Cover Page

Innovation in Wind Turbine Design

Second Edition

 

Peter Jamieson

Strathclyde University, UK

 

 

 

 

 

Wiley Logo

To Adele and Rose

Foreword

Those of us who have been active in the wind energy industry for the past few decades have been lucky. We have been involved in an industry that is technically fascinating, commercially exciting and thoroughly worthwhile. We have seen turbines increase in diameter from 10 to 120 m and in power from 10 to 10 000 kW – what a fantastic journey!

The size of the turbines is the most obvious characteristic because it can be so clearly seen – wind turbines are now by far the biggest rotating machines in the world. Less visible is the ingenuity of the designs. Looking back a couple of decades, there were many ‘whacky’ ideas that were seriously contemplated and even offered commercially and some of those whacky ideas have become conventional. Superficially, the latest generation of turbines may all look the same, but underneath the nacelle and inside the blades there are many fascinating differences. For a long time, the mantra of the wind turbine industry has been ‘bigger and bigger’, but now it has moved to ‘better and better’ and this change marks a change in the areas of innovation.

Peter Jamieson is one of the clearest thinkers in the industry and I am delighted and honoured to have worked with him for almost 20 years. He is a real blue sky thinker unimpeded by convention and driven by a strong sense of rigour. Innovation in wind turbine design is what Peter has been doing for the past 30 years and it is about time he wrote a book about it. I fully supported Peter's idea that he should put his professional thoughts on record and now he has done so.

Anyone interested in the technical aspects of both the past developments and the exciting future of wind turbines should read this book carefully and be inspired. This is no arid technical text or history – this is real intellectual capital and, of course, innovation.

Andrew Garrad

Preface

This book is about innovation in wind turbine design – more specifically about the evaluation of innovation – assessing whether a new concept or system will lead to improved design-enhancing performance or reducing cost. In the course of a working life in wind energy that began in 1980, the author's work has increasingly been, at the request of commercial clients and sometimes public authorities, to evaluate innovative systems providing reports which may or may not encourage further investment or development. In some cases, the clients are private inventors with a cherished idea. Other cases include small companies strategically developing innovative technologies, major industrial companies looking for an entry to the wind turbine market or major established wind turbine companies looking to their next-generation technology.

There is substantial conservatism in the wind industry as in most others and largely for the best possible reasons. Products need to be thoroughly proved and sound, whereas change is generally risky and expensive even when there is significant promise of future benefit. To some extent, change has been enforced by the demands year by year for larger wind turbines and components. There has been convergence in the preferred mainstream design routes but, as new players and new nations enter the wind business, there is also a proliferation of wind technology ideas and demand for new designs. The expansion of wind energy worldwide has such impetus that this book could be filled with nothing but a catalogue of different innovative designs and components.

It may initially seem strange that as much of the book is devoted to technology background as to discussion of specific innovative concepts. However, innovation is not a matter of generating whacky concepts as an entertainment for bored engineers. The core justification for innovation is that it improves technology, solving problems rather than creating them. To achieve that, it is crucial that the underlying requirements of the technology are well understood and that innovation is directed in areas where it will produce most reward. Hence is the emphasis on general technology background. Within that background some long-established theory is revisited (actuator disc and blade element momentum) but with some new equations developed.

Among much else, this second edition contains predictable updates regarding new larger turbines and new systems plus expanded sections on the ever-growing offshore applications and the developing interest in airborne wind power. There is also new content relating to presentation of basic theory, a fuller evaluation of many issues concerning ducted rotors, various new top-level analyses of the low-induction rotor concept, flow relativity (relating to driving rotors through still air as a means of performance measurement) and kite performance, for example.

Innovative ideas by definition break the mould. They often require new analytical tools or new developments of existing ones and, in general, fresh thinking. They do not lend themselves to a systematised, routine approach in evaluation. Evaluating innovation is an active process like design itself, always in evolution with no final methodology. On the other hand, there are basic principles and some degree of structure can be introduced to the evaluation process.

