Details

Pulmonary Drug Delivery


Pulmonary Drug Delivery

Advances and Challenges
Advances in Pharmaceutical Technology 1. Aufl.

von: Ali Nokhodchi, Gary P. Martin

127,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 01.06.2015
ISBN/EAN: 9781118799529
Sprache: englisch
Anzahl Seiten: 384

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>Drug therapy via inhalation route is at the cutting edge of modern drug delivery research. There has been significant progress on the understanding of drug therapy via inhalation products. However, there are still problems associated with their formulation design, including the interaction between the active pharmaceutical ingredient(s) (APIs), excipients and devices. This book seeks to cover some of the most pertinent issues and challenges of such formulation design associated with industrial production and desirable clinical outcome.</p> <p>The chapter topics have been selected with a view to integrating the factors that require consideration in the selection and design of device and formulation components which impact upon patient usability and clinical effectiveness. The challenges involved with the delivery of macromolecules by inhalation to both adult and pediatric patients are also covered.</p> <p>Written by leading international experts from both academia and industry, the book will help readers (formulation design scientists, researchers and post-graduate and specialized undergraduate students) develop a deep understanding of key aspects of inhalation formulations as well as detail ongoing challenges and advances associated with their development.</p>
<p>List of Contributors xiii</p> <p>Series Preface xvii</p> <p>Preface xix</p> <p><b>1. Lung Anatomy and Physiology and Their Implications for Pulmonary Drug Delivery 1</b><br /><i>Rahul K. Verma, Mariam Ibrahim, and Lucila Garcia-Contreras</i></p> <p>1.1 Introduction 2</p> <p>1.2 Anatomy and Physiology of Lungs 2</p> <p>1.2.1 Macro- and Microstructure of the Airways and Alveoli as It Pertains to Drug Delivery 2</p> <p>1.2.2 Lung Surfactant 4</p> <p>1.2.3 Pulmonary Blood Circulation 5</p> <p>1.3 Mechanisms of Aerosol Deposition 5</p> <p>1.3.1 Impaction 6</p> <p>1.3.2 Sedimentation 6</p> <p>1.3.3 Interception 6</p> <p>1.3.4 Diffusion 7</p> <p>1.4 Drug Absorption 7</p> <p>1.4.1 Mechanisms of Drug Absorption from the Lungs 7</p> <p>1.5 Physiological Factors Affecting the Therapeutic Effectiveness of Drugs Delivered by the Pulmonary Route 8</p> <p>1.5.1 Airway Geometry 8</p> <p>1.5.2 Inhalation Mode 8</p> <p>1.5.3 Airflow Rate 9</p> <p>1.5.4 Mechanism of Particle Clearance 9</p> <p>1.5.5 Lung Receptors 10</p> <p>1.5.6 Disease States 11</p> <p>1.5.7 Effect of Age and Gender Difference 11</p> <p>1.6 Computer Simulations to Describe Aerosol Deposition in Health and Disease 11</p> <p>1.6.1 Semiempirical Models 12</p> <p>1.6.2 Deterministic Models 12</p> <p>1.6.3 Trumpet Models (One-Dimensional) 12</p> <p>1.6.4 Stochastic, Asymmetric Generation Models 13</p> <p>1.6.5 Computation Fluid Dynamics (CFD)-Based Model 13</p> <p>1.7 Conclusions 13</p> <p>References 14</p> <p><b>2. The Role of Functional Lung Imaging in the Improvement of Pulmonary Drug Delivery 19</b><br /><i>Andreas Fouras and Stephen Dubsky</i></p> <p>2.1 Introduction 19</p> <p>2.1.1 Particle Deposition 20</p> <p>2.1.2 Regional Action of Delivered Drug 22</p> <p>2.1.3 The Role of Functional Lung Imaging in Pulmonary Drug Delivery 22</p> <p>2.2 Established Functional Lung Imaging Technologies 23</p> <p>2.2.1 Computed Tomography 23</p> <p>2.2.2 Ventilation Measurement using 4DCT Registration-based Methods 24</p> <p>2.2.3 Hyperpolarized Magnetic Resonance Imaging 24</p> <p>2.2.4 Electrical Impedance Tomography 25</p> <p>2.2.5 Nuclear Medical Imaging (PET/SPECT) 25</p> <p>2.3 Emerging Technologies 26</p> <p>2.3.1 Phase-contrast Imaging 26</p> <p>2.3.2 Grating Interferometry 27</p> <p>2.3.3 Propagation-based Phase-contrast Imaging 28</p> <p>2.3.4 Functional Lung Imaging using Phase Contrast 28</p> <p>2.3.5 Laboratory Propagation-based Phase-contrast Imaging 29</p> <p>2.4 Conclusion 30</p> <p>References 31</p> <p><b>3. Dry Powder Inhalation for Pulmonary Delivery: Recent Advances and Continuing Challenges 35</b><br /><i>Simone R. Carvalho, Alan B. Watts, Jay I. Peters, and Robert O. Williams III</i></p> <p>3.1 Introduction 36</p> <p>3.2 Dry Powder Inhaler Devices 37</p> <p>3.2.1 Overview 37</p> <p>3.2.2 Recent Innovations in Dry Powder Inhaler Technology 39</p> <p>3.3 New Developments in DPI Formulations and Delivery 43</p> <p>3.3.1 Particle Surface Modification 43</p> <p>3.3.2 Particle Engineering Technology for Pulmonary Delivery 44</p> <p>3.4 Characterization Methods of Dry Powder Inhaler Formulations 50</p> <p>3.5 Conclusion 52</p> <p>References 53</p> <p><b>4. Pulmonary Drug Delivery to the Pediatric Population – A State-of-the-Art Review 63</b><br /><i>Marie-Pierre Flament</i></p> <p>4.1 Introduction 63</p> <p>4.2 Patient Consideration 64</p> <p>4.2.1 Anatomy and Physiology of Children’s Lungs 64</p> <p>4.2.2 Nasal Versus Oral Inhalation 65</p> <p>4.2.3 Patient-related Factors Influencing Aerosol Deposition 66</p> <p>4.2.4 Age and Dosage Forms of Choice 67</p> <p>4.3 Delivery Systems for the Pediatric Population 69</p> <p>4.3.1 Nebulizers 69</p> <p>4.3.2 Pressurized Metered Dose Inhalers 72</p> <p>4.3.3 Dry Powder Inhalers 73</p> <p>4.3.4 Interfaces 74</p> <p>4.4 Recommendations 80</p> <p>4.5 Conclusion 82</p> <p>References 82</p> <p><b>5. Formulation Strategies for Pulmonary Delivery of Poorly Soluble Drugs 87</b><br /><i>Nathalie Wauthoz and Karim Amighi</i></p> <p>5.1 Introduction 88</p> <p>5.1.1 In vivo Fate of Inhaled Poorly Water-soluble Drugs 89</p> <p>5.1.2 The Pharmacokinetics of Inhaled Poorly Water-soluble Drugs Administered for Local and Systemic Action 92</p> <p>5.1.3 Formulation Strategies for Pulmonary Delivery of Poorly Water-soluble Drugs 93</p> <p>5.2 Co-solvents 93</p> <p>5.3 Cyclodextrins 97</p> <p>5.4 PEGylation 99</p> <p>5.5 Reduction of Size to Micro-/Nanoparticles 100</p> <p>5.5.1 Nanocrystal Suspension 101</p> <p>5.5.2 Nanocrystals in a Hydrophilic Matrix System 102</p> <p>5.5.3 Nanoclusters 103</p> <p>5.6 Solid Dispersion/Amorphization 103</p> <p>5.7 Micelles 106</p> <p>5.8 Liposomes 108</p> <p>5.9 Solid Lipid Nanoparticles and Nanostructured Lipid Carriers 110</p> <p>5.10 Conclusion 111</p> <p>References 114</p> <p><b>6. Lipidic Micro- and Nano-Carriers for Pulmonary Drug Delivery – A State-of-the-Art Review 123</b><br /><i>Yahya Rahimpour, Hamed Hamishehkar, and Ali Nokhodchi</i></p> <p>6.1 Introduction 124</p> <p>6.2 Pulmonary Drug Delivery 125</p> <p>6.3 Liposomal Pulmonary Delivery 126</p> <p>6.4 Nebulization of Liposomes 126</p> <p>6.5 Liposomal Dry-powder Inhalers 128</p> <p>6.6 Solid Lipid Microparticles in Pulmonary Drug Delivery 129</p> <p>6.7 Solid Lipid Nanoparticles in Pulmonary Drug Delivery 131</p> <p>6.8 Nanostructured Lipid Carrier (NLC) in Pulmonary Drug Delivery 133</p> <p>6.9 Nanoemulsions in Pulmonary Drug Delivery 134</p> <p>6.10 Conclusion and Perspectives 135</p> <p>References 136</p> <p><b>7. Chemical and Compositional Characterisation of Lactose as a Carrier in Dry Powder Inhalers 143</b><br /><i>Rim Jawad, Gary P. Martin and Paul G. Royall</i></p> <p>7.1 Introduction 144</p> <p>7.2 