Details

Signal Processing and Integrated Circuits


Signal Processing and Integrated Circuits


1. Aufl.

von: Hussein Baher

65,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 06.03.2012
ISBN/EAN: 9781119942689
Sprache: englisch
Anzahl Seiten: 472

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

This book provides a balanced account of analog, digital and mixed-mode signal processing with applications in telecommunications. <b>Part I</b> <b>Perspective</b> gives an overview of the areas of <i>Systems on a Chip</i> (Soc) and <i>mobile communication</i> which are used to demonstrate the complementary relationship between analog and digital systems. <b>Part II Analog (continuous-time) and Digital Signal Processing</b> contains both fundamental and advanced analysis, and design techniques, of analog and digital systems. This includes analog and digital filter design; fast Fourier transform (FFT) algorithms; stochastic signals; linear estimation and adaptive filters. <b>Part III Analog MOS Integrated Circuits for Signal Processing</b> covers basic MOS transistor operation and fabrication through to the design of complex integrated circuits such as high performance Op Amps, Operational Transconductance Amplifiers (OTA's) and G<sub>m</sub>-C circuits. <b>Part IV Switched-capacitor and Mixed-mode Signal Processing</b> outlines the design of switched-capacitor filters, and concludes with sigma-delta data converters as an extensive application of analog and digital signal processing <ul> <li>Contains the fundamentals and advanced techniques of continuous-time and discrete-time signal processing.</li> <li>Presents in detail the design of analog MOS integrated circuits for signal processing, with application to the design of switched-capacitor filters.</li> <li>Uses the comprehensive design of integrated sigma-delta data converters to illustrate and unify the techniques of signal processing.</li> <li>Includes solved examples, end of chapter problems and MATLAB® throughout the book, to help readers understand the mathematical complexities of signal processing.</li> </ul> <p>The treatment of the topic is at the senior undergraduate to graduate and professional levels, with sufficient introductory material for the book to be used as a self-contained reference.</p>
<b>About the Author xv</b> <p><b>Preface xvii</b></p> <p><b>Part I PERSPECTIVE</b></p> <p><b>1 Analog, Digital and Mixed-mode Signal Processing 3</b></p> <p>1.1 Digital Signal Processing 3</p> <p>1.2 Moore’s Law and the “Cleverness” Factor 3</p> <p>1.3 System on a Chip 3</p> <p>1.4 Analog and Mixed-mode Signal Processing 4</p> <p>1.5 Scope 5</p> <p><b>Part II ANALOG (CONTINUOUS-TIME) AND DIGITAL SIGNAL PROCESSING</b></p> <p><b>2 Analog Continuous-time Signals and Systems 9</b></p> <p>2.1 Introduction 9</p> <p>2.2 The Fourier Series in Signal Analysis and Function Approximation 9</p> <p><i>2.2.1 Definitions</i> 9</p> <p><i>2.2.2 The Time and Discrete Frequency Domains</i> 10</p> <p><i>2.2.3 Convolution</i> 12</p> <p><i>2.2.4 Parseval’s Theorem and Power Spectrum</i> 12</p> <p><i>2.2.5 The Gibbs’ Phenomenon</i> 12</p> <p><i>2.2.6 Window Functions</i> 13</p> <p>2.3 The Fourier Transformation and Generalized Signals 14</p> <p><i>2.3.1 Definitions and Properties</i> 14</p> <p><i>2.3.2 Parseval’s Theorem and Energy Spectra</i> 16</p> <p><i>2.3.3 Correlation