In tackling these issues, a gap was apparent – between broad concepts and detailed design. This is territory where brainstorming and then parametric analyses are needed, when pure judgement is too limited but when heavyweight calculation is time consuming, expensive and cannot be focused on with any certainty in the right direction. This why ‘detailed design’ is not much addressed. It is the subject of another book. This one concerns building bridges and developing tools to evaluate innovative concepts to the point where investment in detailed design can be justified. Innovation in wind energy expresses the idealism of the designer to further a sustainable technology that is kind to the planet.

Peter Jamieson

Acknowledgement

My professional life in wind technology began in 1980 in the employment of James Howden and Company of Glasgow and I very much appreciate many colleagues who shared these early days of discovery. Howden regrettably withdrew from turbine manufacture in 1988, but by then my addiction to wind was beyond remedy.

In those days I much admired a growing wind energy consultancy, Garrad Hassan and Partners. I was delighted to join them in 1991 and, as it happened, founded their Scottish office. I felt that it would be great to have a working environment among such talented people and that I would have a continuing challenge to be worthy of them.

In particular, I would very much like to thank Andrew Garrad and Dave Quarton for encouragement, practical support and great tolerance over 4 years in the preparation of the first edition. At the end of 2013 I retired from Garrad Hassan, by then part of DNV GL. Commencing in 2009, I was employed part time in the Centre for Doctoral Training in Wind Energy in the University of Strathclyde and enjoy working with great teams of staff and students who, now numbering over 40, are studying wind and marine topics at PhD level. I am much indebted to Bill Leithead, director of the centre, especially for many valuable brainstorming sessions on wind technology over the years.

I have to say special thanks to the late Woody Stoddard, who was an inspiring friend and enormously supportive, especially considering the few times we met.

Considering the very many times I have imposed on his good nature, I have equally to thank Mike Graham for his freely given help in so many projects and as an excellent, unofficial aerodynamics tutor. Much thanks also to Henrik Stiesdal, who, as an extremely busy man at the technical helm of a large wind turbine manufacturing company, found time to contribute a chapter to this book.

My warm thanks also go to very many other work colleagues and associates who, knowingly or otherwise, have made valuable contributions to this book. Among them are:

Albert Su, Alena Bach, Alexander Ovchinnikov, Andrew Latham, Anne Telfer, Ben Hendriks, Bob Thresher, Carlos Simao Ferreira, Chai Toren, Charles Gamble, Chris Hornzee-Jones, Chris Kirby, Christine Sams, David Banks, David Milborrow, David Sharpe, Ed Spooner, Emil Moroz, Ervin Bossanyi, Fabio Spinato, Fatma Murray, Iain Dinwoodie, Jan Rens, Geir Moe, Georg Böhmeke, Gerard van Bussel, Herman Snel, Irina Dyukova, Jamie Taylor, Jega Jegatheeson, Jim Platts, John Armstrong, Kamila Nieradzinska, Kerri Hart, Leong Teh, Lindert Blonk, Lois Connell, Lutz Witthohn, Magnus Kristbergsson, Marcia Heronemus, Mark Hancock, Martin Hansen, Masaaki Shibata, Mauro Villanueva-Monzón, Mike Anderson, Mike Smith, Nathalie Rousseau, Nick Jenkins, Nils Gislason, Patrick Rainey, Paul Gardner, Paul Gipe, Paul Newton, Paul Veers, Peter Dalhoff, Peter Musgrove, Peter Stuart, Rob Rawlinson-Smith, Roger Haines, Roland Schmehl, Roland Stoer, Ross Walker, Ross Wilson, Ruud van Rooij, Sandy Butterfield, Seamus Garvey, Stephen Salter, Steve Gilkes, Stuart Calverley, Tim Camp, Takis Chaviaropoulos, Theo Holtom, Tomas Blodau, Trevor Nash, Uli Goeltenbott, Unsal Hassan, Uwe Paulsen, Varan Sureshan, Vidar Holmöy, Win Rampen, Wouter Haans, Yuji Ohya.

Peter Jamieson