Details

Quantum Mechanics for Electrical Engineers


Quantum Mechanics for Electrical Engineers


IEEE Press Series on Microelectronic Systems, Band 21 1. Aufl.

von: Dennis M. Sullivan

93,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 29.11.2011
ISBN/EAN: 9781118169773
Sprache: englisch
Anzahl Seiten: 448

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

The main topic of this book is quantum mechanics, as the title indicates. It specifically targets those topics within quantum mechanics that are needed to understand modern semiconductor theory. It begins with the motivation for quantum mechanics and why classical physics fails when dealing with very small particles and small dimensions. Two key features make this book different from others on quantum mechanics, even those usually intended for engineers: First, after a brief introduction, much of the development is through Fourier theory, a topic that is at the heart of most electrical engineering theory. In this manner, the explanation of the quantum mechanics is rooted in the mathematics familiar to every electrical engineer. Secondly, beginning with the first chapter, simple computer programs in MATLAB are used to illustrate the principles. The programs can easily be copied and used by the reader to do the exercises at the end of the chapters or to just become more familiar with the material. <p>Many of the figures in this book have a title across the top. This title is the name of the MATLAB program that was used to generate that figure. These programs are available to the reader. Appendix D lists all the programs, and they are also downloadable at <a href="http://booksupport.wiley.com/">http://booksupport.wiley.com</a></p>
<p>Preface xiii</p> <p>Acknowledgments xv</p> <p>About the Author xvii</p> <p><b>1. Introduction 1</b></p> <p>1.1 Why Quantum Mechanics? 1</p> <p>1.1.1 Photoelectric Effect 1</p> <p>1.1.2 Wave–Particle Duality 2</p> <p>1.1.3 Energy Equations 3</p> <p>1.1.4 The Schrödinger Equation 5</p> <p>1.2 Simulation of the One-Dimensional Time-Dependent Schrödinger Equation 7</p> <p>1.2.1 Propagation of a Particle in Free Space 8</p> <p>1.2.2 Propagation of a Particle Interacting with a Potential 11</p> <p>1.3 Physical Parameters: The Observables 14</p> <p>1.4 The Potential <i>V</i>(<i>x</i>) 17</p> <p>1.4.1 The Conduction Band of a Semiconductor 17</p> <p>1.4.2 A Particle in an Electric Field 17</p> <p>1.5 Propagating through Potential Barriers 20</p> <p>1.6 Summary 23</p> <p>Exercises 24</p> <p>References 25</p> <p><b>2. Stationary States 27</b></p> <p>2.1 The Infinite Well 28</p> <p>2.1.1 Eigenstates and Eigenenergies 30</p> <p>2.1.2 Quantization 33</p> <p>2.2 Eigenfunction Decomposition 34</p> <p>2.3 Periodic Boundary Conditions 38</p> <p>2.4 Eigenfunctions for Arbitrarily Shaped Potentials 39</p> <p>2.5 Coupled Wells 41</p> <p>2.6 Bra-ket Notation 44</p> <p>2.7 Summary 47</p> <p>Exercises 47</p> <p>References 49</p> <p><b>3. Fourier Theory in Quantum Mechanics 51</b></p> <p>3.1 The Fourier Transform 51</p> <p>3.2 Fourier Analysis and Available States 55</p> <p>3.3 Uncertainty 59</p> <p>3.4 Transmission via FFT 62</p> <p>3.5 Summary 66</p> <p>Exercises 67</p> <p>References 69</p> <p><b>4. Matrix Algebra in Quantum Mechanics 71</b></p> <p>4.1 Vector and Matrix Representation 71</p> <p>4.1.1 State Variables as Vectors 71</p> <p>4.1.2 Operators as Matrices 73</p> <p>4.2 Matrix Representation of the Hamiltonian 76</p> <p>4.2.1 Finding the Eigenvalues and Eigenvectors of a Matrix 77</p> <p>4.2.2 A Well with Periodic Boundary Conditions 77</p> <p>4.2.3 The Harmonic Oscillator 80</p> <p>4.3 The Eigenspace Representation 81</p> <p>4.4 Formalism 83</p> <p>4.4.1 Hermitian Operators 83</p> <p>4.4.2 Function Spaces 84</p> <p>Appendix: Review of Matrix Algebra 85</p> <p>Exercises 88</p> <p>References 90</p> <p><b>5. A