Production of Lactose 145</p> <p>7.3 Lactose: Chemical Forms, Solid-State Composition, Physicochemical Properties 147</p> <p>7.4 Epimerisation of Lactose 150</p> <p>7.5 Analysis of Lactose 151</p> <p>7.5.1 Powder X-ray Diffraction 152</p> <p>7.5.2 Nuclear Magnetic Resonance 153</p> <p>7.5.3 Infrared Spectroscopy 156</p> <p>7.5.4 Differential Scanning Calorimetry 157</p> <p>7.5.5 Polarimetry 158</p> <p>7.6 The Influence of the Chemical and Solid-State Composition of Lactose Carriers on the Aerosolisation of DPI Formulations 159</p> <p>7.7 Conclusions 163</p> <p>References 163</p> <p><b>8. Particle Engineering for Improved Pulmonary Drug Delivery Through Dry Powder Inhalers 171</b><br /><i>Waseem Kaialy and Ali Nokhodchi</i></p> <p>8.1 Introduction 172</p> <p>8.2 Dry Powder Inhalers 172</p> <p>8.3 Particle Engineering to Improve the Performance of DPIs 172</p> <p>8.3.1 Crystallization 173</p> <p>8.3.2 Spray-drying 174</p> <p>8.3.3 Spray-freeze-drying 177</p> <p>8.3.4 Supercritical Fluid Technology 177</p> <p>8.3.5 Pressure Swing Granulation (PSG) Technique 178</p> <p>8.4 Engineered Carrier Particles for Improved Pulmonary Drug Delivery from Dry Powder Inhalers 178</p> <p>8.5 Relationships between Physical Properties of Engineered Particles and Dry Powder Inhaler Performance 182</p> <p>8.5.1 Particle Size 182</p> <p>8.5.2 Flow Properties 184</p> <p>8.5.3 Particle Shape 185</p> <p>8.5.4 Particle Surface Texture 187</p> <p>8.5.5 Fine Particle Additives 188</p> <p>8.5.6 Surface Area 188</p> <p>8.6 Conclusions 189</p> <p>References 189</p> <p><b>9. Particle Surface Roughness – Its Characterisation and Impact on Dry Powder Inhaler Performance 199</b><br /><i>Bernice Mei Jin Tan, Celine Valeria Liew, Lai Wah Chan, and Paul Wan Sia Heng</i></p> <p>9.1 Introduction 200</p> <p>9.2 What is Surface Roughness? 200</p> <p>9.3 Measurement of Particle Surface Roughness 202</p> <p>9.3.1 General Factors to Consider During a Measurement 202</p> <p>9.3.2 Direct Methods to Profile or Visualise Surface Roughness 204</p> <p>9.3.3 Indirect Measurement of Surface Roughness 206</p> <p>9.4 Impact of Surface Roughness on Carrier Performance – Theoretical Considerations 206</p> <p>9.4.1 Mixing and Blend Stability 206</p> <p>9.4.2 Drug-carrying Capacity 207</p> <p>9.4.3 Drug Adhesion 207</p> <p>9.4.4 Drug Detachment 208</p> <p>9.4.5 Particle Arrangement in Ordered Mixtures After the Addition of Fine Excipient 209</p> <p>9.5 Particle Surface Modification 210</p> <p>9.5.1 Spray Drying 210</p> <p>9.5.2 Solution Phase Processing 211</p> <p>9.5.3 Crystallisation 213</p> <p>9.5.4 Sieving 213</p> <p>9.5.5 Fluid-bed Coating 213</p> <p>9.5.6 Dry Powder Coating 213</p> <p>9.6 Conclusion 215</p> <p>References 215</p> <p><b>10. Dissolution: A Critical Performance Characteristic of Inhaled Products? 223</b><br /><i>Ben Forbes, Nathalie Hauet Richer, and Francesca Buttini</i></p> <p>10.1 Introduction 223</p> <p>10.2 Dissolution of Inhaled Products 224</p> <p>10.2.1 Dissolution Rate 224</p> <p>10.2.2 Dissolution in the Lungs 224</p> <p>10.2.3 Case for Dissolution Testing 225</p> <p>10.2.4 Design of Dissolution Test Systems 226</p> <p>10.3 Particle Testing and Dissolution Media 226</p> <p>10.3.1 Particle Collection 226</p> <p>10.3.2 Dissolution Media 229</p> <p>10.4 Dissolution Test Apparatus 230</p> <p>10.4.1 USP Apparatus 1 (Basket) 231</p> <p>10.4.2 USP Apparatus 2 (Paddle) and USP Apparatus 5 (Paddle Over Disc) 232</p> <p>10.4.3 USP Apparatus 4 (Flow-Through Cell) 232</p> <p>10.4.4 Diffusion-Controlled Cell Systems (Franz Cell, Transwell, Dialysis) 233</p> <p>10.4.5 Methodological Considerations 234</p> <p>10.5 Data Analysis and