Details

Statistical Models and Methods for Reliability and Survival Analysis


Statistical Models and Methods for Reliability and Survival Analysis


1. Aufl.

von: Vincent Couallier, Léo Gerville-Réache, Catherine Huber-Carol, Nikolaos Limnios, Mounir Mesbah

164,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 11.12.2013
ISBN/EAN: 9781118826997
Sprache: englisch
Anzahl Seiten: 432

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<i>Statistical Models and Methods for Reliability and Survival Analysis</i> brings together contributions by specialists in statistical theory as they discuss their applications providing up-to-date developments in methods used in survival analysis, statistical goodness of fit, stochastic processes for system reliability, amongst others. Many of these are related to the work of Professor M. Nikulin in statistics over the past 30 years. The authors gather together various contributions with a broad array of techniques and results, divided into three parts - Statistical Models and Methods, Statistical Models and Methods in Survival Analysis, and Reliability and Maintenance. <p>The book is intended for researchers interested in statistical methodology and models useful in survival analysis, system reliability and statistical testing for censored and non-censored data.</p>
<p>Preface xv</p> <p>Biography of Mikhail Stepanovitch Nikouline xvii<br /> <i>Vincent COUALLIER, Léo GERVILLE-RÉACHE, Catherine HUBER-CAROL, Nikolaos LIMNIOS and Mounir</i> <i>MESBAH</i></p> <p><b>Part 1. Statistical Models and Methods 1</b></p> <p><b>Chapter 1. Unidimensionality, Agreement and Concordance Probability 3<br /> </b><i>Zhezhen JIN and Mounir MESBAH</i></p> <p>1.1. Introduction 3</p> <p>1.2. From reliability to unidimensionality: CAC and curve 4</p> <p>1.2.1. Classical unidimensional models for measurement 4</p> <p>1.2.2. Reliability of an instrument: CAC 6</p> <p>1.2.3. Unidimensionality of an instrument: BRC 9</p> <p>1.3. Agreement between binary outcomes: the kappa coefficient 10</p> <p>1.3.1. The kappa model 10</p> <p>1.3.2. The kappa coefficient 10</p> <p>1.3.3. Estimation of the kappa coefficient 10</p> <p>1.4. Concordance probability 11</p> <p>1.4.1. Relationship with Kendall’s <i>τ</i> measure 12</p> <p>1.4.2. Relationship with Somer’s <i>D</i> measure 12</p> <p>1.4.3. Relationship with ROC curve 13</p> <p>1.5. Estimation and inference 14</p> <p>1.6. Measure of agreement 14</p> <p>1.7. Extension to survival data 15</p> <p>1.7.1. Harrell’s <i>c</i>-index 15</p> <p>1.7.2. Measure of discriminatory power 16</p> <p>1.8. Discussion 17</p> <p>1.9. Bibliography 18</p> <p><b>Chapter 2. A Universal Goodness-of-Fit Test Based on Regression Techniques 21<br /> </b><i>Florence GEORGE and Sneh GULATI</i></p> <p>2.1. Introduction 21</p> <p>2.2. The Brain and Shapiro procedure for the exponential distribution 22</p> <p>2.3. Applications of the Brain and Shapiro test 24</p> <p>2.4. Small sample null distribution of the test statistic for specific distributions 25</p> <p>2.5. Power studies 28</p> <p>2.6. Some real examples 28</p> <p>2.7. Conclusions 31</p> <p>2.8. Acknowledgment 32</p> <p>2.9. Bibliography 32</p> <p><b>Chapter 3. Entropy-type Goodness-of-Fit