusion 43</p> <p>2.3.2. Capillarity 45</p> <p>2.3.3. Infiltration 48</p> <p>2.3.4. Physical and chemical adsorption 49</p> <p>2.4. Moisture transfer modeling: macroscopic approach 49</p> <p>2.4.1. Driving potentials 51</p> <p>2.4.2. Conservation equations 52</p> <p>2.4.3. Moisture transfer 54</p> <p>2.4.4. Heat transfer 57</p> <p>2.4.5. Case study 58</p> <p>2.5. Transfer and storage properties 66</p> <p>2.5.1. Vapor permeability 66</p> <p>2.5.2. Moisture diffusion coefficient 77</p> <p>2.5.3. Infiltration coefficient 86</p> <p>2.5.4. Water vapor sorption–desorption isotherms 93</p> <p>2.6. Effect of statistical variability of water vapor desorption used as input data 101</p> <p>2.6.1. Variability of water vapor desorption 102</p> <p>2.6.2. Effect of statistical variability 105</p> <p>2.7. Conclusion 108</p> <p>2.8. Bibliography 109</p> <p><b>CHAPTER 3. HOMOGENIZATION METHODS FOR IONIC TRANSFERS IN SATURATED HETEROGENEOUS MATERIALS 117</b><br /><i>Olivier MILLET, Khaled BOURBATACHE, Abdelkarim AÏT-MOKHTAR</i></p> <p>3.1. General introduction 117</p> <p>3.2. Different techniques of homogenization 119</p> <p>3.2.1. Homogenization via volume averaging 119</p> <p>3.2.2. Periodic homogenization method 122</p> <p>3.3. Periodic homogenization of ionic transfers accounting for electrical double layer 124</p> <p>3.3.1. Dimensional analysis of equations 128</p> <p>3.3.2. Reduction to a one scale problem 129</p> <p>3.3.3. Homogenized microscopic diffusion-migration model with EDL 132</p> <p>3.4. Particular case of ionic transfer without EDL 134</p> <p>3.4.1. Dimensional analysis and scale problem 134</p> <p>3.4.2. Homogenized macroscopic diffusion-migration model 135</p> <p>3.5. Simulations and parametric study of the EDL effects 137</p> <p>3.5.1. Implementation in COMSOL Multiphysics software and validation 138</p> <p>3.5.2. Bidimensional elementary cells 140</p> <p>3.5.3. Three-dimensional elementary cells 149</p> <p>3.6. Calculations of effective chlorides diffusion coefficients using a multiscale homogenization procedure   153</p> <p>3.7. Bibliography 156</p> <p><b>CHAPTER 4. CHLORIDE TRANSPORT IN UNSATURATED CONCRETE 161</b><br /><i>Ouali AMIRI, Abdelkarim AÏT-MOKHTAR, Hassan SLEIMAN and Phu-Tho NGUYEN</i></p> <p>4.1. Introduction 161</p> <p>4.2. Chloride diffusion in unsaturated case 162</p> <p>4.2.1. Definition of the problem 162</p> <p>4.2.2. Theoretical aspects 163</p> <p>4.2.3. Ionic transport model 164</p> <p>4.2.4. Moisture transport model 171</p> <p>4.3. Summary of the model 174</p> <p>4.3.1. Output model 175</p> <p>4.3.2. Constant parameters 176</p> <p>4.4. Difficulties in determining some parameters of the model 176</p> <p>4.5. Numerical method description 179</p> <p>4.5.1. Finite volume method 179</p> <p>4.5.2. Numerical simulations of chloride profiles: parametrical study 183</p> <p>4.6. Conclusions 193</p> <p>4.7. Bibliography 194</p> <p><b>CHAPTER 5. CONSTRUCTION DEGRADATION BY EXTERNAL SULFATE ATTACKS 197</b><br /><i>Emmanuel ROZIÈRE, Rana EL-HACHEM and Ahmed LOUKILI</i></p> <p>5.1. Introduction 197</p> <p>5.2. Mechanisms of degradation 198</p> <p>5.2.1. Chemical reactions and crystallization pressure 198</p> <p>5.2.2. Ingress of sulfate ions and scenario of sulfate attack 202</p> <p>5.2.3. Influence of exposure conditions 207</p> <p>5.3. Influence of concrete composition and standards requirements 219</p> <p>5.3.1. Influence of binder composition 219</p> <p>5.3.2. Influence of concrete composition 