Interpretation 235</p> <p>10.5.1 Modelling 236</p> <p>10.5.2 Comparing Dissolution Profiles (Model-independent Method for Comparison) 237</p> <p>10.6 Conclusions 237</p> <p>References 238</p> <p><b>11. Drug Delivery Strategies for Pulmonary Administration of Antibiotics 241</b><br /><i>Anna Giulia Balducci, Ruggero Bettini, Paolo Colombo, and Francesca Buttini</i></p> <p>11.1 Introduction 242</p> <p>11.2 Antibiotics Used for the Treatment of Pneumoniae 243</p> <p>11.3 Antibiotic Products for Inhalation Approved on the Market 244</p> <p>11.4 Nebulisation 246</p> <p>11.5 Antibiotic Dry Powders for Inhalation 250</p> <p>11.5.1 Tobramycin 251</p> <p>11.5.2 Capreomycin 252</p> <p>11.5.3 Gentamicin 253</p> <p>11.5.4 Ciprofloxacin 254</p> <p>11.5.5 Levofloxacin 255</p> <p>11.5.6 Colistimethate Sodium 256</p> <p>11.6 Device and Payload of Dose 256</p> <p>11.7 Conclusions 258</p> <p>References 258</p> <p><b>12. Molecular Targeted Therapy of Lung Cancer: Challenges and Promises 263</b><br /><i>Jaleh Barar, Yadollah Omidi, and Mark Gumbleton</i></p> <p>12.1 Introduction 265</p> <p>12.2 An Overview on Lung Cancer 266</p> <p>12.3 Molecular Features of Lung Cancer 268</p> <p>12.3.1 Tumor Microenvironment (TME) 269</p> <p>12.3.2 Tumor Angiogenesis 269</p> <p>12.3.3 Tumor Stromal Components 270</p> <p>12.3.4 Pharmacogenetic Markers: Cytochrome P450 270</p> <p>12.4 Targeted Therapy of Solid Tumors: How and What to Target? 271</p> <p>12.4.1 EPR Effect: A Rational Approach for Passive Targeting 272</p> <p>12.4.2 Toward Long Circulating Anticancer Nanomedicines 273</p> <p>12.4.3 Active/Direct Targeting 273</p> <p>12.4.4 Overcoming Multidrug Resistance (MDR) 273</p> <p>12.4.5 Antibody-Mediated Targeting 274</p> <p>12.4.6 Aptamer-Mediated Targeted Therapy 276</p> <p>12.4.7 Folate Receptor-Mediated Targeted Therapy 276</p> <p>12.4.8 Transferrin-Mediated Targeted Therapy 276</p> <p>12.4.9 Targeted Photodynamic Therapy 277</p> <p>12.4.10 Multimodal Theranostics and Nanomedicines 278</p> <p>12.5 Final Remarks 278</p> <p>References 279</p> <p><b>13. Defining and Controlling Blend Evolution in Inhalation Powder Formulations using a Novel Colourimetric Method 285</b><br /><i>David Barling, David Morton, and Karen Hapgood</i></p> <p>13.1 Introduction 286</p> <p>13.1.1 Introduction to Blend Pigmentation 287</p> <p>13.1.2 Previous Work in the Use of Coloured Tracers to Assess Powder Blending 288</p> <p>13.1.3 Colour Tracer Properties and Approach to Blend Analysis 288</p> <p>13.2 Uses and Validation 290</p> <p>13.2.1 Assessment of Mixer Characteristics and Mixer Behaviour 290</p> <p>13.2.2 Quantification of Content Uniformity and Energy Input 293</p> <p>13.2.3 Detection and Quantification of Unintentional Milling during Mixing 295</p> <p>13.2.4 Robustness of Method with Tracer Concentration 295</p> <p>13.3 Comments on the Applied Suitability and Robustness in of the Tracer Method 296</p> <p>13.4 Conclusions 297</p> <p>Acknowledgements 297</p> <p>References 297</p> <p><b>14. Polymer-based Delivery Systems for the Pulmonary Delivery of Biopharmaceuticals 301</b><br /><i>Nitesh K. Kunda, Iman M. Alfagih, Imran Y. Saleem, and Gillian A. Hutcheon</i></p> <p>14.1 Introduction 302</p> <p>14.2 Pulmonary Delivery of Macromolecules 302</p> <p>14.3 Polymeric Delivery Systems 303</p> <p>14.3.1 Micelles 304</p> <p>14.3.2 Dendrimers 305</p> <p>14.3.3 Particles 305</p> <p>14.4 Preparation of Polymeric Nano/microparticles 305</p> <p>14.4.1 Emulsification Solvent Evaporation 306</p> <p>14.4.2 Emulsification Solvent Diffusion 307</p> <p>14.4.3 Salting Out 307</p> <p>14.5 Formulation of Nanoparticles as Dry Powders 308</p> <p>14.5.1 Freeze-drying 