Brief Introduction to Statistical Mechanics 91</b></p> <p>5.1 Density of States 91</p> <p>5.1.1 One-Dimensional Density of States 92</p> <p>5.1.2 Two-Dimensional Density of States 94</p> <p>5.1.3 Three-Dimensional Density of States 96</p> <p>5.1.4 The Density of States in the Conduction Band of a Semiconductor 97</p> <p>5.2 Probability Distributions 98</p> <p>5.2.1 Fermions versus Classical Particles 98</p> <p>5.2.2 Probability Distributions as a Function of Energy 99</p> <p>5.2.3 Distribution of Fermion Balls 101</p> <p>5.2.4 Particles in the One-Dimensional Infinite Well 105</p> <p>5.2.5 Boltzmann Approximation 106</p> <p>5.3 The Equilibrium Distribution of Electrons and Holes 107</p> <p>5.4 The Electron Density and the Density Matrix 110</p> <p>5.4.1 The Density Matrix 111</p> <p>Exercises 113</p> <p>References 114</p> <p><b>6. Bands and Subbands 115</b></p> <p>6.1 Bands in Semiconductors 115</p> <p>6.2 The Effective Mass 118</p> <p>6.3 Modes (Subbands) in Quantum Structures 123</p> <p>Exercises 128</p> <p>References 129</p> <p><b>7. The Schrödinger Equation for Spin-1/2 Fermions 131</b></p> <p>7.1 Spin in Fermions 131</p> <p>7.1.1 Spinors in Three Dimensions 132</p> <p>7.1.2 The Pauli Spin Matrices 135</p> <p>7.1.3 Simulation of Spin 136</p> <p>7.2 An Electron in a Magnetic Field 142</p> <p>7.3 A Charged Particle Moving in Combined <i>E </i>and <i>B </i>Fields 146</p> <p>7.4 The Hartree–Fock Approximation 148</p> <p>7.4.1 The Hartree Term 148</p> <p>7.4.2 The Fock Term 153</p> <p>Exercises 155</p> <p>References 157</p> <p><b>8. The Green’s Function Formulation 159</b></p> <p>8.1 Introduction 160</p> <p>8.2 The Density Matrix and the Spectral Matrix 161</p> <p>8.3 The Matrix Version of the Green’s Function 164</p> <p>8.3.1 Eigenfunction Representation of Green’s Function 165</p> <p>8.3.2 Real Space Representation of Green’s Function 167</p> <p>8.4 The Self-Energy Matrix 169</p> <p>8.4.1 An Electric Field across the Channel 174</p> <p>8.4.2 A Short Discussion on Contacts 175</p> <p>Exercises 176</p> <p>References 176</p> <p><b>9. Transmission 177</b></p> <p>9.1 The Single-Energy Channel 177</p> <p>9.2 Current Flow 179</p> <p>9.3 The Transmission Matrix 181</p> <p>9.3.1 Flow into the Channel 183</p> <p>9.3.2 Flow out of the Channel 184</p> <p>9.3.3 Transmission 185</p> <p>9.3.4 Determining Current Flow 186</p> <p>9.4 Conductance 189</p> <p>9.5 Büttiker Probes 191</p> <p>9.6 A Simulation Example 194</p> <p>Exercises 196</p> <p>References 197</p> <p><b>10. Approximation Methods 199</b></p> <p>10.1 The Variational Method 199</p> <p>10.2 Nondegenerate Perturbation Theory 202</p> <p>10.2.1 First-Order Corrections 203</p> <p>10.2.2 Second-Order Corrections 206</p> <p>10.3 Degenerate Perturbation Theory 206</p> <p>10.4 Time-Dependent Perturbation Theory 209</p> <p>10.4.1 An Electric Field Added to an Infinite Well 212</p> <p>10.4.2 Sinusoidal Perturbations 213</p> <p>10.4.3 Absorption, Emission, and Stimulated Emission 215</p> <p>10.4.4 Calculation of Sinusoidal Perturbations Using Fourier Theory 216</p> <p>10.4.5 Fermi’s Golden Rule 221</p> <p>Exercises 223</p> <p>References 225</p> <p><b>11. The Harmonic Oscillator 227</b></p> <p>11.1 The Harmonic Oscillator in One Dimension 227</p> <p>11.1.1 Illustration of the Harmonic Oscillator Eigenfunctions 232</p> <p>11.1.2 Compatible Observables 233</p> <p>11.2 The Coherent State of the Harmonic Oscillator 233</p> <p>11.2.1 The Superposition of Two Eigentates in an Infinite Well 234</p> <p>11.2.2 The Superposition of Four Eigenstates in a Harmonic Oscillator 235</p> <p>11.2.3 The Coherent State 236</p> <p>11.3 The Two-Dimensional Harmonic Oscillator 238</p> <p>11.3.1 The Simulation of a Quantum Dot 238</p> <p>Exercises 244</p> <p>References 244</p> <p><b>12. Finding Eigenfunctions Using Time-Domain Simulation 245</b></p> <p>12.1 Finding the Eigenenergies