Details

Spatio-temporal Design


Spatio-temporal Design

Advances in Efficient Data Acquisition
Statistics in Practice 1. Aufl.

von: Jorge Mateu, Werner G. Müller

83,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 05.11.2012
ISBN/EAN: 9781118441893
Sprache: englisch
Anzahl Seiten: 376

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>A state-of-the-art presentation of optimum spatio-temporal sampling design - bridging classic ideas with modern statistical modeling concepts and the latest computational methods.</b></p> <p><i>Spatio-temporal Design</i> presents a comprehensive state-of-the-art presentation combining both classical and modern treatments of network design and planning for spatial and spatio-temporal data acquisition. A common problem set is interwoven throughout the chapters, providing various perspectives to illustrate a complete insight to the problem at hand.</p> <p>Motivated by the high demand for statistical analysis of data that takes spatial and spatio-temporal information into account, this book incorporates ideas from the areas of time series, spatial statistics and stochastic processes, and combines them to discuss optimum spatio-temporal sampling design.</p> <p><i>Spatio-temporal Design: Advances in Efficient Data Acquisition</i>:</p> <ul> <li>Provides an up-to-date account of how to collect space-time data for monitoring, with a focus on statistical aspects and the latest computational methods</li> <li>Discusses basic methods and distinguishes between design and model-based approaches to collecting space-time data.</li> <li>Features model-based frequentist design for univariate and multivariate geostatistics, and second-phase spatial sampling.</li> <li>Integrates common data examples and case studies throughout the book in order to demonstrate the different approaches and their integration.</li> <li>Includes real data sets, data generating mechanisms and simulation scenarios.</li> <li>Accompanied by a supporting website featuring R code.</li> </ul> <p><i>Spatio-temporal Design</i> presents an excellent book for graduate level students as well as a valuable reference for researchers and practitioners in the fields of applied mathematics, engineering, and the environmental and health sciences.</p>
<p>Contributors xv</p> <p>Foreword xix</p> <p><b>1 Collecting spatio-temporal data 1<br /> </b><i>Jorge Mateu and Werner G. Muller</i></p> <p>1.1 Introduction 1</p> <p>1.2 Paradigms in spatio-temporal design 2</p> <p>1.3 Paradigms in spatio-temporal modeling 3</p> <p>1.4 Geostatistics and spatio-temporal random functions 4</p> <p>1.4.1 Relevant spatio-temporal concepts 4</p> <p>1.4.2 Properties of the spatio-temporal covariance and variogram functions 6</p> <p>1.4.3 Spatio-temporal kriging 8</p> <p>1.4.4 Spatio-temporal covariance models 10</p> <p>1.4.5 Parametric estimation of spatio-temporal covariograms 11</p> <p>1.5 Types of design criteria and numerical optimization 13</p> <p>1.6 The problem set: Upper Austria 17</p> <p>1.6.1 Climatic data 17</p> <p>1.6.2 Grassland usage 18</p> <p>1.7 The chapters 23</p> <p>Acknowledgments 28</p> <p>References 28</p> <p><b>2 Model-based frequentist design for univariate and multivariate geostatistics 37<br /> </b><i>Dale L. Zimmerman and Jie Li</i></p> <p>2.1 Introduction 37</p> <p>2.2 Design for univariate geostatistics 38</p> <p>2.2.1 Data-model framework 38</p> <p>2.2.2 Design criteria 38</p> <p>2.2.3 Algorithms 42</p> <p>2.2.4 Toy example 42</p> <p>2.3 Design for multivariate geostatistics 45</p> <p>2.3.1 Data-model framework 45</p> <p>2.3.2 Design criteria 47</p> <p>2.3.3 Toy example 48</p> <p>2.4 Application: Austrian precipitation data network 50</p> <p>2.5 Conclusions 52</p> <p>References 53</p> <p><b>3 Model-based criteria heuristics for second-phase spatial sampling 54<br /> </b><i>Eric M. Delmelle</i></p> <p>3.1 Introduction 54</p> <p>3.2 Geometric and geostatistical designs 56</p> <p>3.2.1 Efficiency of spatial sampling designs 56</p> <p>3.2.2 Sampling spatial variables in a geostatistical context 57</p> <p>3.2.3 Sampling designs minimizing the kriging variance 58</p> <p>3.3 Augmented designs: Second-phase sampling 59</p> <p>3.3.1 Additional sampling schemes to maximize change in the kriging variance 59</p> <p>3.3.2 A weighted kriging variance approach 60</p> <p>3.4 A simulated annealing approach 63</p> <p>3.5 Illustration 65</p> <p>3.5.1 Initial sampling designs 66</p> <p>3.5.2 Augmented designs 68</p> <p>3.6 Discussion 68</p> <p>References 69</p> <p>4 Spatial sampling design by means of spectral approximations to the error process 72<br /> <i>Gunter Spock and Jurgen Pilz</i></p> <p>4.1 Introduction 72</p> <p>4.2 A brief review on spatial sampling design 75</p> <p>4.3 The spatial mixed linear model 76</p> <p>4.4 Classical Bayesian experimental design problem 77</p> <p>4.5 The Smith and Zhu design criterion 79</p> <p>4.6 Spatial sampling design for trans-Gaussian kriging 81</p> <p>4.7 The spatDesign toolbox 82</p> <p>4.7.1 Covariance estimation and variography software 83</p> <p>4.7.2 Spatial interpolation and kriging software 84</p> <p>4.7.3 Spatial sampling design software 85</p> <p>4.8 An example session 89</p> <p>4.8.1 Preparatory calculations 89</p> <p>4.8.2 Optimal design for the BSLM 93</p> <p>4.8.3 Design for the trans-Gaussian kriging 94</p> <p>4.9 Conclusions 98</p> <p>References 99</p> <p><b>5 Entropy-based network design using hierarchical Bayesian kriging 103<br /> </b><i>Baisuo Jin, Yuehua Wu and Baiqi Miao</i></p> <p>5.1 Introduction 103</p> <p>5.2 Entropy-based network design using hierarchical Bayesian kriging 105</p> <p>5.3 The data 107</p> <p>5.4 Spatio-temporal modeling 107</p> <p>5.5 Obtaining a staircase data structure 111</p> <p>5.6 Estimating the hyperparameters Hg and the spatial correlations between gauge stations 113</p> <p>5.7 Spatial predictive distribution over the 445 areas located in the 18 districts of Upper Austria 117</p> <p>5.8 Adding gauge stations over the 445 areas located in the 18 districts of Upper Austria 120</p> <p>5.9 Closing down an existing gauge station 122</p> <p>5.10 Model evaluation 124</p> <p>Appendix 5.1: Hierarchical Bayesian spatio-temporal modeling (or kriging) 124</p> <p>Appendix 5.2: Some estimated parameters 128</p> <p>Acknowledgments 129</p> <p>References 129</p> <p><b>6 Accounting for design in the analysis of spatial data 131<br /> </b><i>Brian J. Reich and Montserrat Fuentes</i></p> <p>6.1 Introduction 131</p> <p>6.2 Modeling approaches 134</p> <p>6.2.1 Informative missingness 134</p> <p>6.2.2 Informative sampling 135</p> <p>6.2.3 A two-stage approach for informative sampling 136</p> <p>6.3 Analysis of the Austrian precipitation data 137</p> <p>6.4 Discussion 139</p> <p>References 141</p> <p><b>7 Spatial design for knot selection in knot-based dimension reduction models 142<br /> </b><i>Alan E. Gelfand, Sudipto Banerjee and Andrew O. Finley</i></p> <p>7.1 Introduction 142</p> <p>7.2 Handling large spatial datasets 145</p> <p>7.3 Dimension reduction approaches 146</p> <p>7.3.1 Basic properties of low rank models 146</p> <p>7.3.2 Predictive process models: A brief review 148</p> <p>7.4 Some basic knot design ideas 149</p> <p>7.4.1 A brief review of spatial design 149</p> <p>7.4.2 A strategy for selecting knots 151</p> <p>7.5 Illustrations 153</p> <p>7.5.1 A simulation example 153</p> <p>7.5.2 A simulation example using the two-step analysis 159</p> <p>7.5.3 Tree height and diameter analysis 160</p> <p>7.5.4 Austria precipitation analysis 162</p> <p>7.6 Discussion and future work 165</p> <p>References 166</p> <p><b>8 Exploratory designs for assessing spatial dependence 170<br /> </b><i>Agnes Fussl, Werner G. Muller and Juan Rodrýguez-Dýaz</i></p> <p>8.1 Introduction 170</p> <p>8.1.1 The dataset and its visualization 172</p> <p>8.2 Spatial links 174</p> <p>8.2.1 Spatial neighbors 175</p> <p>8.2.2 Spatial weights 176</p> <p>8.3 Measures of spatial dependence 178</p> <p>8.4 Models for areal data 180</p> <p>8.4.1 H0: A spaceless regression model 181</p> <p>8.4.2 H0: Spatial regression models 185</p> <p>8.5 Design considerations 190</p> <p>8.5.1 A design criterion 192</p> <p>8.5.2 Example 194</p> <p>8.6 Discussion 195</p> <p>Appendix 8.1: R code 198</p> <p>Acknowledgments 202</p> <p>References 203</p> <p><b>9 Sampling design optimization for space-time kriging 207<br /> </b><i>Gerard B.M. Heuvelink, Daniel A. Griffith, Tomislav Hengl and Stephanie J. Melles</i></p> <p>9.1 Introduction 207</p> <p>9.2 Methodology 209</p> <p>9.2.1 Space-time universal kriging 209</p> <p>9.2.2 Sampling design optimization with spatial simulated annealing 211</p> <p>9.3 Upper Austria case study 212</p> <p>9.3.1 Descriptive statistics 212</p> <p>9.3.2 Estimation of the space-time model and universal kriging 215</p> <p>9.3.3 Optimal design scenario 1 218</p> <p>9.3.4 Optimal design scenario 2 219</p> <p>9.3.5 Optimal design scenario 3 219</p> <p>9.4 Discussion and conclusions 221</p> <p>Appendix 9.1: R code 222</p> <p>Acknowledgment 227</p> <p>References 228</p> <p><b>10 Space-time adaptive sampling and data transformations 231<br /> </b><i>Jos´e M. Angulo, Mar´ýa C. Bueso and Francisco J. Alonso</i></p> <p>10.1 Introduction 231</p> <p>10.2 Adaptive sampling network design 233</p> <p>10.2.1 A simulated illustration 235</p> <p>10.3 Predictive information based on data transformations 238</p> <p>10.4 Application to Upper Austria temperature data 242</p> <p>10.5 Summary 246</p> <p>Acknowledgments 247</p> <p>References 247</p> <p><b>11 Adaptive sampling design for spatio-temporal prediction 249<br /> </b><i>Thomas R. Fanshawe and Peter J. Diggle</i></p> <p>11.1 Introduction 249</p> <p>11.2 Review of spatial and spatio-temporal adaptive designs 251</p> <p>11.3 The stationary Gaussian model 253</p> <p>11.3.1 Model specification 253</p> <p>11.3.2 Theoretically optimal designs 254</p> <p>11.3.3 A comparison of design strategies 254</p> <p>11.4 The dynamic process convolution model 257</p> <p>11.4.1 Model specification 257</p> <p>11.4.2 A comparison of design strategies 258</p> <p>11.5 Upper Austria rainfall data example 262</p> <p>11.6 Discussion 264</p> <p>Appendix 11.1 266</p> <p>References 267</p> <p><b>12 Semiparametric dynamic design of monitoring networks for non-Gaussian spatio-temporal data 269<br /> </b><i>Scott H. Holan and Christopher K. Wikle</i></p> <p>12.1 Introduction 269</p> <p>12.2 Semiparametric non-Gaussian space-time dynamic design 271</p> <p>12.2.1 Semiparametric spatio-temporal dynamic Gamma model 271</p> <p>12.2.2 Simulation-based dynamic design 274</p> <p>12.2.3 Extended Kalman filter for dynamic gamma models 275</p> <p>12.2.4 Extended Kalman filter design algorithm 277</p> <p>12.3 Application: Upper Austria precipitation 278</p> <p>12.4 Discussion 282</p> <p>Acknowledgments 282</p> <p>References 283</p> <p><b>13 Active learning for monitoring network optimization 285<br /> </b><i>Devis Tuia, Alexei Pozdnoukhov, Loris Foresti and Mikhail Kanevski</i></p> <p>13.1 Introduction 285</p> <p>13.2 Statistical learning from data 287</p> <p>13.2.1 Algorithmic approaches to learning 288</p> <p>13.2.2 Over-fitting and model selection 288</p> <p>13.3 Support vector machines and kernel methods 289</p> <p>13.3.1 Classification: SVMs 290</p> <p>13.3.2 Density estimation: One-class SVM 292</p> <p>13.3.3 Regression: Kernel ridge regression 293</p> <p>13.3.4 Regression: SVR 294</p> <p>13.4 Active learning 294</p> <p>13.4.1 A general framework 295</p> <p>13.4.2 First steps in active learning: Reducing output variance 296</p> <p>13.4.3 Exploration–exploitation strategies: Towards mixed approaches 297</p> <p>13.5 Active learning with SVMs 297</p> <p>13.5.1 Margin sampling 297</p> <p>13.5.2 Diversity of batches of samples 299</p> <p>13.5.3 Committees of models 299</p> <p>13.6 Case studies 300</p> <p>13.6.1 Austrian climatological data 300</p> <p>13.6.2 Cesium-137 concentration after Chernobyl 304</p> <p>13.6.3 Wind power plants sites evaluation 307</p> <p>13.7 Conclusions 312</p> <p>Acknowledgments 314</p> <p>References 314</p> <p><b>14 Stationary sampling designs based on plume simulations 319<br /> </b><i>Kristina B. Helle and Edzer Pebesma</i></p> <p>14.1 Introduction 319</p> <p>14.2 Plumes: From random fields to simulations 320</p> <p>14.3 Cost functions 324</p> <p>14.3.1 Detecting plumes 324</p> <p>14.3.2 Mapping and characterising plumes 325</p> <p>14.3.3 Combined cost functions 325</p> <p>14.4 Optimisation 326</p> <p>14.4.1 Greedy search 326</p> <p>14.4.2 Spatial simulated annealing 328</p> <p>14.4.3 Genetic algorithms 329</p> <p>14.4.4 Other methods 331</p> <p>14.4.5 Evaluation and sensitivity 331</p> <p>14.4.6 Use case: Combination and comparison of optimisation algorithms 332</p> <p>14.5 Results 334</p> <p>14.5.1 Simulations 334</p> <p>14.5.2 Greedy search 335</p> <p>14.5.3 Sensitivity of greedy search to the plume simulations 336</p> <p>14.5.4 Comparison of optimisation algorithms 337</p> <p>14.6 Discussion 340</p> <p>Acknowledgments 341</p> <p>References 341</p> <p>Index 345</p>
<p><b>Jorge Mateu</b>, Department of Mathematics of the University Jaume I of Castellon, Spain,</p> <p><b>Werner G. Müller</b>, Department of Applied Statistics, Johannes Kepler University Linz, Austria.</p>
<p><b>A state-of-the-art presentation of optimum spatio-temporal sampling design - bridging classic ideas with modern statistical modeling concepts and the latest computational methods.</b></p> <p><i>Spatio-temporal Design</i> presents a comprehensive state-of-the-art presentation combining both classical and modern treatments of network design and planning for spatial and spatio-temporal data acquisition. A common problem set is interwoven throughout the chapters, providing various perspectives to illustrate a complete insight to the problem at hand.</p> <p>Motivated by the high demand for statistical analysis of data that takes spatial and spatio-temporal information into account, this book incorporates ideas from the areas of time series, spatial statistics and stochastic processes, and combines them to discuss optimum spatio-temporal sampling design.</p> <p><i>Spatio-temporal Design: Advances in Efficient Data Acquisition</i>:</p> <ul> <li>Provides an up-to-date account of how to collect space-time data for monitoring, with a focus on statistical aspects and the latest computational methods</li> </ul> <ul> <li>Discusses basic methods and distinguishes between design and model-based approaches to collecting space-time data.</li> <li>Features model-based frequentist design for univariate and multivariate geostatistics, and second-phase spatial sampling.</li> </ul> <ul> <li>Integrates common data examples and case studies throughout the book in order to demonstrate the different approaches and their integration.</li> <li>Includes real data sets, data generating mechanisms and simulation scenarios.</li> <li>Accompanied by a supporting website featuring R code. <i> </i></li> </ul> <i>Spatio-temporal Design</i> presents an excellent book for graduate level students as well as a valuable reference for researchers and practitioners in the fields of applied mathematics, engineering, and the environmental and health sciences.

Diese Produkte könnten Sie auch interessieren:

Statistics for Microarrays
Statistics for Microarrays
von: Ernst Wit, John McClure
PDF ebook
90,99 €