Functions</i> 17</p> <p><i>2.3.4 The Unit Impulse and Generalized Signals</i> 17</p> <p><i>2.3.5 The Impulse Response and System Function</i> 18</p> <p><i>2.3.6 Periodic Signals</i> 19</p> <p><i>2.3.7 The Uncertainty Principle</i> 19</p> <p>2.4 The Laplace Transform and Analog Systems 19</p> <p><i>2.4.1 The Complex Frequency</i> 19</p> <p><i>2.4.2 Properties of the Laplace Transform</i> 21</p> <p><i>2.4.3 The System Function</i> 22</p> <p>2.5 Elementary Signal Processing Building Blocks 24</p> <p><i>2.5.1 Realization of the Elementary Building Blocks using Operational Amplifier Circuits</i> 24</p> <p>2.6 Realization of Analog System Functions 29</p> <p><i>2.6.1 General Principles and the Use of Op Amp Circuits</i> 29</p> <p><i>2.6.2 Realization Using OTAs and Gm</i> − <i>C Circuits</i> 32</p> <p>2.7 Conclusion 34</p> <p>Problems 34</p> <p><b>3 Design of Analog Filters 39</b></p> <p>3.1 Introduction 39</p> <p>3.2 Ideal Filters 39</p> <p>3.3 Amplitude-oriented Design 43</p> <p><i>3.3.1 Maximally Flat Response in both Pass-band and Stop-band</i> 44</p> <p><i>3.3.2 Chebyshev Response</i> 46</p> <p><i>3.3.3 Elliptic Function Response</i> 48</p> <p>3.4 Frequency Transformations 49</p> <p><i>3.4.1 Low-pass to Low-pass Transformation</i> 50</p> <p><i>3.4.2 Low-pass to High-pass Transformation</i> 50</p> <p><i>3.4.3 Low-pass to Band-pass Transformation</i> 50</p> <p><i>3.4.4 Low-pass to Band-stop Transformation</i> 51</p> <p>3.5 Examples 52</p> <p>3.6 Phase-oriented Design 54</p> <p><i>3.6.1 Phase and Delay Functions</i> 54</p> <p><i>3.6.2 Maximally Flat Delay Response</i> 56</p> <p>3.7 Passive Filters 58</p> <p>3.8 Active Filters 59</p> <p>3.9 Use of MATLAB® for the Design of Analog Filters 62</p> <p><i>3.9.1 Butterworth Filters</i> 62</p> <p><i>3.9.2 Chebyshev Filters</i> 63</p> <p><i>3.9.3 Elliptic Filters</i> 63</p> <p><i>3.9.4 Bessel Filters</i> 64</p> <p>3.10 Examples of the use of MATLAB® 65</p> <p>3.11 A Comprehensive Application: Pulse Shaping for Data Transmission 67</p> <p>3.12 Conclusion 70</p> <p>Problems 72</p> <p><b>4 Discrete Signals and Systems 75</b></p> <p>4.1 Introduction 75</p> <p>4.2 Digitization of Analog Signals 75</p> <p><i>4.2.1 Sampling</i> 76</p> <p><i>4.2.2 Quantization and Encoding</i> 84</p> <p>4.3 Discrete Signals and Systems 85</p> <p>4.4 Digital Filters 87</p> <p>4.5 Conclusion 92</p> <p>Problems 93</p> <p><b>5 Design of Digital Filters 95</b></p> <p>5.1 Introduction 95</p> <p>5.2 General Considerations 95</p> <p>5.3 Amplitude-oriented Design of IIR Filters 98</p> <p><i>5.3.1 Low-pass Filters</i> 98</p> <p><i>5.3.2 High-pass Filters</i> 105</p> <p><i>5.3.3 Band-pass Filters</i> 107</p> <p><i>5.3.4 Band-stop Filters</i> 108</p> <p>5.4 Phase-oriented Design of IIR Filters 108</p> <p><i>5.4.1 General Considerations</i> 108</p> <p><i>5.4.2 Maximally Flat Group-delay Response</i> 109</p> <p>5.5 FIR Filters 111</p> <p><i>5.5.1 The Exact Linear Phase Property</i> 111</p> <p><i>5.5.2 Fourier-coefficient Filter Design</i> 118</p> <p><i>5.5.3 Monotonic Amplitude Response with the Optimum Number of Constraints</i> 128</p> <p><i>5.5.4 Optimum Equiripple Response in both Passband and Stopband</i> 128</p> <p>5.6 Comparison Between IIR and FIR Filters 133</p> <p>5.7 Use of MATLAB® for the Design of Digital Filters 133</p> <p><i>5.7.1 Butterworth IIR Filters</i> 134</p> <p><i>5.7.2 Chebyshev IIR Filters</i> 136</p> <p><i>5.7.3 Elliptic IIR Filters</i> 138</p> <p><i>5.7.4 Realization of the Filter</i> 140</p> <p><i>5.7.5 Linear Phase FIR Filters</i> 140</p> <p>5.8 A Comprehensive Application: Pulse Shaping for Data Transmission 142</p> <p><i>5.8.1 Optimal Design</i> 142</p> <p><i>5.8.2 Use of MATLAB</i>® <i>for the Design of Data Transmission Filters</i> 144</p> <p>5.9 Conclusion 146</p> <p>Problems 146</p> <p><b>6 The Fast Fourier Transform and its Applications 149</b></p> <p>6.1 Introduction 149</p> <p>6.2 Periodic Signals 150</p> <p>6.3 Non-periodic Signals 153</p> <p>6.4 The Discrete Fourier Transform 157</p> <p>6.5 The Fast Fourier Transform Algorithms 160</p> <p><i>6.5.1 Decimation-in-time Fast Fourier Transform</i> 161</p> <p><i>6.5.2 Decimation-in-frequency Fast Fourier Transform</i> 166</p> <p><i>6.5.3 Radix 4 Fast Fourier Transform</i> 168</p> <p>6.6 Properties of the Discrete Fourier Transform 170</p> <p><i>6.6.1 Linearity</i> 170</p> <p><i>6.6.2 Circular Convolution</i> 170</p> <p><i>6.6.3 Shifting</i> 171</p> <p><i>6.6.4 Symmetry and Conjugate Pairs</i> 172</p> <p><i>6.6.5 Parseval’s Relation and Power Spectrum</i> 173</p> <p><i>6.6.6 Circular Correlation</i> 174</p> <p><i>6.6.7 Relation to the z -transform</i> 175</p> <p>6.7 Spectral Analysis Using the FFT 176</p> <p><i>6.7.1 Evaluation of the Fourier Integral</i> 176</p> <p><i>6.7.2 Evaluation of the Fourier Coefficients</i> 178</p> <p>6.8 Spectral Windows 180</p> <p><i>6.8.1 Continuous-time Signals</i> 180</p> <p><i>6.8.2 Discrete-time Signals</i> 184</p> <p>6.9 Fast Convolution, Filtering and Correlation Using the FFT 184</p> <p><i>6.9.1 Circular (Periodic) Convolution</i> 184</p> <p><i>6.9.2 Non-periodic Convolution</i> 185</p> <p><i>6.9.3 Filtering and Sectioned Convolution</i> 185</p> <p><i>6.9.4 Fast Correlation</i> 188</p> <p>6.10 Use of MATLAB® 190</p> <p>6.11 Conclusion 190</p> <p>Problems 190</p> <p><b>7 Stochastic Signals and Power Spectra 193</b></p> <p>7.1 Introduction 193</p> <p>7.2 Random Variables 193</p> <p><i>7.2.1 Probability Distribution Function</i> 193</p> <p><i>7.2.2 Probability Density Function</i> 194</p> <p><i>7.2.3 Joint Distributions</i> 195</p> <p><i>7.2.4 Statistical Parameters</i> 195</p> <p>7.3 Analog Stochastic Processes 198</p> <p><i>7.3.1 Statistics of Stochastic Processes</i> 198</p> <p><i>7.3.2 Stationary Processes</i> 200</p> <p><i>7.3.3 Time Averages</i> 201</p> <p><i>7.3.4 Ergodicity</i> 201</p> <p><i>7.3.5 Power Spectra of Stochastic Signals</i> 203</p> <p><i>7.3.6 Signals through Linear Systems</i> 207</p> <p>7.4 Discrete-time Stochastic Processes 209</p> <p><i>7.4.1 Statistical Parameters</i> 209</p> <p><i>7.4.2 Stationary Processes</i> 209</p> <p>7.5 Power Spectrum Estimation 213</p> <p><i>7.5.1 Continuous-time Signals</i> 213</p> <p><i>7.5.2 Discrete-time Signals</i> 216</p> <p>7.6 Conclusion 217</p> <p>Problems 217</p> <p><b>8 Finite Word-length Effects in Digital Signal Processors 219</b></p> <p>8.1 Introduction 219</p> <p>8.2 Input Signal Quantization Errors 221</p> <p>8.3 Coefficient Quantization Effects 225</p> <p>8.4 Effect of Round-off Accumulation 227</p> <p><i>8.4.1 Round-off Accumulation without Coefficient Quantization</i> 228</p> <p><i>8.4.2 Round-off Accumulation with Coefficient Quantization</i> 235</p> <p>8.5 Auto-oscillations: Overflow and Limit Cycles 238</p> <p><i>8.5.1 Overflow Oscillations</i> 238</p> <p><i>8.5.2 Limit Cycles and the Dead-band Effect</i> 241</p> <p>8.6 Conclusion 244</p> <p>Problems 244</p> <p><b>9 Linear Estimation, System Modelling and Adaptive Filters 245</b></p> <p>9.1 Introduction 245</p> <p>9.2 Mean-square Approximation 245</p> <p><i>9.2.1 Analog Signals</i> 245</p> <p><i>9.2.2 Discrete Signals</i> 247</p> <p>9.3 Linear Estimation, Modelling and Optimum Filters 248</p> <p>9.4 Optimum Minimum Mean-square Error Analog Estimation 250</p> <p><i>9.4.1 Smoothing by Non-causal Wiener Filters</i> 250</p> <p><i>9.4.2 Causal Wiener Filters</i> 253</p> <p>9.5 The Matched Filter 253</p> <p>9.6 Discrete-time Linear Estimation 255</p> <p><i>9.6.1 Non-recursive Wiener Filtering</i> 256</p> <p><i>9.6.2 Adaptive Filtering Using the Minimum Mean Square Error Gradient Algorithm</i> 260</p> <p><i>9.6.3 The Least Mean Square Error Gradient Algorithm</i> 263</p> <p>9.7 Adaptive IIR Filtering and System Modelling 263</p> <p>9.8 An Application of Adaptive Filters: Echo Cancellers for Satellite Transmission of Speech Signals 266</p> <p>9.9 Conclusion 267</p> <p><b>Part III ANALOG MOS INTEGRATED CIRCUITS FOR SIGNAL PROCESSING</b></p> <p><b>10 MOS Transistor Operation and Integrated Circuit Fabrication 271</b></p> <p>10.1 Introduction 271</p> <p>10.2 The MOS Transistor 271</p> <p><i>10.2.1 Operation</i> 272</p> <p><i>10.2.2 The Transconductance</i> 276</p> <p><i>10.2.3 Channel Length Modulation</i> 278</p> <p><i>10.2.4 PMOS Transistors and CMOS Circuits</i> 279</p> <p><i>10.2.5 The Depletion-type MOSFET</i> 280</p> <p>10.3 Integrated Circuit Fabrication 280</p> <p><i>10.3.1 Wafer Preparation</i> 281</p> <p><i>10.3.2 Diffusion and Ion Implantation</i> 281</p> <p><i>10.3.3 Oxidation</i> 283</p> <p><i>10.3.4 Photolithography</i> 285</p> <p><i>10.3.5 Chemical Vapour Deposition</i> 286</p> <p><i>10.3.6 Metallization</i> 287</p> <p><i>10.3.7 MOSFET Processing Steps</i> 287</p> <p>10.4 Layout and Area Considerations for IC MOSFETs 288</p> <p>10.5 Noise In MOSFETs 290</p> <p><i>10.5.1 Shot Noise</i> 290</p> <p><i>10.5.2 Thermal Noise</i> 290</p> <p><i>10.5.3 Flicker (1/f) Noise</i> 290</p> <p><i>10.5.4 Modelling of Noise</i> 290</p> <p>Problems 291</p> <p><b>11 Basic Integrated Circuits Building Blocks 293</b></p> <p>11.1 Introduction 293</p> <p>11.2 MOS Active Resistors and Load Devices 293</p> <p>11.3 MOS Amplifiers 295</p> <p><i>11.3.1 NMOS Amplifier with Enhancement Load</i> 295</p> <p><i>11.3.2 Effect of the Substrate</i> 296</p> <p><i>11.3.3 NMOS Amplifier with Depletion Load</i> 297</p> <p><i>11.3.4 The Source Follower</i> 298</p> <p>11.4 High Frequency Considerations 300</p> <p><i>11.4.1 Parasitic Capacitances</i> 300</p> <p><i>11.4.2 The Cascode Amplifier</i> 303</p> <p>11.5 The Current Mirror 304</p> <p>11.6 The CMOS Amplifier 305</p> <p>11.7 Conclusion 308</p> <p>Problems 308</p> <p><b>12 Two-stage CMOS Operational Amplifiers 311</b></p> <p>12.1 Introduction 311</p> <p>12.2 Op Amp Performance Parameters 311</p> <p>12.3 Feedback Amplifier Fundamentals 314</p> <p>12.4 The CMOS Differential Amplifier 316</p> <p>12.5 The Two-stage CMOS Op Amp 321</p> <p><i>12.5.1 The dc Voltage Gain</i> 322</p> <p><i>12.5.2 The Frequency Response</i> 322</p> <p><i>12.5.3 The Nulling Resistor</i> 323</p> <p><i>12.5.4 The Slew Rate and Settling Time</i> 325</p> <p><i>12.5.5 The Input Common-mode Range and CMRR</i> 325</p> <p><i>12.5.6 Summary of the Two-stage CMOS Op Amp Design Calculations</i> 327</p> <p>12.6 A Complete Design Example 329</p> <p>12.7 Practical Considerations and Other Non-ideal Effects in Operational Amplifier Design 332</p> <p><i>12.7.1 Power Supply Rejection</i> 332</p> <p><i>12.7.2 dc Offset Voltage</i> 332</p> <p><i>12.7.3 Noise Performance</i> 332</p> <p>12.8 Conclusion 334</p> <p>Problems 334</p> <p><b>13 High Performance CMOS Operational Amplifiers and Operational Transconductance Amplifiers 337</b></p> <p>13.1 Introduction 337</p> <p>13.2 Cascode CMOS Op Amps 337</p> <p>13.3 The Folded Cascode Op Amp 338</p> <p>13.4 Low-noise Operational Amplifiers 340</p> <p><i>13.4.1 Low-noise Design by Control of Device Geometries</i> 340</p> <p><i>13.4.2 Noise Reduction by Correlated Double Sampling</i> 342</p> <p><i>13.4.3 Chopper-stabilized Operational Amplifiers</i> 342</p> <p>13.5 High-frequency Operational Amplifiers 344</p> <p><i>13.5.1 Settling Time Considerations</i> 345</p> <p>13.6 Fully Differential Balanced Topology 346</p> <p>13.7 Operational Transconductance Amplifiers 353</p> <p>13.8 Conclusion 353</p> <p>Problems 354</p> <p><b>14 Capacitors, Switches and the Occasional Passive Resistor 357</b></p> <p>14.1 Introduction 357</p> <p>14.2 MOS Capacitors 357</p> <p><i>14.2.1 Capacitor Structures</i> 357</p> <p><i>14.2.2 Parasitic Capacitances</i> 358</p> <p><i>14.2.3 Capacitor-ratio Errors</i> 358</p> <p>14.3 The MOS Switch 362</p> <p><i>14.3.1 A Simple Switch</i> 362</p> <p><i>14.3.2 Clock Feed-through</i> 362</p> <p><i>14.3.3 The CMOS Switch: Transmission Gate</i> 364</p> <p>14.4 MOS Passive Resistors 366</p> <p>14.5 Conclusion 366</p> <p><b>Part IV SWITCHED-CAPACITOR AND MIXED-MODE SIGNAL PROCESSING</b></p> <p><b>15 Design of Microelectronic Switched-capacitor Filters 369</b></p> <p>15.1 Introduction 369</p> <p>15.2 Sampled and Held Signals 371</p> <p>15.3 Amplitude-oriented Filters of the Lossless Discrete Integrator Type 374</p> <p><i>15.3.1 The State-variable Ladder Filter</i> 374</p> <p><i>15.3.2 Strays-insensitive LDI Ladders</i> 381</p> <p><i>15.3.3 An Approximate Design Technique</i> 384</p> <p>15.4 Filters Derived from Passive Lumped Prototypes 388</p> <p>15.5 Cascade Design 396</p> <p>15.6 Applications in Telecommunications: Speech Codecs and Data Modems 399</p> <p><i>15.6.1 CODECs</i> 399</p> <p><i>15.6.2 Data Modems</i> 399</p> <p>15.7 Conclusion 400</p> <p>Problems 400</p> <p><b>16 Non-ideal Effects and Practical Considerations in Microelectronic Switched-capacitor Filters 403</b></p> <p>16.1 Introduction 403</p> <p>16.2 Effect of Finite Op Amp Gain 403</p> <p>16.3 Effect of Finite Bandwidth and Slew Rate of Op Amps 405</p> <p>16.4 Effect of Finite Op Amp Output Resistance 405</p> <p>16.5 Scaling for Maximum Dynamic Range 405</p> <p>16.6 Scaling for Minimum Capacitance 407</p> <p>16.7 Fully Differential Balanced Designs 407</p> <p>16.8 More on Parasitic Capacitances and Switch Noise 410</p> <p>16.9 Pre-filtering and Post-filtering Requirements 412</p> <p>16.10 Programmable Filters 413</p> <p>16.11 Layout Considerations 415</p> <p>16.12 Conclusion 416</p> <p><b>17 Integrated Sigma-Delta Data Converters: Extension and Comprehensive Application of Analog and Digital Signal Processing 417</b></p> <p>17.1 Motivation and General Considerations 417</p> <p>17.2 The First-order Converter 419</p> <p>17.3 The Second-order Converter 423</p> <p>17.4 Decimation and Digital Filtering 426</p> <p><i>17.4.1 Principles</i> 426</p> <p><i>17.4.2 Decimator Structures</i> 429</p> <p>17.5 Simulation and Performance Evaluation 433</p> <p>17.6 A Case Study: Fourth-order Converter 435</p> <p>17.7 Conclusion 438</p> <p><b>Answers to Selected Problems 439</b></p> <p><b>References 445</b></p> <p><b>Index 447</b></p>
<p><strong>Hussein Baher, Dublin Institute of Technology, Ireland</strong><br />Professor Baher is currently with the School of Electronic and Communications Engineering at the Dublin Institute of Technology. He is the Founder and Associate Editor of the <em>Journal of Analog Integrated Circuits and Signal Processing</em>. Professor Baher has authored 3 books in total, 2 of which with Wiley, <em>Microelectronic Switched Capacitor Filters</em> (1996), and the previous edition of <em>Analog and Digital Signal Processing</em> (2001). He is a Fellow of the Institution of Engineers of Ireland, and a Senior Fellow of the IEEE.
This book provides a balanced account of analog, digital and mixed-mode signal processing with applications in telecommunications. <b>Part I</b> <b>Perspective</b> gives an overview of the areas of <i>Systems on a Chip</i> (Soc) and <i>mobile communication</i> which are used to demonstrate the complementary relationship between analog and digital systems. <b>Part II Analog (continuous-time) and Digital Signal Processing</b> contains both fundamental and advanced analysis, and design techniques, of analog and digital systems. This includes analog and digital filter design; fast Fourier transform (FFT) algorithms; stochastic signals; linear estimation and adaptive filters. <b>Part III Analog MOS Integrated Circuits for Signal Processing</b> covers basic MOS transistor operation and fabrication through to the design of complex integrated circuits such as high performance Op Amps, Operational Transconductance Amplifiers (OTA’s) and G<sub>m</sub>-C circuits. <b>Part IV Switched-capacitor and Mixed-mode Signal Processing</b> outlines the design of switched-capacitor filters, and concludes with sigma-delta data converters as an extensive application of analog and digital signal processing <ul> <li>Contains the fundamentals and advanced techniques of continuous-time and discrete-time signal processing.</li> <li>Presents in detail the design of analog MOS integrated circuits for signal processing, with application to the design of switched-capacitor filters.</li> <li>Uses the comprehensive design of integrated sigma-delta data converters to illustrate and unify the techniques of signal processing.</li> <li>Includes solved examples, end of chapter problems and MATLAB® throughout the book, to help readers understand the mathematical complexities of signal processing.</li> </ul> <p>The treatment of the topic is at the senior undergraduate to graduate and professional levels, with sufficient introductory material for the book to be used as a self-contained reference.</p>

Diese Produkte könnten Sie auch interessieren:

Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
EPUB ebook
114,99 €
Digital Communications with Emphasis on Data Modems
Digital Communications with Emphasis on Data Modems
von: Richard W. Middlestead
PDF ebook
171,99 €
Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
PDF ebook
114,99 €