and Eigenfunctions in One Dimension 245</p> <p>12.1.1 Finding the Eigenfunctions 248</p> <p>12.2 Finding the Eigenfunctions of Two-Dimensional Structures 249</p> <p>12.2.1 Finding the Eigenfunctions in an Irregular Structure 252</p> <p>12.3 Finding a Complete Set of Eigenfunctions 257</p> <p>Exercises 259</p> <p>References 259</p> <p><b>Appendix A. Important Constants and Units 261</b></p> <p><b>Appendix B. Fourier Analysis and the Fast Fourier Transform (FFT) 265</b></p> <p>B.1 The Structure of the FFT 265</p> <p>B.2 Windowing 267</p> <p>B.3 FFT of the State Variable 270</p> <p>Exercises 271</p> <p>References 271</p> <p><b>Appendix C. An Introduction to the Green’s Function Method 273</b></p> <p>C.1 A One-Dimensional Electromagnetic Cavity 275</p> <p>Exercises 279</p> <p>References 279</p> <p><b>Appendix D. Listings of the Programs Used in this Book 281</b></p> <p>D.1 Chapter 1 281</p> <p>D.2 Chapter 2 284</p> <p>D.3 Chapter 3 295</p> <p>D.4 Chapter 4 309</p> <p>D.5 Chapter 5 312</p> <p>D.6 Chapter 6 314</p> <p>D.7 Chapter 7 323</p> <p>D.8 Chapter 8 336</p> <p>D.9 Chapter 9 345</p> <p>D.10 Chapter 10 356</p> <p>D.11 Chapter 11 378</p> <p>D.12 Chapter 12 395</p> <p>D.13 Appendix B 415</p> <p>Index 419</p>
<b>DENNIS M. SULLIVAN</b> is Professor of Electrical and Computer Engineering at the University of Idaho as well as an award-winning author and researcher. In 1997, Dr. Sullivan's paper "Z Transform Theory and FDTD Method" won the IEEE Antennas and Propagation Society's R. P. W. King Award for the Best Paper by a Young Investigator. He is the author of <i>Electromagnetic Simulation Using the FDTD Method</i>.
<b>Explains quantum mechanics in language that electrical engineers understand</b> <p>As semiconductor devices become smaller and smaller, classical physics alone cannot fully explain their behavior. Instead, electrical engineers need to understand the principles of quantum mechanics in order to successfully design and work with today's semiconductors.</p> <p>Written by an electrical engineering professor for students and professionals in electrical engineering, <i>Quantum Mechanics for Electrical Engineers</i> focuses on those topics in quantum mechanics that are essential for modern semiconductor theory.</p> <p>This book begins with an introduction to the field, explaining why classical physics fails when dealing with very small particles and small dimensions. Next, the author presents a variety of topics in quantum mechanics, including:</p> <ul> <li> <p>The Schrödinger equation</p> </li> <li> <p>Fourier theory in quantum mechanics</p> </li> <li> <p>Matrix theory in quantum mechanics</p> </li> <li> <p>An introduction to statistical mechanics</p> </li> <li> <p>Transport in semiconductors</p> </li> </ul> <p>Because this book is written for electrical engineers, the explanations of quantum mechanics are rooted in mathematics such as Fourier theory and matrix theory that are familiar to all electrical engineers. Beginning with the first chapter, the author employs simple MATLAB computer programs to illustrate key principles. These computer programs can be easily copied and used by readers to become more familiar with the material. They can also be used to perform the exercises at the end of each chapter.</p> <p><i>Quantum Mechanics for Electrical Engineers</i> is recommended for upper-level undergraduates and graduate students as well as professional electrical engineers who want to understand the semiconductors of today and the future.</p>

Diese Produkte könnten Sie auch interessieren:

Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
EPUB ebook
114,99 €
Digital Communications with Emphasis on Data Modems
Digital Communications with Emphasis on Data Modems
von: Richard W. Middlestead
PDF ebook
171,99 €
Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
PDF ebook
114,99 €