Details

Somatic Genome Variation


Somatic Genome Variation

in Animals, Plants, and Microorganisms
1. Aufl.

von: Xiu-Qing Li

176,99 €

Verlag: Wiley-Blackwell
Format: PDF
Veröffentl.: 20.04.2017
ISBN/EAN: 9781118647028
Sprache: englisch
Anzahl Seiten: 448

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>Written by an international team of experts, <i>Somatic Genome Variation</i> presents a timely summary of the latest understanding of somatic genome development and variation in plants, animals, and microorganisms. Wide-ranging in coverage, the authors provide an updated view of somatic genomes and genetic theories while also offering interpretations of somatic genome variation. The text provides geneticists, bioinformaticians, biologist, plant scientists, crop scientists, and microbiologists with a valuable overview of this fascinating field of research.</p>
<p>List of Contributors xv</p> <p>Preface and Introduction xix</p> <p>Acknowledgments xxi</p> <p>About the Editor xxiii</p> <p><b>Part I Somatic Genome Variation in Animals and Humans 1</b></p> <p><b>1 Polyploidy in Animal Development and Disease 3<br /></b><i>Jennifer L. Bandura and Norman Zielke</i></p> <p>1.1 Introduction 3</p> <p>1.2 Mechanisms Inducing Somatic Polyploidy 4</p> <p>1.3 The Core Cell Cycle Machinery 8</p> <p>1.4 Genomic Organization of Polyploid Cells 9</p> <p>1.5 Endoreplication: An Effective Tool for Post-Mitotic Growth and Tissue Regeneration 10</p> <p>1.6 Initiation of Endoreplication in Drosophila 11</p> <p>1.7 Mechanisms of Endocycle Oscillations in Drosophila 15</p> <p>1.8 Gene Amplification in Drosophila Follicle Cells 17</p> <p>1.9 Endocycle Entry in the Trophoblast Lineage 19</p> <p>1.10 Mechanisms of Endocycle Oscillations in Trophoblast Giant Cells 22</p> <p>1.11 Cardiomyocytes 23</p> <p>1.12 Hepatocytes 25</p> <p>1.13 Megakaryocytes 28</p> <p>1.14 Concluding Remarks 30</p> <p>Acknowledgments 31</p> <p>References 31</p> <p><b>2 Large-Scale Programmed Genome Rearrangements in Vertebrates 45<br /></b><i>Jeramiah J. Smith</i></p> <p>2.1 Introduction 45</p> <p>2.1 Hagfish 46</p> <p>2.3 Sea Lamprey 48</p> <p>2.4 Zebra Finch 48</p> <p>2.5 Emerging Themes and Directions 49</p> <p>References 51</p> <p><b>3 Chromosome Instability in Stem Cells 55<br /></b><i>Paola Rebuzzini, Maurizio Zuccotti, Carlo Alberto Redi and Silvia Garagna</i></p> <p>3.1 Introduction 55</p> <p>3.2 Pluripotent Stem Cells 56</p> <p>3.3 Somatic Stem Cells 58</p> <p>3.4 Mechanisms of Chromosomal Instability 59</p> <p>3.5 Mechanisms of Chromosomal Instability in Stem Cells 63</p> <p>References 63</p> <p><b>Part II Somatic Genome Variation in Plants 75</b></p> <p><b>4 Mechanisms of Induced Inheritable Genome Variation in Flax 77<br /></b><i>Christopher A. Cullis</i></p> <p>4.1 Introduction 77</p> <p>4.2 Restructuring the Flax Genome 79</p> <p>4.3 Specific Genomic Changes 80</p> <p>4.4 What Happens When Plastic Plants Respond to Environmental Stresses? 83</p> <p>4.5 When Do the Genomic Changes Occur and Are they Adaptive? 83</p> <p>4.6 Is this Genomic Response of Flax Unique? 