Details

Radar Data Processing With Applications


Radar Data Processing With Applications


IEEE Press 1. Aufl.

von: He You, Xiu Jianjuan, Guan Xin

139,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 01.08.2016
ISBN/EAN: 9781118956885
Sprache: englisch
Anzahl Seiten: 560

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>Radar Data Processing with Applications</b> <p><b>Radar Data Processing with Applications</b> <p><b>He You, Xiu Jianjuan, Guan Xin,</b> <i>Naval Aeronautical and Astronautical University, China</i> <p>A summary of thirty years’ worth of research, this book is a systematic introduction to the theory, development, and latest research results of radar data processing technology. Highlights of the book include sections on data pre-processing technology, track initiation, and data association. Readers are also introduced to maneuvering target tracking, multiple target tracking termination, and track management theory. In order to improve data analysis, the authors have also included group tracking registration algorithms and a performance evaluation of radar data processing. <ul><li>Presents both classical theory and development methods of radar data processing</li> <li>Provides state-of-the-art research results, including data processing for modern radars and tracking performance evaluation theory</li> <li>Includes coverage of performance evaluation, registration algorithm for radar networks, data processing of passive radar, pulse Doppler radar, and phased array radar</li> <li>Features applications for those engaged in information engineering, radar engineering, electronic countermeasures, infrared techniques, sonar techniques, and military command</li></ul> <p><i>Radar Data Processing with Applications</i> is a handy guide for engineers and industry professionals specializing in the development of radar equipment and data processing. It is also intended as a reference text for electrical engineering graduate students and researchers specializing in signal processing and radars.
<p>About the Authors xiv</p> <p>Preface xvi</p> <p><b>1 Introduction 1</b></p> <p>1.1 Aim and Significance of Radar Data Processing 1</p> <p>1.2 Basic Concepts in Radar Data Processing 2<br /> 1.2.1 Measurements 2<br /> 1.2.2 Measurement Preprocessing 2<br /> 1.2.3 Data Association 4<br /> 1.2.4 Wave Gate 4<br /> 1.2.5 Track Initiation and Termination 5<br /> 1.2.6 Tracking 5<br /> 1.2.7 Track 7</p> <p>1.3 Design Requirements and Main Technical Indexes of Radar Data Processors 9<br /> 1.3.1 Basic Tasks of Data Processors 9<br /> 1.3.2 The Engineering Design of Data Processors 9<br /> 1.3.3 The Main Technical Indexes of Data Processors 11<br /> 1.3.4 The Evaluation of Data Processors 11</p> <p>1.4 History and Present Situation of Research in Radar Data Processing Technology 12</p> <p>1.5 Scope and Outline of the Book 14</p> <p><b>2 Parameter Estimation 20</b></p> <p>2.1 Introduction 20</p> <p>2.2 The Concept of Parameter Estimation 20</p> <p>2.3 Four Basic Parameter Estimation Techniques 23<br /> 2.3.1 Maximum A Posteriori Estimator 23<br /> 2.3.2 Maximum Likelihood Estimator 24<br /> 2.3.3 Minimum Mean Square Error Estimator 24<br /> 2.3.4 Least Squares Estimator 26</p> <p>2.4 Properties of Estimators 26<br /> 2.4.1 Unbiasedness 26<br /> 2.4.2 The Variance of an Estimator 26<br /> 2.4.3 Consistent Estimators 26<br /> 2.4.4 Efficient Estimators 27</p> <p>2.5 Parameter Estimation of Static Vectors 28<br /> 2.5.1 Least Squares Estimator 28<br /> 2.5.2 Minimum Mean Square Error Estimator 30<br /> 2.5.3 Linear Minimum Mean Square Error Estimator 32</p> <p>2.6 Summary 33</p> <p><b>3 Linear Filtering Approaches 34</b></p> <p>3.1 Introduction 34</p> <p>3.2 Kalman Filter 34<br /> 3.2.1 System Model 35<br /> 3.2.2 Filtering Model 41<br /> 3.2.3 Initialization of Kalman Filters 44</p> <p>3.3 Steady-State Kalman Filter 48<br /> 3.3.1 Mathematical Definition and Judgment Methods for Filter Stability 49<br /> 3.3.2 Controllability and Observability of Random Linear System 49<br /> 3.3.3 Steady-State Kalman Filter 50</p> <p>3.4 Summary 52</p> <p><b>4 Nonlinear Filtering Approaches 53</b></p> <p>4.1 Introduction 53</p> <p>4.2 Extended Kalman Filter 53<br /> 4.2.1 Filter Model 54<br /> 4.2.2 Some Problems in the Application of Extended Kalman Filters 58</p> <p>4.3 Unscented Kalman Filter 58<br /> 4.3.1 Unscented Transformation 59<br /> 4.3.2 Filtering Model 60<br /> 4.3.3 Simulation Analysis 61</p> <p>4.4 Particle Filter 65<br /> 4.4.1 Filtering Model 65<br /> 4.4.2 Examples of the Application of EKF, UKF, and PF 67</p> <p>4.5 Summary 71</p> <p><b>5 Measurement Preprocessing Techniques 72</b></p> <p>5.1 Introduction 72</p> <p>5.2 Time Registration 72<br /> 5.2.1 Interpolation/Extrapolation Method Using Velocity 73<br /> 5.2.2 The Lagrange Interpolation Algorithm 74<br /> 5.2.3 Least-Squares Curve-Fitting Algorithm 74</p> <p>5.3 Space Registration 75<br /> 5.3.1 Coordinates 75<br /> 5.3.2 Coordinate Transformation 80<br /> 5.3.3 Transformation of Several Common Coordinate Systems 83</p> <p>5.3.4 Selection of Tracking Coordinate Systems and Filtering State Variables 87</p> <p>5.4 Radar Error Calibration Techniques 88</p> <p>5.5 Data Compression Techniques 89<br /> 5.5.1 Data Compression in Monostatic Radar 89<br /> 5.5.2 Data Compression in Multistatic Radar 91</p> <p>5.6 Summary 93</p> <p><b>6 Track Initiation in Multi-target Tracking 95</b></p> <p>6.1 Introduction 95</p> <p>6.2 The Shape and Size of Track Initiation Gates 96<br /> 6.2.1 The Annular Gate 96<br /> 6.2.2 The Elliptic/Ellipsoidal Gate 97<br /> 6.2.3 The Rectangular Gate 99<br /> 6.2.4 The Sector Gate 99</p> <p>6.3 Track Initiation Algorithms 100<br /> 6.3.1 Logic-Based Method 101<br /> 6.3.2 Modified Logic-Based Method 102<br /> 6.3.3 Hough Transform-Based Method 103<br /> 6.3.4 Modified Hough Transform-Based Method 106<br /> 6.3.5 Hough Transform and Logic-Based Method 107<br /> 6.3.6 Formation Target Method Based on Clustering and Hough Transform 108</p> <p>6.4 Comparison and Analysis of Track Initiation Algorithms 109</p> <p>6.5 Discussion of Some Issues in Track Initiation 116<br /> 6.5.1 Main Indicators of Track Initiation Performance 116<br /> 6.5.2 Demonstration of Track Initiation Scan Times 116</p> <p>6.6 Summary 117</p> <p><b>7 Maximum Likelihood Class Multi-target Data Association Methods 118</b></p> <p>7.1 Introduction 118</p> <p>7.2 Track-Splitting Algorithm 118<br /> 7.2.1 Calculation of Likelihood Functions 119<br /> 7.2.2 Threshold Setting 120<br /> 7.2.3 Modified Likelihood Function 121<br /> 7.2.4 Characteristics of Track-Splitting Algorithm 122</p> <p>7.3 Joint Maximum Likelihood Algorithm 123<br /> 7.3.1 Establishment of Feasible Partitions 123<br /> 7.3.2 Recursive Joint Maximum Likelihood Algorithm 125</p> <p>7.4 0–1 Integer Programming Algorithm 126<br /> 7.4.1 Calculation of the Logarithm Likelihood Ratio 126<br /> 7.4.2 0–1 Linear Integer Programming Algorithm 128<br /> 7.4.3 Recursive 0–1 Integer Programming Algorithm 129<br /> 7.4.4 Application of 0–1 Integer Programming Algorithm 130</p> <p>7.5 Generalized Correlation Algorithm 130<br /> 7.5.1 Establishing the Score Function 130<br /> 7.5.2 Application of the Generalized Correlation Algorithm 133</p> <p>7.6 Summary 137</p> <p><b>8 Bayesian Multi-target Data Association Approach 138</b></p> <p>8.1 Introduction 138</p> <p>8.2 Nearest-Neighbor Algorithm 138<br /> 8.2.1 Nearest-Neighbor Standard Filter 138<br /> 8.2.2 Probabilistic Nearest-Neighbor Filter Algorithm 139</p> <p>8.3 Probabilistic Data Association Algorithm 141<br /> 8.3.1 State Update and Covariance Update 141<br /> 8.3.2 Calculation of the Association Probability 144<br /> 8.3.3 Modified PDAF Algorithm 146<br /> 8.3.4 Performance Analysis 147</p> <p>8.4 Integrated Probabilistic Data Association Algorithm 152<br /> 8.4.1 Judgment of Track Existence 152<br /> 8.4.2 Data Association 154</p> <p>8.5 Joint Probabilistic Data Association Algorithm 154<br /> 8.5.1 Basic Models of JPDA 155<br /> 8.5.2 Calculation of the Probability of Joint Events 160<br /> 8.5.3 Calculation of the State Estimation Covariance 162<br /> 8.5.4 Simplified JPDA Model 164<br /> 8.5.5 Performance Analysis 165</p> <p>8.6 Summary 167</p> <p><b>9 Tracking Maneuvering Targets 169</b></p> <p>9.1 Introduction 169</p> <p>9.2 Tracking Algorithm with Maneuver Detection 170<br /> 9.2.1 White Noise Model with Adjustable Level 171<br /> 9.2.2 Variable-Dimension Filtering Approach 172</p> <p>9.3 Adaptive Tracking Algorithm 174<br /> 9.3.1 Modified-Input Estimation Algorithm 174<br /> 9.3.2 Singer Model Tracking Algorithm 176<br /> 9.3.3 Current Statistical Model Algorithm 180<br /> 9.3.4 Jerk Model Tracking Algorithm 182<br /> 9.3.5 Multiple Model Algorithm 184<br /> 9.3.6 Interacting Multiple Model Algorithm 186</p> <p>9.4 Performance Comparison of Maneuvering Target Tracking Algorithms 189<br /> 9.4.1 Simulation Environment and Parameter Setting 189<br /> 9.4.2 Simulation Results and Analysis 191</p> <p>9.5 Summary 201</p> <p><b>10 Group Target Tracking 203</b></p> <p>10.1 Introduction 203</p> <p>10.2 Basic Methods for Track Initiation of the Group Target 204<br /> 10.2.1 Group Definition 204<br /> 10.2.2 Group Segmentation 205<br /> 10.2.3 Group Correlation 208<br /> 10.2.4 Group Velocity Estimation 209</p> <p>10.3 The Gray Fine Track Initiation Algorithm for Group Targets 214<br /> 10.3.1 Gray Fine Association of Targets within the Group Based on the Relative Position Vector of the Measurement 215</p> <p>10.3.2 Confirmation of the Tracks within a Group 220<br /> 10.3.3 Establishment of State Matrixes for Group Targets 221<br /> 10.3.4 Simulation Verification and Analysis of the Algorithm 221<br /> 10.3.5 Discussion 231</p> <p>10.4 Centroid Group Tracking 233<br /> 10.4.1 Initiation, Confirmation, and Cancellation of Group Tracks 234<br /> 10.4.2 Track Updating 234<br /> 10.4.3 Other Questions 237</p> <p>10.5 Formation Group Tracking 238<br /> 10.5.1 Overview of Formation Group Tracking 238<br /> 10.5.2 Logic Description of Formation Group Tracking 238</p> <p>10.6 Performance Analysis of Tracking Algorithms for Group Targets 240<br /> 10.6.1 Simulation Environment 240<br /> 10.6.2 Simulation Results 240<br /> 10.6.3 Simulation Analysis 240</p> <p>10.7 Summary 246</p> <p><b>11 Multi-target Track Termination Theory and Track Management 250</b></p> <p>11.1 Introduction 250</p> <p>11.2 Multi-target Track Termination Theory 