cover

Contents

Inhalt der CD

Vorwort

Vorwort zur zweiten Auflage

Vorwort zur dritten Auflage

1 Grundlagen

1.1 Maßeinheiten: Menge und Masse

1.2 Dezimalvorsilben

1.3 Reaktionstypen

1.4 Reaktionsgeschwindigkeiten und Hemmung von Reaktionen

1.5 Titration

1.6 Ionenbilanz

1.7 Aufbau eines Analysenformulars

1.8 Angabe von Analysenergebnissen

1.9 Angabe von Mischungsverhältnissen

1.10 Laboratorien, Analysenwerte, Grenzwerte

1.11 Umgang mit großen Datenmengen und „Ausreißern“

1.12 Umgang mit Kundenreklamationen

1.13 Datenverarbeitung, Datensicherung

2 Wasser-Typen, Identifizierung von Wässern

2.1 Destilliertes (vollentsalztes) Wasser

2.2 Regenwasser

2.3 See- und Talsperrenwasser

2.4 Grundwasser

2.5 Flusswasser

2.6 Wasser in Wasserwerken

2.7 Wasser in Hallenbädern

2.8 Abwasser

2.9 Meerwasser

2.10 Mineralwässer, Quellwässer, Tafelwässer, Heilwässer

2.11 Identifizierung von Wässern

2.12 Sonstige, spezielle Wässer

3 Physikalische, physikalisch-chemische und allgemeine Parameter

3.1 Temperatur

3.2 Elektrische Leitfähigkeit

3.3 pH- Wert, Säure und Lauge in der Umwelt

3.4 Sauerstoff

3.5 Kohlenstoffdioxid

3.6 Geruch

3.7 Färbung

3.8 Trübung

3.9 Redoxspannung

3.10 Aufgegebene Parameter (Abdampfrückstand, Glührückstand)

4 Anorganische Wasserinhaltsstoffe, Hauptkomponenten

4.1 Erdalkalimetalle, Härte

4.2 Alkalimetalle

4.3 Eisen und Mangan

4.4 Anionen (außer Nitrit und Nitrat)

4.5 Stickstoff und Stickstoffverbindungen

4.6 Chemische Verschmutzungsindikatoren

5 Anorganische Wasserinhaltsstoffe, Spurenstoffe

5.1 Datenbasis

5.2 Mobilisierungs- und Immobilisierungsprozesse

5.3 Parameter

6 Organische Wasserinhaltsstoffe

6.1 Allgemeines

6.2 Substanzen, die aus Molekülen einheitlicher Beschaffenheit bestehen

6.3 Refraktäre Substanzen

6.4 Organische Wasserinhaltsstoffe, Parameter

6.5 Methan (Gärung und Faulung)

7 Calcitsättigung

7.1 Einführung

7.2 Kohlensäure

7.3 Rolle des Calciums

7.4 Beurteilung eines Wassers im Hinblick auf die Calcitsättigung

7.5 Analysenangaben

7.6 Grenzwert

7.7 Ausschlusskriterien

7.8 Beeinflussung des Sättigungszustandes

7.9 Bedeutung der Calcitsättigung

8 Mikrobiologische Parameter und Desinfektionsmittel

8.1 Bakteriologische Verschmutzungsindikatoren, Hygiene

8.2 Desinfektionsmittel

9 Radioaktivität

9.1 Vorbemerkung

9.2 Allgemeines

9.3 Radioaktive Spaltprodukte

9.4 Aktivierungsprodukte, Tritium

9.5 Maßeinheiten

9.6 Natürliche Hintergrundwerte

9.7 Erfahrungen

9.8 Grenzwerte

9.9 Gefährdungssituation in der Bundesrepublik

10 Chronik der gesetzlichen Rahmenbedingungen

10.1 Rechtlicher Rahmen

10.2 Entwicklung

11 Abkürzungsverzeichnis und Glossar

12 Tabellenanhang

13 Analysenanhang

14 Literatur

Register

Alles vom und über das Wasser

Feuerpfeil, I., Botzenhart, K. (Hrsg.)

Hygienisch-mikrobiologische Wasseruntersuchung in der Praxis

Nachweismethoden, Bewertungskriterien, Qualitätssicherung, Normen

400 Seiten mit 77 Abbildungen und 26 Tabellen

2008

Hardcover

ISBN: 978-3-527-31569-7

Wasserchemische Gesellschaft, Fachgruppe in der GDCh in Gemeinschaft mit dem Normenausschussasserwesen (NAW) im DIN e.V. (Hrsg.)

Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung

Loseblattwerk

ISBN: 3-527-28766-3 (Grundwerk)

Quevauviller, P., Thomas, O., Van Der Beken, A. (Hrsg.)

Wastewater Quality Monitoring and Treatment

408 Seiten

2007

Online Buch Wiley Interscience

ISBN: 978-0-470-05872-5

Wiesmann, U., Choi, I. S., Dombrowski, E.-M.

Biological Wastewater Treatment

Fundamentals, Microbiology, Industrial Process Integration

391 Seiten mit 135 Abbildungen und 61 Tabellen

2007

Hardcover

ISBN: 978-3-527-31219-1

Image

Autor

Dr. Walter Kölle

Heesternwinkel 7

30657 Hannover

Titelbild

Komposition zu den Begriffen Gewässer, Wasserorganismen, organisches Sediment, Eisensulfide sowie chemische Analytik. Die „Muschel“ stammt aus dem Grundwasserleiter „Fuhrberger Feld“ aus 17,5 m Tiefe.

1. Auflage 2001
2., aktualisierte und erweiterte Auflage 2003
3., aktualisierte und erweiterte Auflage 2010

Inhalt der CD

Die einzelnen Bilddateien im Ordner „Bilder und Informationen“ liegen im JPGFormat vor. Die Erläuterungen sind in das PDF-Format gebracht worden, ihre Kapitelnummern entsprechen den korrespondierenden Kapiteln im Buch.

Bilder und Informationen

Ordner: Gesamtes Bildmaterial.

PHREEQC

Ordner: Hinweise zur Benutzung des thermodynamischen Rechenprogramms PHREEQC, insbesondere zur Berechnung von Daten zur Calcitsättigung. Tabelle mit Vergleichsdaten PHREEQC/DIN.

0 Erläuterungen und Danksagung

Angaben zur fotografischen Aufnahmetechnik, zur Digitalisierung von Diapositiven und zur Nachbearbeitung der Bilddateien. Dank an alle Fachkollegen, die zum Gelingen dieser Dokumentation beigetragen haben, sowie an den Verlag Wiley-VCH.

1 Das Fuhrberger Feld

Lagepläne mit Kennzeichnung der Stellen, die im Buch erwähnt werden. Chronologisch geordnetes Literaturverzeichnis wissenschaftlicher Arbeiten, die im bzw. über das Fuhrberger Feld veröffentlicht worden sind.

1.3.5 Tonminerale, Ionensorption

Bilder vom Bentonit- und Kaolin-Tagebau aufder Insel Milos, Griechenland sowie von den dort abgebauten Produkten. Bilder von Glaukonit aus einem Grundwasserleiter und von Tonstein aus einer Tonkuhle bei Hannover. Abgabe von Chlorid und Sulfat aus dem Ton. Geländeversuche zur Ionensorption mit Analysenergebnissen.

3.3.4 Verwitterung von Eisensulfiden und Silicaten

Bilder von einer pyrithaltigen Halde, von einem Pyrit-Tagebau auf Zypern und vom Mono-Lake in Kalifornien.

4.1.1.10 Calciumcarbonat in der Natur

Bilder von Aragonit, Laurion, und von den Kalksinterterrassen von Pamukkale, Türkei, einschließlich Angaben zur Wasserbeschaffenheit. Muschelkalk, verwitternder Kalkstein, Tropfsteinhöhle, Sinterröhrchen, Querschnitt durch Stalaktit, Marmorsteinbruch von Carrara, Naturstein-Fensterbank mit Versteinerung und Pyriteinschluss, doppelbrechender Kalkspat.

4.1.4.4 Baryt in Trinkwasserleitung

Ein Bild in zwei Farbvarianten von Baryt, der in einer hannoverschen Trinkwasserleitung auskristallisiert ist.

4.3.1.10 Auswahl 1, Pyrit, Denitrifikation, Verockerung

Pyrit und Pyrit-Verwitterungsprodukte aus Grundwasserleitern, Rasenerz in der historischen Waldschmiede im Fuhrberger Feld, Versuche zur „Nitratverockerung“, Bilder aus verockerndem Brunnen, Verockerungsprodukte, säureunlösliche Rückstände von Verockerungsprodukten.

4.3.1.10 Auswahl 2, Eisenverbindungen

Modernes duktiles Gussrohr, Beschaffenheit von „green rust“, Deckschichten aus Graugussleitungen, vererzte Gallionellen, Lepidokrokit, Siderit, Vivianit, Schlamm von Rohrreinigung, Bilderserie von oxidierendem „green rust“.