308</p> <p>14.5.2 Spray-drying 309</p> <p>14.5.3 Spray-freeze-drying 309</p> <p>14.5.4 Supercritical Fluid Drying 310</p> <p>14.6 Carrier Properties 310</p> <p>14.6.1 Size 310</p> <p>14.6.2 Morphology 311</p> <p>14.6.3 Surface Properties 311</p> <p>14.7 Toxicity of Polymeric Delivery Systems 311</p> <p>14.8 Pulmonary Delivery of Polymeric Particles 312</p> <p>14.9 Conclusions 313</p> <p>References 313</p> <p><b>15. Quality by Design: Concept for Product Development of Dry-powder Inhalers 321</b><br /><i>Al Sayyed Sallam, Sami Nazzal, Hatim S. AlKhatib, and Nabil Darwazeh</i></p> <p>15.1 Introduction 322</p> <p>15.2 Quality Target Product Profile (QTPP) 324</p> <p>15.3 Critical Quality Attributes (CQA) 324</p> <p>15.4 Quality Risk Management 325</p> <p>15.5 Design of Experiments 326</p> <p>15.6 Design Space 328</p> <p>15.7 Control Strategies 328</p> <p>15.8 Continual Improvement 329</p> <p>15.9 Process Analytical Technology/Application in DPI 329</p> <p>15.10 Particle Size 329</p> <p>15.11 Crystallinity and Polymorphism 330</p> <p>15.12 Scale-up and Blend Homogeneity 331</p> <p>15.13 Applying of QbD Principles to Analytical Methods 331</p> <p>15.14 Conclusion 332</p> <p>References 332</p> <p><b>16. Future Patient Requirements on Inhalation Devices: The Balance between Patient, Commercial, Regulatory and Technical Requirements 339</b><br /><i>Orest Lastow</i></p> <p>16.1 Introduction 340</p> <p>16.1.1 Inhaled Drug Delivery 340</p> <p>16.1.2 Patients 340</p> <p>16.2 Requirements 341</p> <p>16.2.1 Patient Requirements 341</p> <p>16.2.2 Technical Requirements 343</p> <p>16.2.3 Performance Requirements 345</p> <p>16.3 Requirement Specifications 346</p> <p>16.3.1 Requirement Hierarchy 346</p> <p>16.3.2 Developing the Requirements 347</p> <p>16.4 Product Development 350</p> <p>16.5 Conclusions 351</p> <p>References 352</p> <p>Index 353</p>
<b>ALI NOKHODCHI</b> School of Life Sciences, University of Sussex, UK <br /><br /><b>GARY P. MARTIN</b> Institute of Pharmaceutical Science, King’s College London, UK
<p>Drug therapy via inhalation is at the cutting edge of modern drug delivery research. It is a noninvasive, rapid, and effective way to deliver therapeutic agents both locally and systemically. However, there are challenges associated with the formulation design of inhalation products, including understanding interactions that exist between the active pharmaceutical ingredients (APIs), excipients, and the device. <br /><br /><i>Advances and Challenges in Pulmonary Drug Delivery</i> describes the most pertinent issues in the selection <br />and design of formulation components and device which impact upon patient usability and clinical effectiveness. The constraints involved with the delivery of APIs to both adult and paediatric patients are covered. The science relating to the formulation of micro- and nanoparticles, macromolecules, and antibiotics and chemotherapeutic agents is described. The importance of the chemistry and physicochemical properties of the excipient in increasing delivery efficiency is considered in detail. The evaluation of inhalers containing poorly soluble APIs and testing the dissolution of such formulations is also reviewed. Finally, the book provides a detailed account of research strategies for the future development of inhaled medicines. <br /><br />Intended for researchers and advanced students in pharmacy, as well as researchers in respiratory formulations and drug delivery in the pharmaceutical industry, the book enables readers to develop a deep understanding of the key aspects of inhalation formulations.</p> <p> </p>

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €