Details

Structural Methods in Molecular Inorganic Chemistry


Structural Methods in Molecular Inorganic Chemistry


Inorganic Chemistry: A Textbook Series, Band 37 1. Aufl.

von: D. W. H. Rankin, Norbert Mitzel, Carole Morrison

47,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 03.01.2013
ISBN/EAN: 9780470975572
Sprache: englisch
Anzahl Seiten: 512

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>Determining the structure of molecules is a fundamental skill that all chemists must learn. <i>Structural Methods in Molecular Inorganic Chemistry</i> is designed to help readers interpret experimental data, understand the material published in modern journals of inorganic chemistry, and make decisions about what techniques will be the most useful in solving particular structural problems.</p> <p>Following a general introduction to the tools and concepts in structural chemistry,  the following topics are covered in detail:</p> <p>• computational chemistry<br /> • nuclear magnetic resonance spectroscopy<br /> • electron paramagnetic resonance spectroscopy<br /> • Mössbauer spectroscopy<br /> • rotational spectra and rotational structure<br /> • vibrational spectroscopy<br /> • electronic  characterization techniques<br /> • diffraction methods<br /> • mass spectrometry</p> <p>The final chapter presents a series of case histories, illustrating how chemists have applied a broad range of structural techniques to interpret and understand chemical systems.</p> <p>Throughout the textbook a strong connection is made between theoretical topics and the real world of practicing chemists. Each chapter concludes with problems and discussion questions, and a supporting website contains additional advanced material.</p> <p><i>Structural Methods in Molecular Inorganic Chemistry</i> is an extensive update and sequel to the successful textbook <i>Structural Methods in Inorganic Chemistry</i> by Ebsworth, Rankin and Cradock. It is essential reading for all advanced students of chemistry, and a handy reference source for the professional chemist.</p>
<p>Preface xiii</p> <p>CompanionWebsite xv</p> <p>Acknowledgements xvii</p> <p>Biographies xix</p> <p><b>1. Determining Structures – How and Why 1</b></p> <p>1.1 Structural chemistry – where did it come from? 1</p> <p>1.2 Asking questions about structure 4</p> <p>1.3 Answering questions about structure 5</p> <p>1.4 Plan of the book 7</p> <p>1.5 Supplementary information 8</p> <p><b>2. Tools and Concepts 9</b></p> <p>2.1 Introduction 9</p> <p>2.2 How structural chemistry techniques work 10</p> <p>2.3 Symmetry 11</p> <p>2.4 Electron density 21</p> <p>2.5 Potential-energy surfaces 21</p> <p>2.6 Timescales 24</p> <p>2.7 Structural definitions 26</p> <p>2.8 Sample preparation 27</p> <p>2.9 Quantitative measurements 30</p> <p>2.10 Instrumentation 32</p> <p>2.11 Data analysis 36</p> <p><b>3. Theoretical Methods 45</b></p> <p>3.1 Introduction 45</p> <p>3.2 Approximating the multi-electron Schrodinger equation 46</p> <p>3.3 Exploring the potential-energy surface 52</p> <p>3.4 Extending the computational model to the solid state 56</p> <p>3.5 Calculating thermodynamic properties 61</p> <p>3.6 Calculating properties of chemical bonding 63</p> <p>3.7 Comparing theory with experiment: geometry 65</p> <p>3.8 Comparing theory with experiment: molecular properties 68</p> <p>3.9 Combining theory and experiment 74</p> <p><b>4. Nuclear Magnetic Resonance Spectroscopy 79</b></p> <p>4.1 Introduction 79</p> <p>4.2 The nuclear magnetic resonance phenomenon 79</p> <p>4.3 Experimental set-up 83</p> <p>4.4 The pulse technique 86</p> <p>4.5 Information from chemical shifts 92</p> <p>4.6 Information from NMR signal intensities. 100</p> <p>4.7 Simple splitting patterns due to coupling between nuclear spins 101</p> <p>4.8 Information from coupling constants 112</p> <p>4.9 Not-so-simple spectra 116</p> <p>4.10 The multi-nuclear approach 120</p> <p>4.11 Multiple resonance 121</p> <p>4.12 Multi-pulse methods 126</p> <p>4.13 Two-dimensional NMR spectroscopy 129</p> <p>4.14 Gases 140</p> <p>4.15 Liquid crystals 140</p> <p>4.16 Solids 141</p> <p>4.17 Monitoring dynamic phenomena and reactions 147</p> <p>4.18 Paramagnetic compounds 154</p> <p><b>5. Electron Paramagnetic Resonance Spectroscopy 169</b></p> <p>5.1 The electron paramagnetic resonance experiment 169</p> <p>5.2 Hyperfine coupling in isotropic systems 171</p> <p>5.3 Anisotropic systems 175</p> <p>5.4 Transition-metal complexes 179</p> <p>5.5 Multiple resonance 182</p> <p><b>6. Mossbauer Spectroscopy 189</b></p> <p>6.1 Introduction 189</p> <p>6.2 The Mossbauer effect 189</p> <p>6.3 Experimental arrangements 192</p> <p>6.4 Information from Mossbauer spectroscopy 194</p> <p>6.5 Compound identification 204</p> <p>6.6 Temperature- and time-dependent effects 208</p> <p>6.7 Common difficulties encountered in Mossbauer spectroscopy 212</p> <p>6.8 Further possibilities in Mossbauer spectroscopy 213</p> <p><b>7. Rotational Spectra and Rotational Structure 219</b></p> <p>7.1 Introduction 219</p> <p>7.2 The rotation of molecules 219</p> <p>7.3 Rotational selection rules 224</p> <p>7.4 Instrumentation 228</p> <p>7.5 Using the information in a spectrum 229</p> <p>7.6 Using rotation constants to define molecular structures 232</p> <p><b>8. Vibrational Spectroscopy 237</b></p> <p>8.1 Introduction 237</p> <p>8.2 The physical basis; molecular vibrations 237</p> <p>8.3 Observing molecular vibrations 239</p> <p>8.4 Effects of phase on spectra 245</p> <p>8.5 Vibrational spectra and symmetry 248</p> <p>8.6 Assignment of bands to vibrations 254</p> <p>8.7 Complete empirical assignment of vibrational spectra 262</p> <p>8.8 Information from vibrational spectra 263</p> <p>8.9 Normal coordinate analysis 272</p> <p><b>9. Electronic Characterization Techniques 277</b></p> <p>9.1 Introduction 277</p> <p>9.2 Electron energy levels in molecules 278</p> <p>9.3 Symmetry and molecular orbitals 279</p> <p>9.4 Photoelectron spectroscopy 281</p> <p>9.5 Valence excitation spectroscopy 286</p> <p>9.6 Electronic energy levels and transitions in transition-metal complexes 289</p> <p>9.7 Circular dichroism 298</p> <p><b>10. Diffraction Methods 303</b></p> <p>10.1 Introduction 303</p> <p>10.2 Diffraction of electrons, neutrons and X-rays 304</p> <p>10.3 Diffraction by gases 308</p> <p>10.4 Diffraction by liquids 321</p> <p>10.5 Diffraction by single crystals; symmetry 323</p> <p>10.6 Diffraction by single crystals; the theoretical basis 329</p> <p>10.7 Diffraction by single crystals; the experiment. 333</p> <p>10.8 Diffraction by single crystals; interpretation of results 341</p> <p>10.9 Diffraction by single crystals; electron density determination 349</p> <p>10.10 Topological features of the electron density 352</p> <p>10.11 Phase dependence of molecular structures 363</p> <p>10.12 Diffraction of neutrons by crystals 365</p> <p>10.13 Diffraction by powders 368</p> <p>10.14 High-pressure crystallography 368</p> <p>10.15 Extended X-ray absorption fine structure 371</p> <p><b>11. Mass Spectrometry 383</b></p> <p>11.1 Introduction 383</p> <p>11.2 Experimental arrangements 383</p> <p>11.3 Data analysis 387</p> <p>11.4 Combined mass spectrometry methods 392</p> <p><b>12. Case Histories 399</b></p> <p>12.1 Introduction 399</p> <p>12.2 Xenon compounds 400</p> <p>12.3 The structure of N2O3 407</p> <p>12.4 Bismuthine 409</p> <p>12.5 Tetrahydroborates 410</p> <p>12.6 Is beryllocene a sandwich compound? 415</p> <p>12.7 Silylium cations – free at last 418</p> <p>12.8 True phosphinous acids 422</p> <p>12.9 Dihydrogen and dihydride complexes 425</p> <p>12.10 Agostic interactions: alkyl hydrogen atoms binding to metal atoms 428</p> <p>12.11 Lower symmetry than expected in some phosphines and phosphoranes 430</p> <p>12.12 Three-membered rings with dative bonds? 432</p> <p>12.13 Stable radicals 436</p> <p>12.14 Induced proton transfer in an adduct of squaric acid and bipyridine 441</p> <p>12.15 High-pressure studies of metal organic framework materials 443</p> <p>12.16 Mistaken identity: mono-coordinate copper(I) and silver(I) complexes 446</p> <p>12.17 Oxidation states in a palladium–tin complex 447</p> <p>12.18 Structural and spectroscopic consequences of a chemical change in an iron complex 450</p> <p>12.19 Some metalloproteins 454</p> <p>12.20 Atoms inside fullerene cages 459</p> <p>12.21 Structural chemistry – where is it going? 463</p> <p>Discussion problem 464</p> <p>References 464</p> <p>Index 467</p>
<p><b>Professor David Rankin</b>, School of Chemistry, University of Edinburgh, Scotland.</p> <p><b>Prof. Dr. Norbert W. Mitzel</b>, Department for Inorganic Chemistry and Structural Chemistry, Bielefeld University, Germany.</p> <p><b>Dr Carole Morrison</b>, School of Chemistry, University of Edinburgh, Scotland.</p>
<p>Determining the structure of molecules is a fundamental skill that all chemists must learn. <i>Structural Methods in Molecular Inorganic Chemistry</i> is designed to help readers interpret experimental data, understand the material published in modern journals of inorganic chemistry, and make decisions about what techniques will be the most useful in solving particular structural problems. </p> <p>Following a general introduction to the tools and concepts in structural chemistry,  the following topics are covered in detail: </p> <ul> <li>computational chemistry</li> <li>nuclear magnetic resonance spectroscopy</li> <li>electron paramagnetic resonance spectroscopy</li> <li>Mössbauer spectroscopy</li> <li>rotational spectra and rotational structure</li> <li>vibrational spectroscopy</li> <li>electronic  characterization techniques</li> <li>diffraction methods</li> <li>mass spectrometry </li> </ul> <p>The final chapter presents a series of case histories, illustrating how chemists have applied a broad range of structural techniques to interpret and understand chemical systems. </p> Throughout the textbook a strong connection is made between theoretical topics and the real world of practicing chemists. Each chapter concludes with problems and discussion questions, and a supporting website contains additional advanced material.<br /> <br /> Structural Methods in Molecular Inorganic Chemistry is an extensive update and sequel to the successful textbook Structural Methods in organic Chemistry by Ebsworth, Rankin and Cradock. It is essential reading for all advanced students of chemistry, and a handy reference source for the professional chemist.

Diese Produkte könnten Sie auch interessieren:

Lanthanide and Actinide Chemistry
Lanthanide and Actinide Chemistry
von: Simon Cotton
PDF ebook
50,99 €
Mass Spectrometry of Inorganic and Organometallic Compounds
Mass Spectrometry of Inorganic and Organometallic Compounds
von: William Henderson, J. Scott McIndoe
PDF ebook
59,99 €
Neurodegenerative Diseases and Metal Ions, Volume 1
Neurodegenerative Diseases and Metal Ions, Volume 1
von: Astrid Sigel, Helmut Sigel, Roland K. O. Sigel
PDF ebook
228,99 €