4.3.1.10 Auswahl 3, Enteisenung im Filter

Bilder von Filterkorn aus Wasserwerksfiltern zur Enteisenung und Entmanganung, Querschnitte durch Korn-Aufwuchs, Diskussion der Beschaffenheit von Eisenoxidhydrat mit REM-Aufnahmen hierzu.

4.3.1.10 Auswahl 4, Enteisenung in Flockungsanlage

Schema einer Flockungsanlage („Accelator“) im Wasserwerk Fuhrberg der Stadtwerke Hannover AG, Accelator, Belüftungseinrichtung, Lochrinne, Wasserproben, Visualisierung der Sedimentation, Nahaufnahmen des Eisenschlamms.

4.3.2.10 Auswahl 1, Entmanganung im Filter

Galerie von Filterkies-Proben aus unterschiedlichen Phasen der Einarbeitung eines Entmanganungsfilters, zugehörige Kiesproben in Nahaufnahme, REM-Aufnahmen von 16 Jahre altem Entmanganungskies, Angaben zur Nickelelimination bei der Entmanganung, Diskussion des Kornwachstums und dessen Auswirkung aufdas Rückspülverhalten des Kieses.

4.3.2.10 Auswahl 2, Entmanganung im Untergrund

Bilder von „Manganabscheidungen“ auf Kies aus einem Projekt, das federführend von Professor Dr. U. Rott, Stuttgart, durchgeführt worden ist. Erläuterungen zur unterirdischen Wasseraufbereitung.

4.3.2.10 Auswahl 3, Störungen durch Manganoxide

Abscheidungen von Manganoxiden in einem offenen Kiesfilter, an Filterdüsen und in einer Trinkwasserleitung.

4.3.2.10 Auswahl 4, Manganknolle

Mehrere Bilder von einer Manganknolle.

4.4.1.10 Auswahl 1, Natriumchlorid

Salinen von Lanzarote, Mozia bei Sizilien und Mallorca. Salzsee aufZypern, Totes Meer, Israel mit Angaben zur Beschaffenheit des Wassers und des Salzes, KaliAbraumhalde am Steinhuder Meer.

4.4.1.10 Auswahl 2, Chlorid in Korrosionsprodukten

Farbaufnahmen zur Schemazeichnung 4.14 (Buch, Seite 172: Korrosionsprodukt, das FeCl2 enthielt), eingetrocknetes Eisenchlorid auf Korrosionsprodukten.

4.4.1.10 Auswahl 3, Chlorideinfluss auf Korrosion

Streusalzeinfluss auf Korrosion.

4.4.2.10 Sulfat und Schwefel

Gipslagen, Zypern, Gipskristalle auf Soleleitung in einem Badeort, Gips auf einem Korrosionsprodukt in einer Trinkwasserleitung, elementarer Schwefel, extrahiert aus einem Grundwasserleiter, Schwefel in Korrosionsprodukten mit REM-Aufnahmen.

4.4.4.10 Phosphat

Vivianitkristalle (Eisen(II)-phosphat) in einer Trinkwasserleitung nach Phosphatdosierung, Struvit (Ammonium-Magnesiumphosphat) aus dem Faulbehälter einer Kläranlage und aus einer Gülleaufbereitungsanlage.

4.4.5.10 Siliciumdioxid

Kieselgel (Trockenmittel), verkieseltes Holz im Petrified Forest, Arizona, USA, Achatscheiben, Quarzkristall, Schwingquarz.

5.3.1 Aluminium

„Aluminium-Verockerungsprodukt“ aus Brunnen 1, Wasserwerk Fuhrberg mit REM-Aufnahmen, Ausscheidungen von Aluminiumoxidhydrat in einer Trinkwasserleitung.

5.3.4 Blei

Blei-Hausanschlussleitung, Bilder von Blei-Deckschichten, die sich in unterschiedlichen Wässern gebildet haben, Untersuchungsergebnisse dazu.

5.3.10 Kupfer

Lötstellen an Kupferleitungen, Korrosionsprodukte in Trinkwasserleitungen, Kupfer-Eisen-Sulfid als Korrosionsprodukt in einem Brunnen mit Filterrohren aus Kupfer im Kontakt mit eisenhaltigem Wasser, Entzinkung an einer Messingarmatur.

5.3.16 Uran

Zwei Glasvasen mit typischer „Uranfärbung“.