223</p> <p>5.3.3. Standards requirements 228</p> <p>5.4. Testing for sulfate resistance 229</p> <p>5.4.1. Material and scale of the tests 229</p> <p>5.4.2. Acceleration of the degradation process 230</p> <p>5.4.3. Recommendations for testing 235</p> <p>5.5. Conclusion 237</p> <p>5.6. Bibliography 238</p> <p><b>CHAPTER 6. PERFORMANCE-BASED DESIGN OF STRUCTURES AND METHODOLOGY FOR PERFORMANCE RELIABILITY EVALUATION 247</b><br /><i>Vikram PAKRASHI and Ciarán HANLEY</i></p> <p>6.1. Introduction 247</p> <p>6.2. Code treatment of structural reliability 249</p> <p>6.2.1. Formulation of structural reliability analysis 249</p> <p>6.2.2. Incorporation of reliability analysis into normative documents 251</p> <p>6.2.3. Reliability targets 252</p> <p>6.2.4. Consistency with deterministic and semi-deterministic methods 253</p> <p>6.3. Second moment transformation and simulation methods 254</p> <p>6.3.1. Problem formulation 255</p> <p>6.3.2. First-order reliability method 256</p> <p>6.3.3. Second-order reliability method 256</p> <p>6.3.4. Monte Carlo simulation for reliability analysis 258</p> <p>6.3.5. Computational aspects and related software 259</p> <p>6.3.6. Practical implementation aspects 261</p> <p>6.4. Load and resistance modeling considering uncertainty 261</p> <p>6.4.1. Uncertainty modeling 262</p> <p>6.4.2. Need for resistance modeling 264</p> <p>6.4.3. Measurement of resistance variables 265</p> <p>6.4.4. Typical loading scenarios 265</p> <p>6.5. Probabilistic assessment of limit-state violation 265</p> <p>6.5.1. Reliability index and probability of failure 266</p> <p>6.5.2. The concept of the design point 267</p> <p>6.5.3. Sensitivity studies 269</p> <p>6.5.4. Parameter importance measures 270</p> <p>6.6. Component versus system reliability 271</p> <p>6.6.1. Network requirements 271</p> <p>6.6.2. Illustration of component and system reliability 272</p> <p>6.6.3. Methods of estimating system reliability from component reliability 273</p> <p>6.6.4. Practical implementation aspects 275</p> <p>6.7. Time-dependent reliability 276</p> <p>6.7.1. Concept of time dependence 276</p> <p>6.7.2. Handling time dependency in reliability analysis 277</p> <p>6.7.3. Time-dependent deterioration modeling 279</p> <p>6.8. Conclusion 280</p> <p>6.9. Bibliography 281</p> <p><b>CHAPTER 7. COASTAL PROTECTION DEGRADATION SCENARIOS 285</b><br /><i>Daniel POULAIN and Rémy TOURMENT</i></p> <p>7.1. Functions and types of coastal dikes 285</p> <p>7.1.1. Main types of dikes 286</p> <p>7.1.2. Functional analysis of the protection system 295</p> <p>7.2. Stress of coastal dikes 309</p> <p>7.2.1. Hydraulic stresses 310</p> <p>7.2.2. Marine geomorphology 318</p> <p>7.2.3. Mechanical stresses 321</p> <p>7.3. Dysfunction and failure of coastal dikes 322</p> <p>7.3.1. Definitions 322</p> <p>7.3.2. Classic process to damage and failure of embankment dikes (elementary mechanisms) 325</p> <p>7.3.3. Case studies of the damage and failure of coastal dikes 337</p> <p>7.4. Bibliography 345</p> <p>LIST OF AUTHORS 347</p> <p>INDEX 349</p>
<p><strong>Abdelkarim Aït-Mokhtar</strong>, LaSIE, La Rochelle University, France.

Diese Produkte könnten Sie auch interessieren:

Finite-Elemente-Methoden im Stahlbau
Finite-Elemente-Methoden im Stahlbau
von: Rolf Kindmann, Matthias Kraus
PDF ebook
52,99 €
Stahlbau
Stahlbau
von: Rolf Kindmann
PDF ebook
52,99 €
Bauphysik - Klima Wärme Feuchte Schall
Bauphysik - Klima Wärme Feuchte Schall
von: Peter Häupl
PDF ebook
34,99 €