Details

Responsive Membranes and Materials


Responsive Membranes and Materials


1. Aufl.

von: D. Bhattacharyya, Thomas Schäfer, S. R. Wickramasinghe, Sylvia Daunert

125,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 05.11.2012
ISBN/EAN: 9781118389539
Sprache: englisch
Anzahl Seiten: 432

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>The development of new multifunctional membranes and materials which respond to external stimuli, such as pH, temperature, light, biochemicals or magnetic or electrical signals, represents new approaches to separations, reactions, or recognitions. With multiple cooperative functions, responsive membranes and materials have applications which range from biopharmaceutical, to drug delivery systems to water treatment.</p> <p>This book covers recent advances in the generation and application of responsive materials and includes:</p> <ul> <li>Development and design of responsive membranes and materials</li> <li>Carbon nanotube membranes</li> <li>Tunable separations, reactions and nanoparticle synthesis</li> <li>Responsive membranes for water treatment</li> <li>Pore-filled membranes for drug release</li> <li>Biologically-inspired responsive materials and hydrogels</li> <li>Biomimetic polymer gels </li> </ul> <p><i>Responsive Membranes and Materials</i> provides a cutting-edge resource for researchers and scientists in membrane science and technology, as well as specialists in separations, biomaterials, bionanotechnology, drug delivery, polymers, and functional materials.</p>
<p>Preface xv</p> <p>List of Contributors xxi</p> <p><b>1 Oligonucleic Acids (“Aptamers”) for Designing Stimuli-Responsive Membranes 1</b><br /> <i>Veli Cengiz O¨ zalp, Mar´ýa Bele´n Serrano-Santos and Thomas Scha¨fer</i></p> <p>1.1 Introduction 1</p> <p>1.2 Aptamers – Structure, Function, Incorporation, and Selection 4</p> <p>1.3 Characterization Techniques for Aptamer-Target Interactions 7</p> <p>1.3.1 Measuring Overall Structural Changes of Aptamers Using QCM-D 8</p> <p>1.3.2 Measuring Overall Structural Changes of Aptamers Using DPI 13</p> <p>1.4 Aptamers – Applications 17</p> <p>1.4.1 Electromechanical Gates 17</p> <p>1.4.2 Stimuli-Responsive Nucleic Acid Gates in Nanoparticles 17</p> <p>1.4.3 Stimuli-Responsive Aptamer Gates in Nanoparticles 20</p> <p>1.4.4 Stimuli-Responsive Aptamer-Based Gating Membranes 22</p> <p>1.5 Outlook 25</p> <p>Acknowledgements 26</p> <p>References 26</p> <p><b>2 Emerging Membrane Nanomaterials – Towards Natural Selection of Functions 31</b><br /> <i>Mihail Barboiu</i></p> <p>2.1 Introduction 31</p> <p>2.2 Ion-Pair Conduction Pathways in Liquid and Hybrid Membranes 32</p> <p>2.3 Dynamic Insidepore Resolution Towards Emergent Membrane Functions 36</p> <p>2.4 Dynameric Membranes and Materials 39</p> <p>2.4.1 Constitutional Hybrid Materials 39</p> <p>2.4.2 Dynameric Membranes Displaying Tunable Properties on Constitutional Exchange 41</p> <p>2.5 Conclusion 46</p> <p>Acknowledgements 47</p> <p>References 47</p> <p><b>3 Carbon Nanotube Membranes as an Idealized Platform for Protein Channel Mimetic Pumps 51</b><br /> <i>Bruce Hinds</i></p> <p>3.1 Introduction 51</p> <p>3.2 Experimental Understanding of Mass Transport Through CNTs 56</p> <p>3.2.1 Ionic Diffusion and Gatekeeper Activity 57</p> <p>3.2.2 Gas and Fluid Flow 57</p> <p>3.3 Electrostatic Gatekeeping and Electro-osmotic Pumping 59</p> <p>3.3.1 Biological Gating 62</p> <p>3.4 CNT Membrane Applications 63</p> <p>3.5 Conclusion and Future Prospects 66</p> <p>Acknowledgements 67</p> <p>References 67</p> <p><b>4 Synthesis Aspects in the Design of Responsive Membranes 73</b><br /> <i>Scott M. Husson</i></p> <p>4.1 Introduction 73</p> <p>4.2 Responsive Mechanisms 74</p> <p>4.3 Responsive Polymers 75</p> <p>4.3.1 Temperature-Responsive Polymers 75</p> <p>4.3.2 Polymers that Respond to pH, Ionic Strength, Light 76</p> <p>4.4 Preparation of Responsive Membranes 77</p> <p>4.5 Polymer Processing into Membranes 78</p> <p>4.5.1 Solvent Casting 78</p> <p>4.5.2 Phase Inversion 78</p> <p>4.6 In Situ Polymerization 78</p> <p>4.6.1 Radiation-Based Methods 78</p> <p>4.6.2 Interpenetrating Polymer Networks (IPNs) 79</p> <p>4.7 Surface Modification Using Stimuli-Responsive Polymers 79</p> <p>4.8 “Grafting to” Methods 81</p> <p>4.8.1 Physical Adsorption – Non-covalent 81</p> <p>4.8.2 Chemical Grafting – Covalent 81</p> <p>4.8.3 Surface Entrapment – Non-covalent, Physically Entangled 82</p> <p>4.9 “Grafting from” – a.k.a. Surface-Initiated Polymerization 83</p> <p>4.9.1 Photo-Initiated Polymerization 83</p> <p>4.9.2 Atom Transfer Radical Polymerization 85</p> <p>4.9.3 Reversible Addition-Fragmentation Chain Transfer Polymerization 87</p> <p>4.9.4 Other Grafting Methods 91</p> <p>4.9.5 Summary of “Grafting from” Methods 91</p> <p>4.10 Future Directions 91</p> <p>References 92</p> <p><b>5 Tunable Separations, Reactions, and Nanoparticle Synthesis in Functionalized Membranes 97</b><br /> <i>Scott R. Lewis, Vasile Smuleac, Li Xiao and D. Bhattacharyya</i></p> <p>5.1 Introduction 97</p> <p>5.2 Membrane Functionalization 98</p> <p>5.2.1 Chemical Modification 98</p> <p>5.2.2 Surface Initiated Membrane Modification 101</p> <p>5.2.3 Cross-Linked Hydrogel (Pore Filled) Membranes 102</p> <p>5.2.4 Layer by Layer Assemblies 103</p> <p>5.3 Applications 104</p> <p>5.3.1 Water Flux Tunability 104</p> <p>5.3.2 Tunable Separation of Salts 109</p> <p>5.3.3 Charged-Polymer Multilayer Assemblies for Environmental Applications 113</p> <p>5.4 Responsive Membranes and Materials for Catalysis and Reactions 115</p> <p>5.4.1 Iron-Functionalized Responsive Membranes 116</p> <p>5.4.2 Responsive Membranes for Enzymatic Catalysis 127</p> <p>Acknowledgements 132</p> <p>References 132</p> <p><b>6 Responsive Membranes for Water Treatment 143</b><br /> <i>Qian Yang and S. R. Wickramasinghe</i></p> <p>6.1 Introduction 143</p> <p>6.2 Fabrication of Responsive Membranes 144</p> <p>6.2.1 Functionalization by Incubation in Liquids 145</p> <p>6.2.2 Functionalization by Incorporation of Responsive Groups in the Base Membrane 145</p> <p>6.2.3 Surface Modification of Existing Membranes 148</p> <p>6.3 Outlook 158</p> <p>References 159</p> <p><b>7 Functionalization of Polymeric Membranes and Feed Spacers for Fouling Control in Drinking Water Treatment Applications 163</b><br /> <i>Colleen Gorey, Richard Hausman and Isabel C. Escobar</i></p> <p>7.1 Membrane Filtration 163</p> <p>7.2 Fouling 165</p> <p>7.3 Improving Membrane Performance 168</p> <p>7.3.1 Plasma Treatment 168</p> <p>7.3.2 Ultraviolet (UV) Irradiation 170</p> <p>7.3.3 Membrane Modification by Graft Polymerization 171</p> <p>7.3.4 Ion Beam Irradiation 176</p> <p>7.4 Design and Surface Modifications of Feed Spacers for Biofouling Control 178</p> <p>7.5 Conclusion 180</p> <p>Acknowledgements 181</p> <p>References 181</p> <p><b>8 Pore-Filled Membranes as Responsive Release Devices 187</b><br /> <i>Kang Hu and James Dickson</i></p> <p>8.1 Introduction 187</p> <p>8.2 Responsive Pore-Filled Membranes 188</p> <p>8.3 Development and Characterization of PVDF-PAA Pore-Filled pH-Sensitive Membranes 190</p> <p>8.3.1 Membrane Gel Incorporation (Mass Gain) 191</p> <p>8.3.2 Membrane pH Reversibility 191</p> <p>8.3.3 Membrane Water Flux as pH Varied from 2 to 7.5 191</p> <p>8.3.4 Effects of Gel Incorporation on Membrane Pure Water Permeabilities at pH Neutral and Acidic 195</p> <p>8.3.5 Estimation and Calculation of Pore Size 198</p> <p>8.4 pH-Sensitive Poly(Vinylidene Fluoride)-Poly(Acrylic Acid) Pore-Filled Membranes for Controlled Drug Release in Ruminant Animals 201</p> <p>8.4.1 Determination of Membrane Diffusion Permeability (PS) for Salicylic Acid 202</p> <p>8.4.2 Applicability of the Fabricated Pore-Filled Membranes on the Salicylic Acid Release and Retention 205</p> <p>References 207</p> <p><b>9 Magnetic Nanocomposites for Remote Controlled Responsive Therapy and in Vivo Tracking 211</b><br /> <i>Ashley M. Hawkins, David A. Puleo and J. Zach Hilt</i></p> <p>9.1 Introduction 211</p> <p>9.1.1 Nanocomposite Polymers 211</p> <p>9.1.2 Magnetic Nanoparticles 212</p> <p>9.2 Applications of Magnetic Nanocomposite Polymers 212</p> <p>9.2.1 Thermal Actuation 213</p> <p>9.2.2 Thermal Therapy 218</p> <p>9.2.3 Mechanical Actuation 220</p> <p>9.2.4 In Vivo Tracking and Applications 224</p> <p>9.3 Concluding Remarks 224</p> <p>References 224</p> <p><b>10 The Interactions between Salt Ions and Thermo-Responsive Poly (N-Isopropylacrylamide) from Molecular Dynamics Simulations 229</b><br /> <i>Hongbo Du and Xianghong Qian</i></p> <p>10.1 Introduction 229</p> <p>10.2 Computational Details 230</p> <p>10.3 Results and Discussion 232</p> <p>10.4 Conclusion 238</p> <p>Acknowledgements 240</p> <p>References 240</p> <p><b>11 Biologically-Inspired Responsive Materials: Integrating Biological Function into Synthetic Materials 243</b><br /> <i>Kendrick Turner, Santosh Khatwani and Sylvia Daunert</i></p> <p>11.1 Introduction 243</p> <p>11.2 Biomimetics in Biotechnology 245</p> <p>11.3 Hinge-Motion Binding Proteins 249</p> <p>11.4 Calmodulin 250</p> <p>11.5 Biologically-Inspired Responsive Membranes 251</p> <p>11.6 Stimuli-Responsive Hydrogels 253</p> <p>11.7 Micro/Nanofabrication of Hydrogels 255</p> <p>11.8 Mechanical Characterization of Hydrogels 256</p> <p>11.9 Creep Properties of Hydrogels 257</p> <p>11.10 Conclusion and Future Perspectives 258</p> <p>Acknowledgements 258</p> <p>References 258</p> <p><b>12 Responsive Colloids with Controlled Topology 269</b><br /> <i>Jeffrey C. Gaulding, Emily S. Herman and L. Andrew Lyon</i></p> <p>12.1 Introduction 269</p> <p>12.2 Inert Core/Responsive Shell Particles 270</p> <p>12.3 Responsive Core/Responsive Shell Particles 275</p> <p>12.4 Hollow Particles 281</p> <p>12.5 Janus Particles 286</p> <p>12.6 Summary 292</p> <p>References 293</p> <p><b>13 Novel Biomimetic Polymer Gels Exhibiting Self-Oscillation 301</b><br /> <i>Ryo Yoshida</i></p> <p>13.1 Introduction 301</p> <p>13.2 The Design Concept of Self-Oscillating Gel 303</p> <p>13.3 Aspects of the Autonomous Swelling–Deswelling Oscillation 303</p> <p>13.4 Design of Biomimetic Actuator Using Self-Oscillating Polymer and Gel 306</p> <p>13.4.1 Ciliary Motion Actuator (Artificial Cilia) 306</p> <p>13.4.2 Self-Walking Gel 307</p> <p>13.4.3 Theoretical Simulation of the Self-Oscillating Gel 307</p> <p>13.5 Mass Transport Surface Utilizing Peristaltic Motion of Gel 308</p> <p>13.6 Self-Oscillating Polymer Chains and Microgels as “Nanooscillators” 309</p> <p>13.6.1 Solubility Oscillation of Polymer Chains 309</p> <p>13.6.2 Self-Flocculating/Dispersing Oscillation of Microgels 310</p> <p>13.6.3 Viscosity Oscillation of Polymer Solution and Microgel Dispersion 311</p> <p>13.6.4 Attempts of Self-Oscillation under Acid- and Oxidant-Free Physiological Conditions 311</p> <p>13.7 Conclusion 312</p> <p>References 312</p> <p><b>14 Electroactive Polymer Soft Material Based on Dielectric Elastomer 315</b><br /> <i>Liwu Liu, Zhen Zhang, Yanju Liu and Jinsong Leng</i></p> <p>14.1 Introduction to Electroactive Polymers 315</p> <p>14.1.1 Development History 316</p> <p>14.1.2 Classification 316</p> <p>14.1.3 Electronic Electroactive Polymers 316</p> <p>14.1.4 Ionic Electroactive Polymers 318</p> <p>14.1.5 Electroactive Polymer Applications 318</p> <p>14.1.6 Application of Dielectric Elastomers 318</p> <p>14.1.7 Manufacturing the Main Structure of Actuators Using EAP Materials 327</p> <p>14.1.8 The Current Problem for EAP Materials and their Prospects 329</p> <p>14.2 Materials of Dielectric Elastomers 330</p> <p>14.2.1 The Working Principle of Dielectric Elastomers 330</p> <p>14.2.2 Material Modification of Dielectric Elastomer 331</p> <p>14.2.3 Dielectric Elastomer Composite 334</p> <p>14.3 The Theory of Dielectric Elastomers 336</p> <p>14.3.1 Free Energy of Dielectric Elastomer Electromechanical Coupling System 336</p> <p>14.3.2 Special Elastic Energy 339</p> <p>14.3.3 Special Electric Field Energy 341</p> <p>14.3.4 Incompressible Dielectric Elastomer 342</p> <p>14.3.5 Model of Several Dielectric Elastomers 342</p> <p>14.4 Failure Model of a Dielectric Elastomer 356</p> <p>14.4.1 Electrical Breakdown 357</p> <p>14.4.2 Electromechanical Instability and Snap-Through Instability 357</p> <p>14.4.3 Loss of Tension 358</p> <p>14.4.4 Rupture by Stretching 359</p> <p>14.4.5 Zero Electric Field Condition 359</p> <p>14.4.6 Super-Electrostriction Deformation of a Dielectric Elastomer 359</p> <p>14.5 Converter Theory of Dielectric Elastomer 361</p> <p>14.5.1 Principle for Conversion Cycle 361</p> <p>14.5.2 Plane Actuator 362</p> <p>14.5.3 Spring-Roll Dielectric Elastomer Actuator 364</p> <p>14.5.4 Tube-Type Actuator 365</p> <p>14.5.5 Film-Spring System 369</p> <p>14.5.6 Energy Harvester 372</p> <p>14.5.7 The Non-Linear Vibration of a Dielectric Elastomer Ball 376</p> <p>14.5.8 Folded Actuator 377</p> <p>References 379</p> <p><b>15 Responsive Membranes/Material-Based Separations: Research and Development Needs 385</b><br /> <i>Rosemarie D. Wesson, Elizabeth S. Dow and Sonya R. Williams</i></p> <p>15.1 Introduction 385</p> <p>15.2 Water Treatment 386</p> <p>15.3 Biological Applications 387</p> <p>15.4 Gas Separation and Additional Applications 388</p> <p>References 389</p> <p>Index 395</p>
<p><b>Dibakar Bhattacharyya</b> is the University of Kentucky Alumni Professor of Chemical Engineering and a Fellow of the AIChE. He received his Ph.D. from the Illinois Institute of Technology, M.S. from Northwestern University, and B.S. from Jadavpur University. He is the Co-Founder of the Center for Membrane Sciences at the University of Kentucky. He has published over 180 refereed journal articles and book chapters, and five U.S. Patents. At the Dr. Bhattacharyya was honored for his contributions in the area of Functionalized Membranes at the 2007 NAMS Annual Meeting, and he was the main plenary speaker at the SIMPAM 2009 Membrane Conference in Brazil.</p> <p><b>Sylvia Daunert</b> is the Gill Eminent Professor of Analytical and Biological Chemistry at the University of Kentucky. Her research is in the area of Bioanalytical Chemistry, at the interface between Analytical Chemistry, Molecular Biology, and Bioengineering.</p> <p><b>Ranil Wickramasinghe</b> is Professor at Colorado State University. His research focuses on the development of membranes and membrane separation processes for bioseparations, water treatment and biofuels applications.</p> <p><b>Thomas Schäfer</b> is Ikerbasque Research Professor at the Institute of Polymer Materials (POLYMAT) of the University of the Basque Country in San Sebastián, Spain.</p>
<p>The development of new multi-functional mem­branes and materials which respond to external stimuli, such as pH, temperature, light, biochemicals or magnetic or electrical signals, represents new approaches to separations, reactions, or recognitions. With multiple cooperative functions, responsive membranes and materials have applications which range from biopharmaceutical, to drug delivery systems to water treatment.</p> <p>Covering recent advances in the generation and application of responsive materials, topics covered include:</p> <ul> <li>Development and design of responsive membranes and materials</li> <li>Carbon nanotube membranes</li> <li>Tunable separations, reactions and nanoparticle synthesis</li> <li>Responsive membranes for water treatment</li> <li>Pore-filled membranes for drug release</li> <li>Biologically-inspired responsive materials and hydrogels</li> <li>Biomimetic polymer gels</li> </ul> <p>Responsive Membranes and Materials provides a unique, cutting-edge resource for researchers and scientists in membrane science and technology, as well as  specialists in separations, biomaterials, bionanotechnology, drug delivery, polymers, and functional materials.</p>

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €