Details

RF and Microwave Transmitter Design


RF and Microwave Transmitter Design


Wiley Series in Microwave and Optical Engineering, Band 223 1. Aufl.

von: Andrei Grebennikov

167,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 13.09.2011
ISBN/EAN: 9780470929292
Sprache: englisch
Anzahl Seiten: 848

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><i>RF and Microwave Transmitter Design</i> is unique in its coverage of both historical transmitter design and cutting edge technologies. This text explores the results of well-known and new theoretical analyses, while informing readers of modern radio transmitters' pracitcal designs and their components. Jam-packed with information, this book broadcasts and streamlines the author's considerable experience in RF and microwave design and development.</p>
<p>Preface xiii</p> <p>Introduction 1</p> <p>References 6</p> <p><b>1 Passive Elements and Circuit Theory 9</b></p> <p>1.1 Immittance Two-Port Network Parameters 9</p> <p>1.2 Scattering Parameters 13</p> <p>1.3 Interconnections of Two-Port Networks 17</p> <p>1.4 Practical Two-Port Networks 20</p> <p>1.4.1 Single-Element Networks 20</p> <p>1.4.2 <i>π</i>- and <i>T </i>-Type Networks 21</p> <p>1.5 Three-Port Network with Common Terminal 24</p> <p>1.6 Lumped Elements 26</p> <p>1.6.1 Inductors 26</p> <p>1.6.2 Capacitors 29</p> <p>1.7 Transmission Line 31</p> <p>1.8 Types of Transmission Lines 35</p> <p>1.8.1 Coaxial Line 35</p> <p>1.8.2 Stripline 36</p> <p>1.8.3 Microstrip Line 39</p> <p>1.8.4 Slotline 41</p> <p>1.8.5 Coplanar Waveguide 42</p> <p>1.9 Noise 44</p> <p>1.9.1 Noise Sources 44</p> <p>1.9.2 Noise Figure 46</p> <p>1.9.3 Flicker Noise 53</p> <p>References 53</p> <p><b>2 Active Devices and Modeling 57</b></p> <p>2.1 Diodes 57</p> <p>2.1.1 Operation Principle 57</p> <p>2.1.2 Schottky Diodes 59</p> <p>2.1.3 <i>p</i>–<i>i</i>–<i>n </i>Diodes 61</p> <p>2.1.4 Zener Diodes 62</p> <p>2.2 Varactors 63</p> <p>2.2.1 Varactor Modeling 63</p> <p>2.2.2 MOS Varactor 65</p> <p>2.3 MOSFETs 70</p> <p>2.3.1 Small-Signal Equivalent Circuit 70</p> <p>2.3.2 Nonlinear <i>I–V </i>Models 73</p> <p>2.3.3 Nonlinear <i>C</i>–<i>V </i>Models 75</p> <p>2.3.4 Charge Conservation 78</p> <p>2.3.5 Gate–Source Resistance 79</p> <p>2.3.6 Temperature Dependence 79</p> <p>2.3.7 Noise Model 81</p> <p>2.4 MESFETs and HEMTs 83</p> <p>2.4.1 Small-Signal Equivalent Circuit 83</p> <p>2.4.2 Determination of Equivalent Circuit Elements 85</p> <p>2.4.3 Curtice Quadratic Nonlinear Model 88</p> <p>2.4.4 Parker–Skellern Nonlinear Model 89</p> <p>2.4.5 Chalmers (Angelov) Nonlinear Model 91</p> <p>2.4.6 IAF (Berroth) Nonlinear Model 93</p> <p>2.4.7 Noise Model 94</p> <p>2.5 BJTs and HBTs 97</p> <p>2.5.1 Small-Signal Equivalent Circuit 97</p> <p>2.5.2 Determination of Equivalent Circuit Elements 98</p> <p>2.5.3 Equivalence of Intrinsic <i>π</i>- and <i>T </i>-Type Topologies 100</p> <p>2.5.4 Nonlinear Bipolar Device Modeling 102</p> <p>2.5.5 Noise Model 105</p> <p>References 107</p> <p><b>3 Impedance Matching 113</b></p> <p>3.1 Main Principles 113</p> <p>3.2 Smith Chart 116</p> <p>3.3 Matching with Lumped Elements 120</p> <p>3.3.1 Analytic Design Technique 120</p> <p>3.3.2 Bipolar UHF Power Amplifier 131</p> <p>3.3.3 MOSFET VHF High-Power Amplifier 135</p> <p>3.4 Matching with Transmission Lines 138</p> <p>3.4.1 Analytic Design Technique 138</p> <p>3.4.2 Equivalence Between Circuits with Lumped and Distributed Parameters 144</p> <p>3.4.3 Narrowband Microwave Power Amplifier 147</p> <p>3.4.4 Broadband UHF High-Power Amplifier 149</p> <p>3.5 Matching Networks with Mixed Lumped and Distributed Elements 151</p> <p>References 153</p> <p><b>4 Power Transformers, Combiners, and Couplers 155</b></p> <p>4.1 Basic Properties 155</p> <p>4.1.1 Three-Port Networks 155</p> <p>4.1.2 Four-Port Networks 156</p> <p>4.2 Transmission-Line Transformers and Combiners 158</p> <p>4.3 Baluns 168</p> <p>4.4 Wilkinson Power Dividers/Combiners 174</p> <p>4.5 Microwave Hybrids 182</p> <p>4.6 Coupled-Line Directional Couplers 192</p> <p>References 197</p> <p><b>5 Filters 201</b></p> <p>5.1 Types of Filters 201</p> <p>5.2 Filter Design Using Image Parameter Method 205</p> <p>5.2.1 Constant-<i>k </i>Filter Sections 205</p> <p>5.2.2 <i>m</i>-Derived Filter Sections 207</p> <p>5.3 Filter Design Using Insertion Loss Method 210</p> <p>5.3.1 Maximally Flat Low-Pass Filter 210</p> <p>5.3.2 Equal-Ripple Low-Pass Filter 213</p> <p>5.3.3 Elliptic Function Low-Pass Filter 216</p> <p>5.3.4 Maximally Flat Group-Delay Low-Pass Filter 219</p> <p>5.4 Bandpass and Bandstop Transformation 222</p> <p>5.5 Transmission-Line Low-Pass Filter Implementation 225</p> <p>5.5.1 Richards’s Transformation 225</p> <p>5.5.2 Kuroda Identities 226</p> <p>5.5.3 Design Example 228</p> <p>5.6 Coupled-Line Filters 228</p> <p>5.6.1 Impedance and Admittance Inverters 228</p> <p>5.6.2 Coupled-Line Section 231</p> <p>5.6.3 Parallel-Coupled Bandpass Filters Using Half-Wavelength Resonators 234</p> <p>5.6.4 Interdigital, Combline, and Hairpin Bandpass Filters 236</p> <p>5.6.5 Microstrip Filters with Unequal Phase Velocities 239</p> <p>5.6.6 Bandpass and Bandstop Filters Using Quarter-Wavelength Resonators 241</p> <p>5.7 SAW and BAW Filters 243</p> <p>References 250</p> <p><b>6 Modulation and Modulators 255</b></p> <p>6.1 Amplitude Modulation 255</p> <p>6.1.1 Basic Principle 255</p> <p>6.1.2 Amplitude Modulators 259</p> <p>6.2 Single-Sideband Modulation 262</p> <p>6.2.1 Double-Sideband Modulation 262</p> <p>6.2.2 Single-Sideband Generation 265</p> <p>6.2.3 Single-Sideband Modulator 266</p> <p>6.3 Frequency Modulation 267</p> <p>6.3.1 Basic Principle 268</p> <p>6.3.2 Frequency Modulators 273</p> <p>6.4 Phase Modulation 278</p> <p>6.5 Digital Modulation 283</p> <p>6.5.1 Amplitude Shift Keying 284</p> <p>6.5.2 Frequency Shift Keying 287</p> <p>6.5.3 Phase Shift Keying 289</p> <p>6.5.4 Minimum Shift Keying 296</p> <p>6.5.5 Quadrature Amplitude Modulation 299</p> <p>6.5.6 Pulse Code Modulation 300</p> <p>6.6 Class-S Modulator 302</p> <p>6.7 Multiple Access Techniques 304</p> <p>6.7.1 Time and Frequency Division Multiplexing 