84</p> <p>4.7 Concluding Remarks 87</p> <p>Acknowledgments 87</p> <p>References 87</p> <p><b>5 Environmentally Induced Genome Instability and its Inheritance 91<br /></b><i>Andrey Golubov</i></p> <p>5.1 Introduction 91</p> <p>5.2 Stress and its Effects on Genomes 92</p> <p>5.3 Transgenerational Inheritance 96</p> <p>5.4 Concluding Remarks 97</p> <p>Acknowledgments 97</p> <p>References 97</p> <p><b>6 The Mitochondrial Genome, Genomic Shifting, and Genomic Conflict 103<br /></b><i>Gregory G. Brown</i></p> <p>6.1 Introduction 103</p> <p>6.2 Heteroplasmy and Sublimons 105</p> <p>6.3 Cytoplasmic Male Sterility (CMS) in Plants 108</p> <p>6.4 Mitochondrial Sublimons and CMS 109</p> <p>6.5 Restorer Gene Evolution: Somatic Genetic Changes Drive Nuclear Gene Diversity? 111</p> <p>6.6 Concluding Remarks 112</p> <p>References 113</p> <p><b>7 Plastid Genome Stability and Repair 119<br /></b><i>Éric Zampini, Sébastien Truche, Étienne Lepage, Samuel Tremblay?]Belzile and Normand Brisson</i></p> <p>7.1 Introduction 120</p> <p>7.2 Characteristics of the Plastid Genome 121</p> <p>7.3 Replication of Plastid DNA 124</p> <p>7.4 Transcription in the Plastid 130</p> <p>7.5 The Influence of Replication and Transcription on Plastid Genome Stability 131</p> <p>7.6 Plastid Genome Stability and DNA Repair 133</p> <p>7.7 Outcomes of DNA Rearrangements 145</p> <p>7.8 Concluding Remarks 147</p> <p>References 148</p> <p><b>Part III Somatic Genome Variation in Microorganisms 165</b></p> <p><b>8 RNA-Mediated Somatic Genome Rearrangement in Ciliates 167<br /></b><i>John R. Bracht</i></p> <p>8.1 Introduction 168</p> <p>8.2 Ciliates: Ubiquitous Eukaryotic Microorganisms with a Long Scientific History 168</p> <p>8.3 Two’s Company: Nuclear Dimorphism in Ciliates 170</p> <p>8.4 Paramecium: Non-Mendelian Inheritance Comes to Light 171</p> <p>8.5 Tetrahymena and the Origin of the scanRNA Model 173</p> <p>8.6 Small RNAs in Stylonychia and Oxytricha 175</p> <p>8.7 Long Noncoding RNA Templates in Genome Rearrangement 176</p> <p>8.8 Long Noncoding RNA: An Interface for Short Noncoding RNA 177</p> <p>8.9 Short RNA-Mediated Heterochromatin Formation and DNA Elimination 179</p> <p>8.10 Transposable Elements and the Origins of Genome Rearrangements 182</p> <p>8.11 Transposons, Phase Variation, and Programmed Genome Engineering in Bacteria 185</p> <p>8.12 Transposases, Noncoding RNA, and Chromatin Modifications in VDJ Recombination of Vertebrates 186</p> <p>8.13 Concluding Remarks: Ubiquitous Genome Variation, Transposons, and Noncoding RNA 187</p> <p>Acknowledgments 187</p> <p>References 187</p> <p><b>9 Mitotic Genome Variations in Yeast and Other Fungi 199<br /></b><i>Adrianna Skoneczna and Marek Skoneczny</i></p> <p>9.1 Introduction 199</p> <p>9.2 The Replication Process as a Possible Source of Genome Instability 200</p> <p>9.3 Post-Replicative Repair (PRR) or Homologous Recombination (HR) Are Responsible for Error-Free and Error-Prone Repair of Blocking Lesions and Replication Stall-Borne Problems 219</p> <p>9.4 Ploidy Maintenance and Chromosome Integrity Mechanisms 229</p> <p>9.5 Concluding Remarks 234</p> <p>References 235</p> <p><b>Part IV General Genome Biology 251</b></p> <p><b>10 Genome Variation in Archaeans, Bacteria, and Asexually Reproducing Eukaryotes 253<br /></b><i>Xiu-Qing Li</i></p> <p>10.1 Introduction 254</p> <p>10.2 Chromosome Number in Prokaryote Species 254</p> <p>10.3 Genome Size Variation in Archaeans and Bacteria 255</p> <p>10.4 Archaeal and Bacterial Genome Size Distribution 256</p> <p>10.5 Genomic GC Content in Archaeans, Bacteria, Fungi, Protists, Plants, and Animals 257</p> <p>10.6 Correlation between GC Content and Genome or Chromosome