Tests for Heavy-Tailed Distributions 33<br /> </b><i>Andreas MAKRIDES, Alex KARAGRIGORIOU and Filia VONTA</i></p> <p>3.1. Introduction 33</p> <p>3.2. The entropy test for heavy-tailed distributions 35</p> <p>3.2.1. Development and asymptotic theory 35</p> <p>3.2.2. Discussion 39</p> <p>3.3. Simulation study 40</p> <p>3.4. Conclusions 42</p> <p>3.5. Bibliography 42</p> <p><b>Chapter 4. Penalized Likelihood Methodology and Frailty Models 45<br /> </b><i>Emmanouil ANDROULAKIS, Christos KOUKOUVINOS and Filia VONTA</i></p> <p>4.1. Introduction 45</p> <p>4.2. Penalized likelihood in frailty models for clustered data 48</p> <p>4.2.1. Gamma distributed frailty 52</p> <p>4.2.2. Inverse Gaussian distributed frailty 52</p> <p>4.2.3. Uniform distributed frailty 54</p> <p>4.3. Simulation results 55</p> <p>4.4. Concluding remarks 57</p> <p>4.5. Bibliography 57</p> <p><b>Chapter 5. Interactive Investigation of Statistical Regularities in Testing Composite Hypotheses of Goodness of Fit 61<br /> </b><i>Boris LEMESHKO, Stanislav LEMESHKO and Andrey ROGOZHNIKOV</i></p> <p>5.1. Introduction 61</p> <p>5.2. Distributions of the test statistics in the case of testing composite hypotheses 63</p> <p>5.3. Testing composite hypotheses in “real-time” 68</p> <p>5.4. Conclusions 73</p> <p>5.5. Acknowledgment 73</p> <p>5.6. Bibliography 73</p> <p><b>Chapter 6. Modeling of Categorical Data 77<br /> </b><i>Henning LÄUTER</i></p> <p>6.1. Introduction 77</p> <p>6.2. Continuous conditional distributions 78</p> <p>6.2.1. Conditional normal distribution 78</p> <p>6.2.1.1. Estimation of parameters 78</p> <p>6.2.2. More general continuous conditional distributions 81</p> <p>6.2.2.1. Conditional distribution 82</p> <p>6.2.2.2. Normal copula 83</p> <p>6.3. Discrete conditional distributions 84</p> <p>6.3.1. Parametric conditional distributions 84</p> <p>6.3.2. Estimation of parameters 86</p> <p>6.4. Goodness of fit 86</p> <p>6.4.1. Distribution of ˆ<i>X</i><sup>2</sup> 87</p> <p>6.5. Modeling of categorical data 88</p> <p>6.5.1. Contingency tables 89</p> <p>6.5.1.1. General tables 89</p> <p>6.5.1.2. Further examples 93</p> <p>6.6. Bibliography 93</p> <p><b>Chapter 7. Within the Sample Comparison of Prediction Performance of Models and Submodels: Application to Alzheimer’s Disease 95<br /> </b><i>Catherine HUBER-CAROL, Shulamith T. GROSS and Annick ALPÉROVITCH</i></p> <p>7.1. Introduction 95</p> <p>7.2. Framework 96</p> <p>7.2.1. General description of the data set and the models to be compared 96</p> <p>7.2.2. Definition of the performance prediction criteria: IDI and BRI 96</p> <p>7.3. Estimation of IDI and BRI 97</p> <p>7.3.1. General estimating equations for IDI and BRI 98</p> <p>7.3.2. Estimation of IDI and BRI in the logistic case 98</p> <p>7.3.2.1. Asymptotics of <i>IDI</i><sub>2/1</sub> for logistic predictors 99</p> <p>7.3.2.2. Asymptotics of <i>BRI</i><sub>2/1</sub> for logistic predictors 100</p> <p>7.4. Simulation studies 102</p> <p>7.4.1. First simulation 102</p> <p>7.4.2. Second simulation: Gu and Pepe’s example 104</p> <p>7.5. The three city study of Alzheimer’s disease 106</p> <p>7.6. Conclusion 108</p> <p>7.7. Bibliography 109</p> <p><b>Chapter 8. Durbin–Knott Components and Transformations