6.3.4 Fossile organische Substanz, Huminstoffe

Bohrgut mit organischer Substanz, Schlauchkerne aus dem Fuhrberger Feld, „Braunkohle“ aus dem Grundwasserleiter Fuhrberger Feld, Natronlauge-Auszug aus Aquifer-Material, Eluat aus der Adsorberharzanlage im Wasserwerk Fuhrberg.

6.4.20 Öl

Unterschiedlich reflektierende Streifen auf Meerwasser. Diskussion der Ölverunreinigung von Meerwasser, teilweise auch durch natürliche Ölquellen.

7.9.7 Calciumcarbonat in technischen Anlagen

Calcit, abgeschieden durch Wandalkalität in Graugussrohr, durch Kalkhydratdosierung, auf Filterkorn nach Schnellentcarbonisierung und in Trinkwasserleitung, durch Alkalität von Zementmörtel, durch Ionenaustauschprozesse (wahrscheinlich), durch Fremdstromeinfluss und durch Hitze. Calcitauflösung durch pH-Absenkung nach Eisenoxidation.

8 Wasser als solches

Hommage an das Wasser.

Vorwort

Der Impuls, ein Buch über die Beurteilung von Wasseranalysen zu schreiben, geht letztlich auf die Kunden des Wasserlaboratoriums zurück, das der Autor lange Jahre bei der Stadtwerke Hannover AG geleitet hat. Immer wieder war sinngemäß die gleiche Klage zu hören, nämlich dass man von einem echten Verständnis einer Wasseranalyse meilenweit entfernt sei. Dieses Buch soll dazu beitragen, diese Entfernung zu verringern.

Die Wasserversorgung blickt auf eine lange Tradition zurück. Früher wurden Begriffe geprägt, die den heutigen Anforderungen an eine eindeutige, logische und widerspruchsfreie Terminologie nicht mehr entsprechen und die daher aus dem Sprachschatz des Wasserchemikers gestrichen worden sind. Dafür gab und gibt es zwingende Gründe. Eine Ausarbeitung, wie sie hier vorliegt, könnte zum Anlass genommen werden, veraltete Begriffe ersatzlos auszumerzen. Der Autor ist zu dem Schluss gekommen, dass dies ebenso wenig möglich ist, wie ein Beharren auf den alten Formulierungen. Ein wichtiger Grund dafür ist die Tatsache, dass auch alte Analysen interpretiert werden müssen. Oft sind gerade die alten Analysen besonders interessant, wenn Änderungen der Wasserbeschaffenheit über größere Zeiträume erfasst werden sollen. Der Autor hat versucht, strenge Maßstäbe an die Terminologie anzulegen, dabei aber die historische Entwicklung des Fachgebiets nicht aus den Augen zu verlieren.

Der Begriff „Wasseranalyse“ ist nicht genau definiert. Vor dem Jahr 1975 bestand eine Wasseranalyse hauptsächlich aus den Parametern, die ein Versorgungsunternehmen im Eigeninteresse analysierte oder analysieren ließ. Die Parameterauswahl war zum Teil recht unterschiedlich. Bei den Wasserwerken hing sie beispielsweise davon ab, ob das Rohwasser als Grundwasser, als Talsperrenwasser oder als Rheinuferfiltrat gewonnen wurde. Die Gesundheitsämter ergänzten die jeweiligen Untersuchungsprogramme durch „hygienisch-chemische“ Analysen. Nach 1975 wurde der Parameterumfang einer Wasseranalyse zunehmend durch die Bestimmungen der Trinkwasserverordnung diktiert. Dies gilt besonders von 1986 an, als erstmals eine größere Zahl von Hauptkomponenten des Trinkwassers mit Grenzwerten belegt wurde.

Das vorliegende Buch ist nicht nach der Parameterstruktur von Verordnungen, sondern überwiegend nach allgemeinen chemischen Kriterien geordnet. Der Bedeutung der Gesetzgebung wird dadurch Rechnung getragen, dass die Bestimmungen der EG-Trinkwasserrichtlinie vom 03.11.1998 als der jüngsten gesetzlichen Regelung in Fettschrift wiedergegeben sind. Daneben werden auch die Regelungen nach der Trinkwasserverordnung vom 12.12.1990 aufgeführt, weil sie der aktuellen Rechtslage in der Bundesrepublik Deutschland entsprechen und weil diese Verordnung die einzige ist, die Angaben darüber enthält, unter welchen Randbedingungen Zusatzstoffe zum Trinkwasser eingesetzt werden dürfen. Auf diese Angaben wird im Buch Bezug genommen.

Jedes Buch lebt vom Erfahrungsschatz des Autors. Dieser hofft, das Thema so vollständig abgedeckt zu haben, dass jeder Leser Nutzen daraus ziehen kann. Davon unabhängig ist der Autor für Anregungen dankbar, mit denen der Informationsgehalt des Buches auf eine breitere Basis gestellt werden kann.

Der Autor möchte es nicht versäumen, an dieser Stelle seinen Lehrern Professor Dr. Josef Holluta und Professor Dr. Heinrich Sontheimer zu danken. Besonderer Dank gebührt der Stadtwerke Hannover AG, besonders seinem Technischen Direktor Professor Dr. Hans-Jürgen Ebeling, der dem Autor die Freiheit eingeräumt hat, Zusammenhänge zu hinterfragen und Erkenntnisse weiterzugeben. Der Autor dankt ferner der Deutschen Vereinigung des Gas- und Wasserfaches e. V., Bonn, und der Interessengemeinschaft für Norddeutsche Trinkwasserwerke e. V., Meppen, für bereitwillige Unterstützung. Nicht zuletzt sei Herrn Dr. Bernd Schneider für die kritische Durchsicht des Manuskripts gedankt.

Hannover, Januar 2001

Walter Kölle

Vorwort zur zweiten Auflage

Bei der Drucklegung der ersten Auflage war die EG–Trinkwasserrichtlinie vom 03.11.1998 noch nicht rechtskräftig in deutsches Recht umgesetzt. Die auf der EG–Trinkwasserrichtlinie basierende Novelle der Trinkwasserverordnung wurde am 21.05.2001 im Bundesgesetzblatt verkündet und trat am 01.01.2003 in Kraft. Die in diesem Buch aufgeführten Parameter werden nun an Hand der Bestimmungen der Trinkwasserverordnung in ihrer Fassung vom 21.05.2001 diskutiert. Zahlreiche Grenzwerte haben eine wechselvolle Vorgeschichte. Wo es dem Verständnis dient, wird auf diese Vorgeschichte Bezug genommen. Ergänzt werden diese Ausführungen durch einen gesonderten Abschnitt „Chronik der gesetzlichen Rahmenbedingungen“.

Die Verwendung von Zusatzstoffen zur Trinkwasseraufbereitung ist nicht mehr in der Trinkwasserverordnung geregelt. Einige Reaktionsprodukte (Bromat, Trihalogenmethane) sind jedoch mit eigenständigen Grenzwerten in der novellierten Trinkwasserverordnung enthalten. Im Übrigen wird beim Umweltbundesamt ein Liste der zulässigen Zusatzstoffe geführt, die, falls erforderlich, schnell aktualisiert werden kann. Im Rahmen dieses Buches werden die Zusatzstoffe hinsichtlich ihrer grundsätzlichen Bedeutung erörtert, Detailinformation wird man der jeweils aktuellen Liste des Umweltbundesamtes entnehmen müssen.

Mit der zweiten Auflage wurde auch die Gelegenheit wahrgenommen, alle Angaben zur Löslichkeit von Wasserinhaltsstoffen mit Hilfe des Rechenprogramms PHREEQC zu überprüfen und gegebenenfalls zu aktualisieren. Die meisten Änderungen, die gegenüber der ersten Auflage eingetreten sind, sind zwar auf Grund der Korrektheit geboten, haben aber keine Auswirkungen auf die grundsätzlichen Inhalte der Argumentation. In diesem Zusammenhang sei erwähnt, dass fast alle Feststoffphasen, mit denen das Wasser reagiert oder die sich aus dem Wasser abscheiden, mikroskopisch und fotografisch zugänglich sind. Das nächste Projekt des Autors besteht darin, seinen Bestand an diesbezüglichen Bildern aufzuarbeiten und der Öffentlichkeit verfügbar zu machen.

Der Autor dankt Herrn Professor Dr. Wolfgang Kühn, Technologiezentrum Wasser in Karlsruhe (DVGW), für wertvolle Information über Oberflächengewässer und Herrn Professor Dr. Fritz H. Frimmel, Engler-Bunte-Institut, Bereich Wasserchemie, Universität Karlsruhe, für zahlreiche Anregungen zum Thema

„Refraktäre Substanzen“. Die Ausführungen über organische Wasserinhaltsstoffe wurden um den Parameter „Methan“ ergänzt. In diesem Zusammenhang dankt der Autor Herrn Karl-Heinz Weber, Analytik Berkhöpen, für wichtige Hinweise. Die Abschnitte „Grundlagen“ und „Radioaktivität“ wurden dankenswerterweise von Herrn Dr. Hans-Ulrich Fanger, GKSS Forschungszentrum Geesthacht, kritisch durchgesehen.