304</p> <p>6.7.2 Frequency Division Multiple Access 305</p> <p>6.7.3 Time Division Multiple Access 305</p> <p>6.7.4 Code Division Multiple Access 306</p> <p>References 308</p> <p><b>7 Mixers and Multipliers 311</b></p> <p>7.1 Basic Theory 311</p> <p>7.2 Single-Diode Mixers 313</p> <p>7.3 Balanced Diode Mixers 318</p> <p>7.3.1 Single-Balanced Mixers 318</p> <p>7.3.2 Double-Balanced Mixers 321</p> <p>7.4 Transistor Mixers 326</p> <p>7.5 Dual-Gate FET Mixer 329</p> <p>7.6 Balanced Transistor Mixers 331</p> <p>7.6.1 Single-Balanced Mixers 331</p> <p>7.6.2 Double-Balanced Mixers 334</p> <p>7.7 Frequency Multipliers 338</p> <p>References 344</p> <p><b>8 Oscillators 347</b></p> <p>8.1 Oscillator Operation Principles 347</p> <p>8.1.1 Steady-State Operation Mode 347</p> <p>8.1.2 Start-Up Conditions 349</p> <p>8.2 Oscillator Configurations and Historical Aspect 353</p> <p>8.3 Self-Bias Condition 358</p> <p>8.4 Parallel Feedback Oscillator 362</p> <p>8.5 Series Feedback Oscillator 365</p> <p>8.6 Push–Push Oscillators 368</p> <p>8.7 Stability of Self-Oscillations 372</p> <p>8.8 Optimum Design Techniques 376</p> <p>8.8.1 Empirical Approach 376</p> <p>8.8.2 Analytic Approach 379</p> <p>8.9 Noise in Oscillators 385</p> <p>8.9.1 Parallel Feedback Oscillator 386</p> <p>8.9.2 Negative Resistance Oscillator 392</p> <p>8.9.3 Colpitts Oscillator 394</p> <p>8.9.4 Impulse Response Model 397</p> <p>8.10 Voltage-Controlled Oscillators 407</p> <p>8.11 Crystal Oscillators 417</p> <p>8.12 Dielectric Resonator Oscillators 423</p> <p>References 428</p> <p><b>9 Phase-Locked Loops 433</b></p> <p>9.1 Basic Loop Structure 433</p> <p>9.2 Analog Phase-Locked Loops 435</p> <p>9.3 Charge-Pump Phase-Locked Loops 439</p> <p>9.4 Digital Phase-Locked Loops 441</p> <p>9.5 Loop Components 444</p> <p>9.5.1 Phase Detector 444</p> <p>9.5.2 Loop Filter 449</p> <p>9.5.3 Frequency Divider 454</p> <p>9.5.4 Voltage-Controlled Oscillator 457</p> <p>9.6 Loop Parameters 461</p> <p>9.6.1 Lock Range 461</p> <p>9.6.2 Stability 462</p> <p>9.6.3 Transient Response 463</p> <p>9.6.4 Noise 465</p> <p>9.7 Phase Modulation Using Phase-Locked Loops 466</p> <p>9.8 Frequency Synthesizers 469</p> <p>9.8.1 Direct Analog Synthesizers 469</p> <p>9.8.2 Integer-<i>N </i>Synthesizers Using PLL 469</p> <p>9.8.3 Fractional-<i>N </i>Synthesizers Using PLL 471</p> <p>9.8.4 Direct Digital Synthesizers 473</p> <p>References 474</p> <p><b>10 Power Amplifier Design Fundamentals 477</b></p> <p>10.1 Power Gain and Stability 477</p> <p>10.2 Basic Classes of Operation: A, AB, B, and C 487</p> <p>10.3 Linearity 496</p> <p>10.4 Nonlinear Effect of Collector Capacitance 503</p> <p>10.5 DC Biasing 506</p> <p>10.6 Push–Pull Power Amplifiers 515</p> <p>10.7 Broadband Power Amplifiers 522</p> <p>10.8 Distributed Power Amplifiers 537</p> <p>10.9 Harmonic Tuning Using Load–Pull Techniques 543</p> <p>10.10 Thermal Characteristics 549</p> <p>References 552</p> <p><b>11 High-Efficiency Power Amplifiers 557</b></p> <p>11.1 Class D 557</p> <p>11.1.1 Voltage-Switching Configurations 557</p> <p>11.1.2 Current-Switching Configurations 561</p> <p>11.1.3 Drive and Transition Time 564</p> <p>11.2 Class F 567</p> <p>11.2.1 Idealized Class F Mode 569</p> <p>11.2.2 Class F with Quarterwave Transmission Line 572</p> <p>11.2.3 Effect of Saturation Resistance 575</p> <p>11.2.4 Load Networks with Lumped and Distributed Parameters 577</p> <p>11.3 Inverse Class F 581</p> <p>11.3.1 Idealized Inverse Class F Mode 583</p> <p>11.3.2 Inverse Class F with Quarterwave Transmission Line 585</p> <p>11.3.3 Load Networks with Lumped and Distributed Parameters 586</p> <p>11.4 Class E with Shunt Capacitance 589</p> <p>11.4.1 Optimum Load Network Parameters 590</p> <p>11.4.2 Saturation Resistance and Switching Time 595</p> <p>11.4.3 Load Network with Transmission Lines 599</p> <p>11.5 Class E with Finite dc-Feed Inductance 601</p> <p>11.5.1 General Analysis and Optimum Circuit Parameters 601</p> <p>11.5.2 Parallel-Circuit Class E 605</p> <p>11.5.3 Broadband Class E 610</p> <p>11.5.4 Power Gain 613</p> <p>11.6 Class E with Quarterwave Transmission Line 615</p> <p>11.6.1 General Analysis and Optimum Circuit Parameters 615</p> <p>11.6.2 Load Network with Zero Series Reactance 622</p> <p>11.6.3 Matching Circuits with Lumped and Distributed Parameters 625</p> <p>11.7 Class FE 628</p> <p>11.8 CAD Design Example: 1.75 GHz HBT Class E MMIC Power Amplifier 638</p> <p>References 653</p> <p><b>12 Linearization and Efficiency Enhancement Techniques 657</b></p> <p>12.1 Feedforward Amplifier Architecture 657</p> <p>12.2 Cross Cancellation Technique 663</p> <p>12.3 Reflect Forward Linearization Amplifier 665</p> <p>12.4 Predistortion Linearization 666</p> <p>12.5 Feedback Linearization 672</p> <p>12.6 Doherty Power Amplifier Architectures 678</p> <p>12.7 Outphasing Power Amplifiers 685</p> <p>12.8 Envelope Tracking 691</p> <p>12.9 Switched Multipath Power Amplifiers 695</p> <p>12.10 Kahn EER Technique and Digital Power Amplification 702</p> <p>12.10.1 Envelope Elimination and Restoration 702</p> <p>12.10.2 Pulse-Width Carrier Modulation 704</p> <p>12.10.3 Class S Amplifier 706</p> <p>12.10.4 Digital RF Amplification 706</p> <p>References 709</p> <p><b>13 Control Circuits 717</b></p> <p>13.1 Power Detector and <i>VSWR </i>Protection 717</p> <p>13.2 Switches 722</p> <p>13.3 Phase Shifters 728</p> <p>13.3.1 Diode Phase Shifters 729</p> <p>13.3.2 Schiffman 90<sup>◦</sup> Phase Shifter 736</p> <p>13.3.3 MESFET Phase Shifters 739</p> <p>13.4 Attenuators 741</p> <p>13.5 Variable Gain Amplifiers 746</p> <p>13.6 Limiters 750</p> <p>References 753</p> <p><b>14 Transmitter Architectures 759</b></p> <p>14.1 Amplitude-Modulated Transmitters 759</p> <p>14.1.1 Collector Modulation 760</p> <p>14.1.2 Base Modulation 762</p> <p>14.1.3 Low-Level Modulation 764</p> <p>14.1.4 Amplitude Keying 765</p> <p>14.2 Single-Sideband Transmitters 766</p> <p>14.3 Frequency-Modulated Transmitters 768</p> <p>14.4 Television Transmitters 772</p> <p>14.5 Wireless Communication Transmitters 776</p> <p>14.6 Radar Transmitters 782</p> <p>14.6.1 Phased-Array Radars 783</p> <p>14.6.2 Automotive Radars 786</p> <p>14.6.3 Electronic Warfare 791</p> <p>14.7 Satellite Transmitters 794</p> <p>14.8 Ultra-Wideband Communication Transmitters 797</p> <p>References 802</p> <p>Index 809</p>