250<br /> 11.2.1 Sequential Probability Ratio Test Algorithm 250<br /> 11.2.2 Tracking Gate Method 252<br /> 11.2.3 Cost Function Method 253<br /> 11.2.4 Bayesian Algorithm 254<br /> 11.2.5 All-Neighbor Bayesian Algorithm 255<br /> 11.2.6 Performance Analysis of Several Algorithms 256</p> <p>11.3 Track Management 258<br /> 11.3.1 Track Batch Management 258<br /> 11.3.2 Track Quality Management 266<br /> 11.3.3 Track File Management in the Information Fusion System 273</p> <p>11.4 Summary 275</p> <p><b>12 Passive Radar Data Processing 276</b></p> <p>12.1 Introduction 276</p> <p>12.2 Advantages of Passive Radars 276</p> <p>12.3 Passive Radar Spatial Data Association 278<br /> 12.3.1 Phase Changing Rate Method 278<br /> 12.3.2 Doppler Changing Rate and Azimuth Joint Location 283<br /> 12.3.3 Doppler Changing Rate and Azimuth, Elevation Joint Location 285<br /> 12.3.4 Multiple-Model Method 286</p> <p>12.4 Optimal Deployment of Direction-Finding Location 289<br /> 12.4.1 Area of the Position Concentration Ellipse 289<br /> 12.4.2 Derivation of the Conditional Extremum Based on the Lagrange Multiplier Method 292<br /> 12.4.3 Optimal Deployment by the Criterion that the Position Concentration Ellipse Area is Minimum 297</p> <p>12.5 Passive Location Based on TDOA Measurements 299<br /> 12.5.1 Location Model 299</p> <p>12.5.2 Two-Dimensional Condition 299<br /> 12.5.3 Three-Dimensional Condition 301</p> <p>12.6 Summary 303</p> <p><b>13 Pulse Doppler Radar Data Processing 304</b></p> <p>13.1 Introduction 304</p> <p>13.2 Overview of PD Radar Systems 304<br /> 13.2.1 Characteristics of PD Radar 304<br /> 13.2.2 PD Radar Tracking System 305</p> <p>13.3 Typical Algorithms of PD Radar Tracking 307<br /> 13.3.1 Optimal Range–Velocity Mutual Coupling Tracking 309<br /> 13.3.2 Multi-target Tracking 312<br /> 13.3.3 Target Tracking with Doppler Measurements 312</p> <p>13.4 Performance Analysis on PD Radar Tracking Algorithms 321<br /> 13.4.1 Simulation Environments and Parameter Settings 321<br /> 13.4.2 Simulation Results and Analysis 322</p> <p>13.5 Summary 331</p> <p><b>14 Phased Array Radar Data Processing 332</b></p> <p>14.1 Introduction 332</p> <p>14.2 Characteristics and Major Indexes 333<br /> 14.2.1 Characteristics 333<br /> 14.2.2 Major Indexes 334</p> <p>14.3 Structure and Working Procedure 334<br /> 14.3.1 Structure 334<br /> 14.3.2 Working Procedure 335</p> <p>14.4 Data Processing 336<br /> 14.4.1 Single-Target-in-Clutter Tracking Algorithms 337<br /> 14.4.2 Multi-target-in-Clutter Tracking Algorithm 343<br /> 14.4.3 Adaptive Sampling Period Algorithm 345<br /> 14.4.4 Real-Time Task Scheduling Strategy 349</p> <p>14.5 Performance Analysis of the Adaptive Sampling Period Algorithm 355<br /> 14.5.1 Simulation Environment and Parameter Settings 355<br /> 14.5.2 Simulation Results and Analysis 356<br /> 14.5.3 Comparison and Discussion 360</p> <p>14.6 Summary 361</p> <p><b>15 Radar Network Error Registration Algorithm 362</b></p> <p>15.1 Introduction 362</p> <p>15.2 The Composition and Influence of Systematic Errors 362<br /> 15.2.1 The Composition of Systematic Errors 362<br /> 15.2.2 The Influence of Systematic Errors 363</p> <p>15.3 Fixed Radar Registration Algorithm 366<br /> 15.3.1 Radar Registration Algorithm Based on Cooperative Targets 366<br /> 15.3.2 RTQC Algorithm 368<br /> 15.3.3 LS Algorithm 370<br /> 15.3.4 GLS Algorithm 371<br /> 15.3.5 GLS Algorithm in ECEF Coordinate System 373<br /> 15.3.6 Simulation Analysis 377</p> <p>15.4 