of the Cramér-von Mises Test 111<br /> </b><i>Gennady MARTYNOV</i></p> <p>8.1. Introduction 111</p> <p>8.2. Weighted Cramér-von Mises statistic 111</p> <p>8.3. Examples of the Cramér-von Mises statistics 113</p> <p>8.3.1. Classical Cramér-von Mises statistic 113</p> <p>8.3.2. Anderson–Darling statistic 113</p> <p>8.3.3. Cramér-von Mises statistic with the power weight function 114</p> <p>8.4. Weighted parametric Cramér-von Mises statistic 114</p> <p>8.4.1. Covariance functions of weighted parametric empirical process 114</p> <p>8.4.2. Eigenvalues and eigenfunctions for weighted parametric Cramérvon Mises statistic 116</p> <p>8.5. Transformations of the Cramér-von Mises statistic 117</p> <p>8.5.1. Preliminary notes 117</p> <p>8.5.2. Replacement of eigenvalues 118</p> <p>8.5.3. Transformed statistics 119</p> <p>8.6. Bibliography 122</p> <p><b>Chapter 9. Conditional Inference in Parametric Models 125<br /> </b><i>Michel BRONIATOWSKI and Virgile CARON</i></p> <p>9.1. Introduction and context 125</p> <p>9.2. The approximate conditional density of the sample 127</p> <p>9.2.1. Approximation of conditional densities 127</p> <p>9.2.2. The proxy of the conditional density of the sample 129</p> <p>9.2.3. Comments on implementation 131</p> <p>9.3. Sufficient statistics and approximated conditional density 131</p> <p>9.3.1. Keeping sufficiency under the proxy density 131</p> <p>9.3.2. Rao–Blackwellization 132</p> <p>9.4. Exponential models with nuisance parameters 135</p> <p>9.4.1. Conditional inference in exponential families 135</p> <p>9.4.2. Application of conditional sampling to MC tests 137</p> <p>9.4.2.1. Context 137</p> <p>9.4.2.2. Bimodal likelihood: testing the mean of a normal distribution in dimension 2 139</p> <p>9.4.3. Estimation through conditional likelihood 140</p> <p>9.5. Bibliography 142</p> <p><b>Chapter 10. On Testing Stochastic Dominance by Exceedance, Precedence and Other Distribution-Free Tests, with Applications 145<br /> </b><i>Paul DEHEUVELS</i></p> <p>10.1. Introduction 145</p> <p>10.2. Results 148</p> <p>10.2.1. The experimental data set 148</p> <p>10.2.2. An application of the Wilcoxon–Mann–Whitney statistics 149</p> <p>10.2.3. One-sided Kolmogorov-Smirnov tests 150</p> <p>10.2.4. Precedence and Exceedance Tests. 152</p> <p>10.3. Negative binomial limit laws 155</p> <p>10.4. Conclusion 159</p> <p>10.5. Bibliography 159</p> <p><b>Chapter 11. Asymptotically Parameter-Free Tests for Ergodic Diffusion Processes 161<br /> </b><i>Yury A. KUTOYANTS and Li ZHOU</i></p> <p>11.1. Introduction 161</p> <p>11.2. Ergodic diffusion process and some limits 165</p> <p>11.3. Shift parameter 168</p> <p>11.4. Shift and scale parameters 172</p> <p>11.5. Bibliography 175</p> <p><b>Chapter 12. A Comparison of Homogeneity Tests for Different Alternative Hypotheses 177<br /> </b><i>Sergey POSTOVALOV and Petr PHILONENKO</i></p> <p>12.1. Homogeneity tests 178</p> <p>12.1.1. Tests for data without censoring 179</p> <p>12.1.2. Tests for data with censoring 180</p> <p>12.2. Alternative hypotheses 184</p> <p>12.3. Power simulation 185</p> <p>12.3.1. Power of tests without censoring 187</p> <p>12.3.2. Power of tests with censoring 189</p> <p>12.3.2.1. How does the distribution