Details

Semiconductor TeraHertz Technology


Semiconductor TeraHertz Technology

Devices and Systems at Room Temperature Operation
IEEE Press 1. Aufl.

von: Guillermo Carpintero, Enrique Garcia-Munoz, Hans Hartnagel, Sascha Preu, Antti Raisanen

94,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 14.07.2015
ISBN/EAN: 9781118920398
Sprache: englisch
Anzahl Seiten: 408

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>Key advances in Semiconductor Terahertz (THz) Technology now promises important new applications enabling scientists and engineers to overcome the challenges of accessing the so-called "terahertz gap".  This pioneering reference explains the fundamental methods and surveys innovative techniques in the generation, detection and processing of THz waves with solid-state devices, as well as illustrating their potential applications in security and telecommunications, among other fields.</p> <p>With contributions from leading experts, Semiconductor Terahertz Technology: Devices and Systems at Room Temperature Operation  comprehensively and systematically  covers semiconductor-based room temperature operating sources such as photomixers, THz antennas, radiation concepts and THz propagation as well as room-temperature operating THz detectors.</p> <p>The second part of the book focuses on applications such as the latest photonic and electronic THz systems as well as emerging THz technologies including: whispering gallery resonators, liquid crystals, metamaterials and graphene-based devices.</p> <p>This book will provide support for practicing researchers and professionals and will be an indispensable reference to graduate students in the field of THz technology.</p> <p>Key features:</p> <ul> <li>Includes crucial theoretical background sections to photomixers, photoconductive switches and electronic THz generation & detection.</li> <li>Provides an extensive overview of semiconductor-based THz sources and applications.</li> <li>Discusses vital technologies for affordable THz applications.</li> <li>Supports teaching and studying increasingly popular courses on semiconductor THz technology.</li> </ul>
Acknowledgments xi <p>Preface xiii</p> <p>Foreword xvii</p> <p>List of Contributors xix</p> <p><b>1 General Introduction 1</b><br /><i>Hans Hartnagel, Antti V. Räisänen, and Magdalena Salazar-Palma</i></p> <p><b>2 Principles of THz Generation 3</b><br /><i>Sascha Preu, Gottfried H. Döhler, Stefan Malzer, Andreas Stöhr, Vitaly Rymanov, Thorsten Göbel, Elliott R. Brown, Michael Feiginov, Ramón Gonzalo, Miguel Beruete, and Miguel Navarro-Cya</i></p> <p>2.1 Overview 3</p> <p>2.2 THz Generation by Photomixers and Photoconductors 5</p> <p>2.2.1 Principle of Operation 5</p> <p>2.2.2 Basic Concepts and Design Rules 7</p> <p>2.2.3 Thermal Constraints 21</p> <p>2.2.4 Electrical Constraints 23</p> <p>2.2.5 Device Layouts of Photoconductive Devices 35</p> <p>2.2.6 Device Layouts of p-i-n Diode-Based Emitters 47</p> <p>2.3 Principles of Electronic THz Generation 53</p> <p>2.3.1 Oscillators with Negative Differential Conductance 54</p> <p>2.3.2 Multipliers (Schottky Diodes, Hetero-Barrier Varactors) 56</p> <p>2.3.3 Plasmonic Sources 58</p> <p>References 61</p> <p><b>3 Principles