Size 259</p> <p>10.7 Genome Size and GC-Content Variation in Primarily Asexually Reproducing Fungi 260</p> <p>10.8 Variation of Gene Direction 263</p> <p>10.9 Concluding Remarks 263</p> <p>Acknowledgments 264</p> <p>References 264</p> <p><b>11 RNA Polyadenylation Site Regions: Highly Similar in Base Composition Pattern but Diverse in Sequence—A Combination Ensuring Similar Function but Avoiding Repetitive-Regions-Related Genomic Instability 267<br /></b><i>Xiu-Qing Li and Donglei Du</i></p> <p>11.1 General Introduction to Gene Number, Direction, and RNA Polyadenylation 268</p> <p>11.2 Base Selection at the Poly(A) Tail Starting Position 269</p> <p>11.3 Most Frequent Upstream Motifs in Microorganisms, Plants, and Animals 271</p> <p>11.4 Motif Frequencies in the Whole Genome 273</p> <p>11.5 The Top 20 Hexamer Motifs in the Poly(A) Site Region in Humans 273</p> <p>11.6 Polyadenylation Signal Motif Distribution 273</p> <p>11.7 Alternative Polyadenylation 275</p> <p>11.8 Base Composition of 3′UTR in Plants and Animals 276</p> <p>11.9 Base Composition Comparison between 3′UTR and Whole Genome 276</p> <p>11.10 Base Composition of 3′COR in Plants and Animals 277</p> <p>11.11 Base Composition Pattern of the Poly(A) Site Region in Protists 278</p> <p>11.12 Base Composition Pattern of the Poly(A) Site Region in Plants 280</p> <p>11.13 Base Composition Pattern of the Poly(A) Site Region in Animals 280</p> <p>11.14 Comparison of Poly(A) Site Region Base Composition Patterns in Plants and Animals 280</p> <p>11.15 Common U-A-U-A-U Base Abundance Pattern in the Poly(A) Site Region in Fungi, Plants, and Animals 284</p> <p>11.16 Difference between the Most Frequent Motifs and Seqlogo-Showed Most Frequent Bases 284</p> <p>11.17 RNA Structure of the Poly(A) Site Region 286</p> <p>11.18 Low Conservation in the Overall Nucleotide Sequence of the Poly(A) Site Region 286</p> <p>11.19 Poly(A) Site Region Stability and Somatic Genome Variation 286</p> <p>11.20 Concluding Remarks 287</p> <p>Acknowledgments 288</p> <p>References 288</p> <p><b>12 Insulin Signaling Pathways in Humans and Plants 291<br /></b><i>Xiu?]Qing Li and Tim Xing</i></p> <p>12.1 Introduction 291</p> <p>12.2 Ranking of the Insulin Signaling Pathway and its Key Proteins 293</p> <p>12.3 Diseases Caused by Somatic Mutations of the PI3K, PTEN, and AKT Proteins in the Insulin Signaling Pathway 293</p> <p>12.4 Plant Insulin and Medical Use 295</p> <p>12.5 Role of the Insulin Signaling Pathway in Regulating Plant Growth 295</p> <p>12.6 Concluding Remarks 295</p> <p>References 296</p> <p><b>13 Developmental Variation in the Nuclear Genome Primary Sequence 299<br /></b><i>Xiu-Qing Li</i></p> <p>13.1 Introduction 299</p> <p>13.2 Genetic Mutation, DNA Damage and Protection, and Gene Conversion in Somatic Cells 300</p> <p>13.3 Programmed Large-Scale Variation in Primary DNA Sequences in Somatic Nuclear Genome 302</p> <p>13.4 Generation of Antibody Genes in Animals through Somatic Genome Variation 303</p> <p>13.5 Developmental Variation in Primary DNA Sequences in the Somatic Cells of Plants 303</p> <p>13.6 Heritability and Stability of Developmentally Induced Variation in the Somatic Nuclear Genome in Plants 303</p> <p>13.7 Concluding Remarks 304</p> <p>References 305</p> <p><b>14 Ploidy Variation of the Nuclear, Chloroplast, and Mitochondrial Genomes in Somatic Cells 309<br /></b><i>Xiu?]Qing Li, Benoit Bizimungu, Guodong Zhang and Huaijun Si</i></p> <p>14.1 Introduction 310</p> <p>14.2 Nuclear Genome in Somatic Cells 311</p> <p>14.3 Plastid Genome Variation in Somatic Cells 317</p> <p>14.4 Mitochondrial Genome in Somatic Cells 320</p> <p>14.5 Organelle Genomes in Somatic Hybrids 324</p> <p>14.6 Effects of Nuclear Genome Ploidy on Organelle Genomes 325</p> <p>14.7 Concluding Remarks 326</p> <p>Acknowledgments 326</p> <p>References 326</p> <p><b>15 Molecular Mechanisms of Somatic Genome Variation 337<br /></b><i>Xiu-Qing Li</i></p> <p>15.1 Introduction 338</p> <p>15.2 Mutation of Genes Involved in the Cell Cycle, Cell Division, or Centromere Function 338</p> <p>15.3 DNA Damage 338</p> <p>15.4 Variation in Induction and Activity of Radical-Scavenging Enzymes 339</p> <p>15.5 DNA Cytosine Deaminases 340</p> <p>15.6 Variation in Protective Roles of Pigments against Oxidative Damage 340</p> <p>15.7 RNA-Templated DNA Repair 341</p> <p>15.8 Errors in DNA Repair 341</p> <p>15.9 RNA-Mediated Somatic Genome Rearrangement 342</p> <p>15.10 Repetitive DNA Instability 342</p> <p>15.11 Extracellular DNA 343</p> <p>15.12 DNA Transposition 343</p> <p>15.13 Somatic Crossover and Gene Conversion 343</p> <p>15.14 Molecular Heterosis 344</p> <p>15.15 Genome Damage Induced by Endoplasmic Reticulum Stress 344</p> <p>15.16 Telomere Degeneration 344</p> <p>15.17 Concluding Remarks 344</p> <p>References 345</p> <p><b>16 Hypotheses for Interpreting Somatic Genome Variation 351<br /></b><i>Xiu-Qing Li</i></p> <p>16.1 Introduction 352</p> <p>16.2 Cell-Specific Accumulation of Somatic Genome Variation in Somatic Cells 352</p> <p>16.3 Developmental Age and Genomic Network of Reproductive Cells 353</p> <p>16.4 Genome Generation Cycle of Species 353</p> <p>16.5 Somatic Genome Variation and Tissue-Specific Requirements during Growth or Development 354</p> <p>16.6 Costs and Benefits of Somatic Genome Variation 354</p> <p>16.7 Hypothesis on the Existence of a Primitive Stage in both Animals and Plants 355</p> <p>16.8 Sources of Genetic Variation from in Vitro Culture Propagation 357</p> <p>16.9 Hypothesis that Heterosis Is Created by Somatic Genome Variation 357</p> <p>16.10 Genome Stability through Structural Similarity and Sequence Dissimilarity 358</p> <p>16.11 Hypothesis Interpreting the Maternal Transmission of Organelles 358</p> <p>16.12 Ability of Humans to Deal with Somatic Genome Variation and Diseases 359</p> <p>16.13 Concluding Remarks 360</p> <p>References 360</p> <p><b>17 Impacts of Somatic Genome Variation on Genetic Theories and Breeding Concepts, and the Distinction between Mendelian Genetic Variation, Somagenetic Variation, and Epigenetic Variation 363<br /></b><i>Xiu?]Qing Li</i></p> <p>17.1 Introduction 364</p> <p>17.2 The Term ‘Somatic Genome’ 365</p> <p>17.3 Mendelian Genetic Variation, Epigenetic Variation, and Somagenetic Variation 365</p> <p>17.4 What Is a Gene? 367</p> <p>17.5 Breeding Criteria, Genome Cycle, Pure Lines, and Variety Stability 368</p> <p>17.6 The Weismann Barrier Hypothesis and the Need for Revision 370</p> <p>17.7 Implications for Species Evolution 370</p> <p>17.8 Concluding Remarks 371</p> <p>References 372</p> <p><b>18 Somatic Genome Variation: What it Is and What it Means for Agriculture and Human Health 377<br /></b><i>Xiu-Qing Li</i></p> <p>18.1 Introduction 378</p> <p>18.2 Natural Attributes of Somatic Genome Variation 378</p> <p>18.3 Implications of Somatic Genome Variation for Human and Animal Health 380</p> <p>18.4 Implications of Somatic Genome Variation for Agriculture 385</p> <p>18.5 Concluding Remarks 391</p> <p>Acknowledgments 392</p> <p>References 392</p> <p>Index 405</p>
<p><b> About the Editor<br> Xiu-Qing Li,</b> Doctorat d'État en Sciences (France), is a senior level Research Scientist of Molecular Genetics at Agriculture and Agri-Food Canada (Government of Canada). Dr. Li is also an Adjunct Professor at the University of New Brunswick and serves as an editor on PloS ONE, Genetics and Epigeneitcs, and the Potato Journal.
<p><b> A comprehensive review and integration of cutting-edge research worldwide that is revolutionizing science's understanding of genetic variation and inheritance </b> <p><i> Somatic Genome Variation in Animals, Plants, and Microorganisms</i> provides a wide-ranging review of one of the most exciting and promising areas of genomics research. Featuring contributions from a team of distinguished researchers from around the world, it summarizes the growing body of evidence for developmental and environmental genome variation in microorganisms, plants, and animals while offering authoritative interpretations of identified genome variations. <p> Research currently underway at laboratories worldwide has begun to overturn many fixed beliefs about the nature of somatic genomes. For example, it has long been held that, except for epigenetic variation and occasional mutations caused by external mutagens, somatic cells are genetically identical and contribute nothing to inheritance; that gene transcript abundance is determined purely by promoter activity and RNA stability; and that clones have the same genome. The evidence assembled in this book challenges those assumptions, shedding new light on changes that occur to primary nucleotide sequences and ploidy of nuclear and cytoplasmic genomes during somatic development. The authors explore somatic genome variation, update various basic concepts in genetics and breeding, consider the implications of somatic genome variation for human health and agriculture, and propose an updated synthesis of inheritance supported by the evidence. <ul> <li>Provides an updated view of somatic genomes and fundamental genetic theories while also offering interpretations of somatic genome variation</li> <li>Features wide-ranging coverage of developments at the forefront of one of today's most fascinating fields of research</li> <li>Increases our understanding of genetic variation that occurs during development and in response to environment</li> <li>Authored by a global team of experts in the field it presents up-to-date coverage of somatic genomes and genetic theories</li> </ul> <br> <p><i> Somatic Genome Variation in Animals, Plants, and Microorganisms</i> is an important source of information and inspiration for geneticists, bioinformaticians, biologists, plant scientists, crop scientists, and microbiologists, as well as biomedical researchers.

Diese Produkte könnten Sie auch interessieren:

Automatische genetische Analytik
Automatische genetische Analytik
von: Jörg vom Stein, Thomas Schäfer, Günter Mertes
PDF ebook
67,99 €
Grüne Gentechnik im Widerstreit
Grüne Gentechnik im Widerstreit
von: Wolfgang van den Daele, Herbert Sukopp, Alfred Pühler
PDF ebook
53,99 €