of censoring time affect the power of the test? 189</p> <p>12.3.2.2. How does the censoring rate affect the power of the test? 191</p> <p>12.4. Statistical inference 191</p> <p>12.5. Acknowledgment 192</p> <p>12.6. Bibliography 193</p> <p><b>Chapter 13. Some Asymptotic Results for Exchangeably Weighted Bootstraps of the Empirical Estimator of a Semi-Markov Kernel with Applications 195<br /> </b><i>Salim BOUZEBDA and Nikolaos LIMNIOS</i></p> <p>13.1. Introduction 195</p> <p>13.2. Semi-Markov setting 197</p> <p>13.3. Main results 201</p> <p>13.4. Bootstrap for a multidimensional empirical estimator of a continuous-time semi-Markov kernel 205</p> <p>13.5. Confidence intervals 208</p> <p>13.6. Bibliography 210</p> <p><b>Chapter 14. On Chi-Squared Goodness-of-Fit Test for Normality 213<br /> </b><i>Mikhail NIKULIN, Léo GERVILLE-RÉACHE and Xuan Quang TRAN</i></p> <p>14.1. Chi–squared test for normality 213</p> <p>14.2. Simulation study 221</p> <p>14.3. Bibliography 226</p> <p><b>Part 2. Statistical Models and Methods in Survival Analysis 229</b></p> <p><b>Chapter 15. Estimation/Imputation Strategies for Missing Data in Survival Analysis 231<br /> </b><i>Elodie BRUNEL, Fabienne COMTE and Agathe GUILLOUX</i></p> <p>15.1. Introduction 231</p> <p>15.2. Model and strategies 233</p> <p>15.2.1. Model assumptions 233</p> <p>15.2.2. Strategy involving knowledge of <i>ζ</i> 234</p> <p>15.2.3. Strategy involving knowledge of <i>π</i> 235</p> <p>15.2.4. Estimation of <i>ζ</i> or <i>π</i>: logit or non-parametric regression 236</p> <p>15.2.5. Computing the hazard estimators 236</p> <p>15.2.6. Theoretical results 239</p> <p>15.3. Imputation-based strategy 241</p> <p>15.4. Numerical comparison 242</p> <p>15.5. Proofs 244</p> <p>15.6. Bibliography 251</p> <p><b>Chapter 16. Non-Parametric Estimation of Linear Functionals of a Multivariate Distribution Under Multivariate Censoring with Applications 253<br /> </b><i>Olivier LOPEZ and Philippe SAINT-PIERRE</i></p> <p>16.1. Introduction 253</p> <p>16.2. Non-parametric estimation of the distribution 255</p> <p>16.3. Asymptotic properties 257</p> <p>16.4. Statistical applications of functionals 260</p> <p>16.4.1. Dependence measures 260</p> <p>16.4.2. Bootstrap 261</p> <p>16.4.3. Linear regression 262</p> <p>16.5. Illustration 263</p> <p>16.6. Conclusion 264</p> <p>16.7. Acknowledgment 264</p> <p>16.8. Bibliography 264</p> <p><b>Chapter 17. Kernel Estimation of Density from Indirect Observation 267<br /> </b><i>Valentin SOLEV</i></p> <p>17.1. Introduction 267</p> <p>17.1.1. Random partition 267</p> <p>17.1.2. Indirect observation 268</p> <p>17.1.3. Kernel density estimator 269</p> <p>17.2. Density of random vector Λ(<i>X</i>) 271</p> <p>17.3. Pseudo-kernel density estimator 273</p> <p>17.3.1. Pointwise density estimation based on indirect data 273</p> <p>17.3.2. Bias of the kernel estimator 274</p> <p>17.3.3. Estimate of variance 276</p> <p>17.4. Bibliography 279</p> <p><b>Chapter 18. A Comparative Analysis of Some Chi-Square Goodness-of-Fit Tests for Censored Data 281<br /> </b><i>Ekaterina CHIMITOVA and Boris LEMESHKO</i></p> <p>18.1. Introduction 281</p> <p>18.2. Chi-square goodness-of-fit tests for censored data 283</p> <p>18.2.1. NRR <i>χ</i><sup>2</sup> test 283</p> <p>18.2.2. GPF <i>χ</i><sup>2</sup> test 284</p> <p>18.3. The choice of grouping intervals 285</p> <p>18.3.1. Equifrequent grouping (EFG) 289</p> <p>18.3.2. Intervals with equal expected numbers of failures (EENFG) 289</p> <p>18.3.3. Optimal grouping (OptG) 289</p> <p>18.4. Empirical power study 290</p> <p>18.5. Conclusions 293</p> <p>18.6. Acknowledgment 294</p> <p>18.7. Bibliography 294</p> <p><b>Chapter 19. A Non-parametric Test for Comparing Treatments with Missing Data and Dependent Censoring 297<br /> </b><i>Amel MEZAOUER, Kamal BOUKHETALA and Jean-François DUPUY</i></p> <p>19.1. Introduction 297</p> <p>19.2. The proposed test statistic 299</p> <p>19.3. Asymptotic distribution of the proposed test statistic 301</p> <p>19.4. Acknowledgment 305</p> <p>19.5. Appendix 306</p> <p>19.6. Bibliography 309</p> <p><b>Chapter 20. Group Sequential Tests for Treatment Effect with Covariates Adjustment through Simple Cross-Effect Models 311<br /> </b><i>Isaac Wu HONG-DAR</i></p> <p>20.1. Introduction 311</p> <p>20.2. Notations and models 313</p> <p>20.3. Group sequential test 316</p> <p>20.4. Discussion 318</p> <p>20.5. Acknowledgment 318</p> <p>20.6. Bibliography 318</p> <p><b>Part 3. Reliability and Maintenance 321</b></p> <p><b>Chapter 21. Optimal Maintenance in Degradation Processes 323<br /> </b><i>Waltraud KAHLE</i></p> <p>21.1. Introduction 323</p> <p>21.2. The degradation model 324</p> <p>21.3. Optimal replacement after an inspection 326</p> <p>21.4. The simulation of degradation processes 327</p> <p>21.5. Shape of cost functions and optimal <i>δ</i> and <i>a</i> 329</p> <p>21.6. Incomplete preventive maintenance 330</p> <p>21.7. Bibliography 333</p> <p><b>Chapter 22. Planning Accelerated Destructive Degradation Tests with Competing Risks 335<br /> </b><i>Ying SHI and William Q. MEEKER</i></p> <p>22.1. Introduction 336</p> <p>22.1.1. Background 336</p> <p>22.1.2. Motivation: adhesive bond C 336</p> <p>22.1.3. Related literature 337</p> <p>22.1.4. Overview 338</p> <p>22.2. Degradation models with competing risks 338</p> <p>22.2.1. Accelerated degradation model for the primary response 338</p> <p>22.2.2. Accelerated degradation model for the competing response 339</p> <p>22.2.3. Degradation models for adhesive bond C 339</p> <p>22.2.4. Degradation distribution and quantiles 340</p> <p>22.3. Failure-time distribution with competing risks 341</p> <p>22.3.1. Relationship between degradation and failure 341</p> <p>22.3.2. Failure-time distribution and quantiles 342</p> <p>22.4. Test planning with competing risks 342</p> <p>22.4.1. ADDT planning information 342</p> <p>22.4.2. Criterion for ADDT planning with competing risks 343</p> <p>22.5. ADDT plans with competing risks 344</p> <p>22.5.1. Initial optimum ADDT plan with competing risks 344</p> <p>22.5.2. Constrained optimum ADDT plan with competing risks 348</p> <p>22.5.3. General equivalence theorem 348</p> <p>22.5.4. Compromise ADDT plan with competing risks 350</p> <p>22.6. Monte Carlo simulation to evaluate test plans 352</p> <p>22.7. Conclusions and extensions 353</p> <p>22.8. Appendix: technical details 354</p> <p>22.8.1. The Fisher information matrix for ADDT with competing risks 354</p> <p>22.8.2. Large-sample approximate variance of <i>h<sub>t</sub></i> (<i>t<sub>p</sub></i>) and <i>t<sub>p</sub></i> 355</p> <p>22.9. Bibliography 355</p> <p><b>Chapter 23. A New Goodness-of-Fit Test for Shape-Scale Families 357<br /> </b><i>Vilijandas BAGDONAVIČIUS</i></p> <p>23.1. Introduction 357</p> <p>23.2. The test statistic 358</p> <p>23.3. The asymptotic distribution of the test statistic 359</p> <p>23.4. The test 364</p> <p>23.5. Weibull distribution 364</p> <p>23.6. Loglogistic distribution 365</p> <p>23.7. Lognormal distribution 366</p> <p>23.8. Bibliography 367</p> <p><b>Chapter 24. Time-to-Failure of Markov-Modulated Gamma Process with Application to Replacement Policies 369<br /> </b><i>Christian PAROISSIN and Landy RABEHASAINA</i></p> <p>24.1. Introduction 369</p> <p>24.2. Degradation model 370</p> <p>24.2.1. Covariate process 370</p> <p>24.2.2. Degradation process 371</p> <p>24.3. Time-to-failure distribution 371</p> <p>24.3.1. Case of a non-modulated gamma process 372</p> <p>24.3.2. Case of a Markov-modulated gamma process 373</p> <p>24.3.3. Stochastic comparison 374</p> <p>24.4. Replacement policies 376</p> <p>24.4.1. Block replacement policy 377</p> <p>24.4.2. Age replacement policy 379</p> <p>24.5. Conclusion 381</p> <p>24.6. Acknowledgment 381</p> <p>24.7. Bibliography 382</p> <p><b>Chapter 25. Calculation of the Redundant Structure Reliability for Agingtype Elements 383<br /> </b><i>Alexandr ANTONOV, Alexandr PLYASKIN and Khizri TATAEV</i></p> <p>25.1. Introduction 383</p> <p>25.2. The operation process of the renewal and repaired products 384</p> <p>25.3. The model of the geometric process 386</p> <p>25.4. Task solution 387</p> <p>25.5. Conclusion 389</p> <p>25.6. Bibliography 390</p> <p><b>Chapter 26. On Engineering Risks of Complex Hierarchical Systems Analysis 391<br /> </b><i>Vladimir RYKOV</i></p> <p>26.1. Introduction 391</p> <p>26.2. Risk definition and measurement 392</p> <p>26.3. Engineering risk 393</p> <p>26.4. Risk characteristics for general model calculation 395</p> <p>26.4.1. Lifelength and appropriate loss size CDF 395</p> <p>26.4.2. Probability of risk event evolution 396</p> <p>26.4.3. Lifelength and loss moments 397</p> <p>26.4.4. Mostly dangerous paths of risk event evolution and sensitivity analysis 399</p> <p>26.5. Risk analysis for short-time risk models 400</p> <p>26.6. Conclusion 402</p> <p>26.7. Bibliography 402</p> <p>List of Authors 405</p> <p>Index 409</p>
<p><b>Vincent Couallier</b> is Associate Professor at Bordeaux Segalen University in France</p> <p><b>Léo Gerville-Réache</b> is Associate Professor at Bordeaux 2 University in France.</p> <p><b>Catherine Huber-Carol</b> is Professor Emeritus at Paris René Descartes University in France.</p> <p><b>Nikolaos Limnios</b> is Professor at Compiègne University of Technology in France.</p> <p><b>Mounir Mesbah</b> is Professor at University Pierre and Marie Curie in Paris, France.</p>

Diese Produkte könnten Sie auch interessieren:

DPSM for Modeling Engineering Problems
DPSM for Modeling Engineering Problems
von: Dominique Placko, Tribikram Kundu
PDF ebook
159,99 €
Mathematical Analysis
Mathematical Analysis
von: Bernd S. W. Schröder
PDF ebook
114,99 €