<b>Andrei Grebennikov</b> is a Member of the Technical Staff at Bell Laboratories, Alcatel-Lucent, in Ireland. His responsibilities include the design and development of advanced highly efficient and linear transmitter architectures for base station cellular applications. He has taught at the University of Linz in Austria, the Institute of Microelectronics in Singapore, and the Moscow Technical University of Communications and Informatics. He has written over eighty scientific papers, has written four books, and is a Senior Member of IEEE.
<b>Unique coverage of both historical transmitter design and cutting-edge technologies</b> <p>Bridging the gap between theory and practice of RF and microwave engineering, <i>RF and Microwave Transmitter Design</i> provides a systematic and analytical approach to new technologies (circuit design and software-oriented approaches) in all aspects of radio transmitter design. Jam-packed with the latest developments in the field, <i>RF and Microwave Transmitter Design</i> explores the results of well-known and new theoretical analyses, while informing readers of modern radio transmitters' practical designs and their components. Chapters covering topics such as circuit theory, oscillators, modulation and modulators, power amplifier design fundamentals, transmitter architecture, and more broadcast and streamline the author's considerable experience in RF and microwave design and development. In addition, <i>RF and Microwave Transmitter Design:</i></p> <ul> <li> <p>Shows how RF and microwave power is required not only in wireless communications, but also in applications such as jamming, imaging, RF heating, and miniature dc/dc converters</p> </li> <li> <p>Shares practical designs of modern radio transmitters and their components</p> </li> <li> <p>Provides novel designs and approaches that combine circuit designs, analytical calculations, and computer-aided design to shorten overall design time</p> </li> </ul> <p><i>RF and Microwafe Transmitter Design</i> looks at the impressive journey of transmitter design from a novel perspective—from its beginnings to its present state of the art—to paint a complete picture of how to successfully execute the circuitry behind cutting-edge technologies. Up-to-the-minute details present practicing designers and engineers with scalable and elegant solutions in transmitter design that meet or exceed today's robust requirements—and help them diversify their skills to reach across a broad spectrum of applications.</p>

Diese Produkte könnten Sie auch interessieren:

Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
EPUB ebook
114,99 €
Digital Communications with Emphasis on Data Modems
Digital Communications with Emphasis on Data Modems
von: Richard W. Middlestead
PDF ebook
171,99 €
Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
PDF ebook
114,99 €