Mobile Radar Registration Algorithm 380<br /> 15.4.1 Modeling Method of Mobile Radar Systems 380<br /> 15.4.2 Mobile Radar Registration Algorithm Based on Cooperative Targets 386<br /> 15.4.3 Mobile Radar Maximum Likelihood Registration Algorithm 390<br /> 15.4.4 ASR Algorithm 397<br /> 15.4.5 Simulation Analysis 398</p> <p>15.5 Summary 402</p> <p><b>16 Radar Network Data Processing 405</b></p> <p>16.1 Introduction 405</p> <p>16.2 Performance Evaluation Indexes of Radar Networks 406<br /> 16.2.1 Coverage Performance Indexes 406<br /> 16.2.2 Target Capacity 407<br /> 16.2.3 Anti-jamming Ability 407</p> <p>16.3 Data Processing of Monostatic Radar Networks 408<br /> 16.3.1 The Process of Data Processing of the Monostatic Radar Network 408<br /> 16.3.2 State Estimation of Monostatic Radar Networks 410</p> <p>16.4 Data Processing of Bistatic Radar Networks 413<br /> 16.4.1 Basic Location Relation 413<br /> 16.4.2 Combined Estimation 416<br /> 16.4.3 An Analysis of the Feasibility of Combinational Estimation 417</p> <p>16.5 Data Processing of Multistatic Radar Networks 420<br /> 16.5.1 Tracking Principle of Multistatic Radar Systems 421<br /> 16.5.2 Observation Equation of Multistatic Radar Network Systems 422<br /> 16.5.3 The Generic Data Processing Process of Multistatic Tracking Systems 422</p> <p>16.6 Track Association 423</p> <p>16.7 Summary 426</p> <p><b>17 Evaluation of Radar Data Processing Performance 427</b></p> <p>17.1 Introduction 427</p> <p>17.2 Basic Terms 428</p> <p>17.3 Data Association Performance Evaluation 429<br /> 17.3.1 Average Track Initiation Time 429<br /> 17.3.2 Accumulative Number of Track Interruptions 430<br /> 17.3.3 Track Ambiguity 431<br /> 17.3.4 Accumulative Number of Track Switches 432</p> <p>17.4 Performance Evaluation of Tracking 432<br /> 17.4.1 Track Accuracy 433<br /> 17.4.2 Maneuvering Target Tracking Capability 434<br /> 17.4.3 False Track Ratio 434<br /> 17.4.4 Divergence 435</p> <p>17.5 Evaluation of the Data Fusion Performance of Radar Networks 436<br /> 17.5.1 Track Capacity 436<br /> 17.5.2 Detection Probability of Radar Networks 436<br /> 17.5.3 Response Time 437</p> <p>17.6 Methods of Evaluating Radar Data Processing Algorithms 438<br /> 17.6.1 Monte Carlo Method 438<br /> 17.6.2 Analytic Method 438</p> <p>17.6.3 Semi-physical Simulation Method 439<br /> 17.6.4 Test Validation Method 440</p> <p>17.7 Summary 440</p> <p><b>18 Radar Data Processing Simulation Technology 441</b></p> <p>18.1 Introduction 441</p> <p>18.2 Basis of System Simulation Technology 442<br /> 18.2.1 Basic Concept of System Simulation Technology 442<br /> 18.2.2 Digital Simulation of Stochastic Noise 444</p> <p>18.3 Simulation of Radar Data Processing Algorithms 449<br /> 18.3.1 Simulation of Target Motion Models 449<br /> 18.3.2 Simulation of the Observation Process 452<br /> 18.3.3 Tracking Filtering and Track Management 453</p> <p>18.4 Simulation Examples of Algorithms 457</p> <p>18.5 Summary 463</p> <p><b>19 Practical Application of Radar Data Processing 464</b></p> <p>19.1 Introduction 464</p> <p>19.2 Application in ATC Systems 464<br /> 19.2.1 Application, Components, and Requirement 464<br /> 19.2.2 Radar Data Processing Structure 466<br /> 19.2.3 ATC Application 467</p> <p>19.3 Application in Shipboard Navigation Radar 474</p> <p>19.4 Application in Shipboard Radar Clutter Suppression 476<br /> 19.4.1 Principle of Clutter Suppression in Data Processing 476<br /> 19.4.2 Clutter Suppression Method through Shipboard Radar Data Processing 477</p> <p>19.5 Application in Ground-Based Radar 480<br /> 19.5.1 Principle of Data Acquisition 480<br /> 19.5.2 Data Processing Procedure 481</p> <p>19.6 Applications in Shipboard Monitoring System 482<br /> 19.6.1 Application, Components, and Requirement 482<br /> 19.6.2 Structure of the Marine Control System 483</p> <p>19.7 Application in the Fleet Air Defense System 484<br /> 19.7.1 Components and Function of the Aegis Fleet Air Defense System 484<br /> 19.7.2 Main Performance Indexes 485</p> <p>19.8 Applications in AEW Radar 486<br /> 19.8.1 Features, Components, and Tasks 486<br /> 19.8.2 Data Processing Technology 487<br /> 19.8.3 Typical Working Mode 489</p> <p>19.9 Application in Air Warning Radar Network 492<br /> 19.9.1 Structure of Radar Network Data Processing 492<br /> 19.9.2 Key Technologies of Radar Network Data Processing 493</p> <p>19.10 Application in Phased Array Radar 495<br /> 19.10.1 Functional Features 495<br /> 19.10.2 Data Processing Procedure 495<br /> 19.10.3 Test Examples 496</p> <p>19.11 Summary 498</p> <p><b>20 Review, Suggestions, and Outlook 499</b></p> <p>20.1 Introduction 499</p> <p>20.2 Review of Research Achievements 499<br /> 20.2.1 The Basis of State Estimation 499<br /> 20.2.2 Measurement Preprocessing Technology 500<br /> 20.2.3 Track Initiation in Multi-target Tracking 500<br /> 20.2.4 Multi-target Data Association Method 500<br /> 20.2.5 Maneuvering Target and Group Tracking 500<br /> 20.2.6 Multi-target Tracking Termination Theory and Track Management 501<br /> 20.2.7 System Error Registration Issue 501<br /> 20.2.8 Performance Evaluation of Radar Data Processors 501<br /> 20.2.9 Simulation Technology of Radar Data Processing 501<br /> 20.2.10 Applications of Radar Data Processing Techniques 502</p> <p>20.3 Issues and Suggestions 502<br /> 20.3.1 The Application of Data Processing Technology in Other Sensors 502<br /> 20.3.2 Track Initiation in Passive Sensor Tracking 502<br /> 20.3.3 Non-Gaussian Noise 503<br /> 20.3.4 Data Processing in Non-standard and Nonlinear Systems 503<br /> 20.3.5 Data Processing in Multi-radar Networks 503<br /> 20.3.6 Joint Optimization of Multi-target Tracking and Track Association 503<br /> 20.3.7 Comprehensive Utilization of Target Features and Attributes in Multi-radar Tracking 504<br /> 20.3.8 Comprehensive Optimization of Multi-radar Information Fusion Systems 504<br /> 20.3.9 Tracking Multi-targets in Complex Electromagnetic Waves and Dense Clutter 504</p> <p>20.4 Outlook for Research Direction 505<br /> 20.4.1 Information Fusion and Control Integration Technology of Multi-radar Networks 505<br /> 20.4.2 Joint Optimization of Target Tracking and Identification 505<br /> 20.4.3 Integration Technology of Search, Tracking, Guidance, and Command 505<br /> 20.4.4 Multi-radar Resource Allocation and Management Technology 505<br /> 20.4.5 Database and Knowledge Base Technology in Radar Data Processing 506<br /> 20.4.6 Engineering Realization of Advanced Radar Data Processing Algorithms 506<br /> 20.4.7 High-Speed Calculation and Parallel Processing Technology 506<br /> 20.4.8 Establishment of System Performance Evaluation Methods and Test Platforms 506<br /> 20.4.9 Common Theoretical Models for Variable Structure State Estimation 506<br /> 20.4.10 Automatic Tracking of Targets in Complex Environments 507<br /> 20.4.11 Tracking and Invulnerability of Multi-radar Network Systems 507</p> <p>References 508</p> <p>Index 523</p>
<strong>Dr You He</strong>, Professor and Chancellor of Naval Aeronautical and Astronautical University, China. Dr He received his Ph.D degree in electronic engineering from Tsinghua University, Beijing, P.R. China, in 1997. From Oct. 1991 to Nov. 1992, he was with the Institute of Communication at Technical University of Braunschweig, Germany. He is Fellow Member of the Chinese Institute of Electronic, Executive Director of China aviation society, and Director of the Information Fusion Branch of China Aviation Society. His research interests include detection and estimation theory, multiple target tracking and multisensor information fusion. He has been engaged in target tracking and information fusion research work for 30 years. He has published over two hundred journal papers and three books. In 2013, Dr. He was elected to be a member of Chinese Academy of Engineering. <p><strong>Dr. Jian-Juan Xiu</strong> received her Ph.D in Naval Aeronautical and Astronautical University, China, in 2004. Now she is an associate professor of the university. Her research interests include passive location, multiple target tracking and multi-sensor information fusion. <p><strong>Dr. Xin Guan</strong> received his Ph.D from Naval Aeronautical and Astronautical University in 2006. She is now a professor and master tutor in Department of Electronics and Communication of the same school. She is major in ECM, radar emitter identification and evidence theory. She has published over 70 papers and two academic monographs.
<p><b>Radar Data Processing with Applications</b></p> <p><b>He You, Xiu Jianjuan, Guan Xin,</b> <i>Naval Aeronautical and Astronautical University, China</i> <p>A summary of thirty years’ worth of research, this book is a systematic introduction to the theory, development, and latest research results of radar data processing technology. Highlights of the book include sections on data pre-processing technology, track initiation, and data association. Readers are also introduced to maneuvering target tracking, multiple target tracking termination, and track management theory. In order to improve data analysis, the authors have also included group tracking registration algorithms and a performance evaluation of radar data processing. <ul><li>Presents both classical theory and development methods of radar data processing</li> <li>Provides state-of-the-art research results, including data processing for modern radars and tracking performance evaluation theory</li> <li>Includes coverage of performance evaluation, registration algorithm for radar networks, data processing of passive radar, pulse Doppler radar, and phased array radar</li> <li>Features applications for those engaged in information engineering, radar engineering, electronic countermeasures, infrared techniques, sonar techniques, and military command</li></ul> <p><i>Radar Data Processing with Applications</i> is a handy guide for engineers and industry professionals specializing in the development of radar equipment and data processing. It is also intended as a reference text for electrical engineering graduate students and researchers specializing in signal processing and radars.

Diese Produkte könnten Sie auch interessieren:

Strategies to the Prediction, Mitigation and Management of Product Obsolescence
Strategies to the Prediction, Mitigation and Management of Product Obsolescence
von: Bjoern Bartels, Ulrich Ermel, Peter Sandborn, Michael G. Pecht
PDF ebook
116,99 €