of Emission of THzWaves 69</b><br /><i>Luis Enrique Garcya Munoz, Sascha Preu, Stefan Malzer, Gottfried H. Döhler, Javier Montero-de-Paz, Ramón Gonzalo, David González-Ovejero, Daniel Segovia-Vargas, Dmitri Lioubtchenko, and Antti V. Räisänen</i></p> <p>3.1 Fundamental Parameters of Antennas 69</p> <p>3.1.1 Radiation Pattern 69</p> <p>3.1.2 Directivity 71</p> <p>3.1.3 Gain and Radiation Efficiency 71</p> <p>3.1.4 Effective Aperture Area and Aperture Efficiency 72</p> <p>3.1.5 Phase Pattern and Phase Center 72</p> <p>3.1.6 Polarization 72</p> <p>3.1.7 Input Impedance and Radiation Resistance 72</p> <p>3.1.8 Bandwidth 73</p> <p>3.2 Outcoupling Issues of THz Waves 73</p> <p>3.2.1 Radiation Pattern of a Dipole over a Semi-Infinite Substrate 75</p> <p>3.2.2 Radiation Pattern of a Dipole in a Multilayered Medium 79</p> <p>3.2.3 Anomalies in the Radiation Pattern 82</p> <p>3.3 THz Antenna Topologies 84</p> <p>3.3.1 Resonant Antennas 85</p> <p>3.3.2 Self-Complementary Antennas 87</p> <p>3.4 Lenses 90</p> <p>3.4.1 Lens Design 90</p> <p>3.5 Techniques for Improving the Performance of THz Antennas 93</p> <p>3.5.1 Conjugate Matching Technique 93</p> <p>3.5.2 Tapered Slot Antenna on Electromagnetic Band Gap Structures 99</p> <p>3.6 Arrays 107</p> <p>3.6.1 General Overview and Spectral Features of Arrays 107</p> <p>3.6.2 Large Area Emitters 113</p> <p>References 157</p> <p><b>4 Propagation at THz Frequencies 160</b><br /><i>Antti V. Räisänen, Dmitri Lioubtchenko, Andrey Generalov, J. Anthony Murphy, Créidhe O’Sullivan, Marcin L. Gradziel, Neil Trappe, Luis Enrique Garcia Munoz, Alejandro Garcia-Lamperez, and Javier Montero-de-Paz</i></p> <p>4.1 Helmholtz Equation and Electromagnetic Modes of Propagation 160</p> <p>4.2 THz Waveguides 167</p> <p>4.2.1 Waveguides with a Single Conductor: TE and TM Modes 168</p> <p>4.2.2 Waveguides with Two or More Conductors: TEM and Quasi-TEM Modes 173</p> <p>4.2.3 Waveguides with No Conductor: Hybrid Modes 177</p> <p>4.3 Beam Waveguides 183</p> <p>4.3.1 Gaussian Beam 183</p> <p>4.3.2 Launching and Focusing Components: Horns, Lenses, and Mirrors 187</p> <p>4.3.3 Other Components Needed in Beam Waveguides 193</p> <p>4.3.4 Absorbers 195</p> <p>4.3.5 Modeling Horns Using Mode Matching 195</p> <p>4.3.6 Multimode Systems and Partially Coherent Propagation 199</p> <p>4.3.7 Modeling Techniques for THz Propagation in THz Systems 201</p> <p>4.4 High Frequency Electric Characterization of Materials 202</p> <p>4.4.1 Drude Model 203</p> <p>4.4.2 Lorentz–Drude Model 204</p> <p>4.4.3 Brendel–Bormann Model 205</p> <p>4.5 Propagation in Free Space 205</p> <p>4.5.1 Link Budget 205</p> <p>4.5.2 Atmospheric Attenuation 206</p> <p>References 207</p> <p><b>5 Principles of THz Direct Detection 212</b><br /><i>Elliott R. Brown, and Daniel Segovia-Vargas</i></p> <p>5.1 Detection Mechanisms 212</p> <p>5.1.1 E-Field Rectification 213</p> <p>5.1.2 Thermal Detection 215</p> <p>5.1.3 Plasma-Wave, HEMT, and MOS-Based Detection 220</p> <p>5.2 Noise Mechanisms 223</p> <p>5.2.1 Noise from Electronic Devices 223</p> <p>5.2.2 Phonon Noise 225</p> <p>5.2.3 Photon Noise with Direct Detection 227</p> <p>5.3 THz Coupling 230</p> <p>5.3.1 THz Impedance Matching 230</p> <p>5.3.2 Planar-Antenna Coupling 231</p> <p>5.3.3 Exemplary THz Coupling Structures 232</p> <p>5.3.4 Output-Circuit Coupling 235</p> <p>5.4 External Responsivity Examples 235</p> <p>5.4.1 Rectifiers 235</p> <p>5.4.2 Micro-Bolometers 236</p> <p>5.5 System Metrics 239</p> <p>5.5.1 Signal-to-Noise Ratio 239</p> <p>5.5.2 Sensitivity Metrics 240</p> <p>5.6 Effect of Amplifier Noise 243</p> <p>5.7 A Survey of Experimental THz Detector Performance 244</p> <p>5.7.1 Rectifiers 246</p> <p>5.7.2 Thermal Detectors 247</p> <p>5.7.3 CMOS-Based and Plasma-Wave Detectors 249</p> <p>References 250</p> <p><b>6 THz Electronics 254</b><br /><i>Michael Feiginov, Ramón Gonzalo, Itziar Maestrojuán, Oleg Cojocari, Matthias Hoefle, and Ernesto Limiti</i></p> <p>6.1 Resonant-Tunneling Diodes 254</p> <p>6.1.1 Historic Introduction 254</p> <p>6.1.2 Operating Principles of RTDs 255</p> <p>6.1.3 Charge-Relaxation Processes in RTDs 256</p> <p>6.1.4 High-Frequency RTD Conductance 259</p> <p>6.1.5 Operating Principles of RTD Oscillators 260</p> <p>6.1.6 Limitations of RTD Oscillators 261</p> <p>6.1.7 Overview of the State of the Art Results 264</p> <p>6.1.8 RTD Oscillators versus Other Types of THz Sources 265</p> <p>6.1.9 Future Perspectives 265</p> <p>6.2 Schottky Diode Mixers: Fundamental and Harmonic Approaches 265</p> <p>6.2.1 Sub-Harmonic Mixers 267</p> <p>6.2.2 Circuit Fabrication Technologies 270</p> <p>6.2.3 Characterization Technologies 272</p> <p>6.2.4 Advanced Configuration Approach 276</p> <p>6.2.5 Imaging Applications of Schottky Mixers 277</p> <p>6.3 Solid-State THz Low Noise Amplifiers 278</p> <p>6.3.1 Solid-State Active Devices and Technologies for Low Noise Amplification 280</p> <p>6.3.2 Circuit and Propagation Issues for TMIC 282</p> <p>6.3.3 Low Noise Amplifier Design and Realizations 284</p> <p>6.3.4 Perspectives 287</p> <p>6.4 Square-Law Detectors 288</p> <p>6.4.1 Characterization and Modeling of Low-Barrier Schottky Diodes 289</p> <p>6.4.2 Design of Millimeter-Wave Square-Law Detectors 291</p> <p>6.5 Fabrication Technologies 292</p> <p>6.5.1 Overview of Fabrication Approaches of Schottky Structures for Millimeter-Wave Applications 293</p> <p>6.5.2 Film-Diode Process 296</p> <p>References 299</p> <p><b>7 Selected Photonic THz Technologies 304</b><br /><i>Cyril C. Renaud, Andreas Stöhr, Thorsten Goebel, Frédéric Van Dijk, and Guillermo Carpintero</i></p> <p>7.1 Photonic Techniques for THz Emission and Detection 304</p> <p>7.1.1 Overall Photonic System 304</p> <p>7.1.2 Basic Components Description 306</p> <p>7.1.3 Systems Parameters, Pulsed versus CW 307</p> <p>7.2 Laser Sources for THz Generation 309</p> <p>7.2.1 Pulsed Laser Sources 309</p> <p>7.2.2 Continous Wave (CW) Sources 312</p> <p>7.2.3 Noise Reduction Techniques 314</p> <p>7.2.4 Photonic Integrated Laser Sources 315</p> <p>7.3 Photodiode for THz Emission 320</p> <p>7.3.1 PD Limitations and Key Parameters 320</p> <p>7.3.2 Traveling Wave UTC-PD Solution 322</p> <p>7.4 Photonically Enabled THz Detection 324</p> <p>7.4.1 Pulsed Terahertz Systems 325</p> <p>7.4.2 Optically Pumped Mixers 328</p> <p>7.5 Photonic Integration for THz Systems 331</p> <p>7.5.1 Hybrid or Monolithic Integrations 332</p> <p>7.5.2 Monolithic Integration of Subsystems 333</p> <p>7.5.3 Foundry Model for Integrated Systems 334</p> <p>References 335</p> <p><b>8 Selected Emerging THz Technologies 340</b><br /><i>Christian Damm, Harald G. L. Schwefel, Florian Sedlmeir, Hans Hartnagel, Sascha Preu, and Christian Weickhmann</i></p> <p>8.1 THz Resonators 340</p> <p>8.1.1 Principles of Resonators 341</p> <p>8.1.2 Introduction to WGM Resonators 343</p> <p>8.1.3 Evanescent Waveguide Coupling to WGMs 345</p> <p>8.1.4 Resonant Scattering in WGM Resonators 346</p> <p>8.1.5 Nonlinear Interactions in WGM 349</p> <p>8.2 Liquid Crystals 350</p> <p>8.2.1 Introduction 350</p> <p>8.2.2 Characterization 357</p> <p>8.2.3 Applications 365</p> <p>8.3 Graphene for THz Frequencies 367</p> <p>8.3.1 Theory and Material Properties 367</p> <p>8.3.2 Applications 373</p> <p>References 377</p> <p>Index 383</p>
<b>GUILLERMO CARPINTERO</b>, Universidad Carlos III de Madrid, Spain <p><b>LUIS ENRIQUE GARCÍA MUÑOZ</b>, Universidad Carlos III de Madrid, Spain</p> <p><b>HANS L. HARTNAGEL</b>, Technische Universität Darmstadt, Germany</p> <p><b>SASCHA PREU</b>, Technische Universität Darmstadt, Germany</p> <p><b>ANTTI V. RÄISÄNEN</b>, Aalto University, Finland</p>
<p>Key advances in Semiconductor Terahertz (THz) Technology now promise important new applications enabling scientists and engineers to overcome the challenges of accessing the so-called “terahertz gap”. This pioneering reference explains the fundamental methods and surveys innovative techniques in the generation, detection, and processing of THz waves with solid-state devices, as well as illustrating their potential applications in security and telecommunications, among other fields.</p> <p>With contributions from leading experts, <i>Semiconductor Terahertz Technology: Devices and Systems at Room Temperature Operation</i> comprehensively and systematically covers semiconductor-based room-temperature operating sources such as photomixers, THz antennas, radiation concepts, and THz propagation, as well as room-temperature operating THz detectors. The second part of the book focuses on applications such as the latest photonic and electronic THz systems, as well as emerging THz technologies including: whispering gallery resonators, liquid crystals, metamaterials, and graphene-based devices. <br /><br />This book will provide support for practicing researchers and professionals and will be an indispensable reference for graduate students in the field of THz technology.</p> <p>KEY FEATURES:</p> <p>• Includes crucial theoretical background sections to photomixers, photoconductive switches, and electronic THz generation and detection.</p> <p>• Provides an extensive overview of semiconductor-based THz sources and applications.</p> <p>• Discusses vital technologies for affordable THz applications.</p> <p>• Supports teaching and studying increasingly popular courses on semiconductor THz technology.</p>

Diese Produkte könnten Sie auch interessieren:

Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
EPUB ebook
114,99 €
Digital Communications with Emphasis on Data Modems
Digital Communications with Emphasis on Data Modems
von: Richard W. Middlestead
PDF ebook
171,99 €
Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
PDF ebook
114,99 €