Hannover, Januar 2001

Walter Kölle

Vorwort zur dritten Auflage

Mit den ersten beiden Auflagen dieses Buches wurden die Ziele verfolgt, wasserchemische Grundlagen zu vermitteln und die gesetzlichen Rahmenbedingungen zu diskutieren, die bei der Beurteilung von Wasseranalysen berücksichtigt werden müssen. Mit der dritten Auflage kommt nun ein weiteres Ziel hinzu: die Visualisierung wasserchemischer Begriffe, Vorgänge und Gesetzmäßigkeiten. Der Autor kann auf eine Sammlung von Bildern zurückgreifen, die er ein Berufsleben lang aufgebaut hat (an einigen Stellen interpretiert er den wasserchemischen Bezug etwas großzügig, was der Leser tolerieren möge). Die Bilder und ausführliche Erläuterungen dazu findet der Leser auf einer CD-ROM, die diesem Buch beiliegt. Buch und CD-ROM sind durch zahlreiche Querverweise miteinander verknüpft.

Seit dem Erscheinen der zweiten Auflage haben sich die Gefährdung des Wassers durch neue Schadstoffgruppen erhöht und gleichzeitig die Leistungsfähigkeit der instrumentellen Analytik verbessert. Es mussten daher neue Parameter aufgenommen werden: Uran, Thorium, Zinn, Redoxpotential, Metaboliten von Pflanzenbehandlungsmitteln, Arzneimittelrückstände, Röntgenkontrastmittel, perfluorierte Verbindungen, Organophosphonsäuren, Hydrazin und Methyltertärbutylether (MTBE).

Geltendes Recht ist – ebenso wie bei der zweiten Auflage – die Trinkwasserverordnung aus dem Jahre 2001. Allerdings existiert inzwischen ein Referentenentwurf vom 28.11.2008 zur Novelle der Trinkwasserverordnung. Dieser Entwurf wurde in die vorliegende Auflage ergänzend eingearbeitet. Die vorgesehenen Änderungen gegenüber der Trinkwasserverordnung von 2001 betreffen hauptsächlich Verfahrensregeln und den Sprachgebrauch. Beispielsweise wird die Formulierung „Wasser für den menschlichen Gebrauch“ durch den allgemein akzeptierten Begriff „Trinkwasser“ ersetzt. Für die Beurteilung von Wasseranalysen sind vor allem der Parameterumfang und die Höhe der Grenzwerte von Bedeutung. Hier halten sich die vorgesehenen Änderungen in engen Grenzen. Wo Änderungen anstehen, werden diese ausführlich diskutiert.

Der Autor dankt Herrn Professor Dr. Wolfgang Kühn, Technologiezentrum Wasser in Karlsruhe, und seinen Mitarbeitern Dr. Heinz-Jürgen Brauch und Dr. Frank Thomas Lange für wertvolle Hinweise zu aktuellen organischen Problemstoffen. Ferner dankt der Autor Herrn Dr. Bernd Schneider für nützliche Hinweise und für die kritische Durchsicht der CD-ROM.

Die Zusammenstellung einer „wasserchemischen Foto-CD“ wäre nicht möglich gewesen ohne die dankenswerte Mithilfe zahlreicher Fachkollegen. Ihnen ist ein gesonderter Abschnitt auf der CD-ROM gewidmet.

Nicht zuletzt dankt der Autor dem Verlag WILEY-VCH für die gute und professionelle Zusammenarbeit.

Walter Kölle

1

Grundlagen

1.1 Maßeinheiten: Menge und Masse

Dieser Abschnitt enthält keine Systematik über Maßeinheiten. Dies ist auch nicht erforderlich. Viele Maßeinheiten sind dem Leser geläufig. Andere Einheiten, wie z. B. diejenigen, in denen die Trübung von Wässern angegeben wird, sind so speziell, dass sie im Textzusammenhang erläutert werden. Zwei Einheiten, die der Menge und der Masse, sind jedoch besonders wichtig. Ihre Kenntnis ist eine unverzichtbare Voraussetzung dafür, die Sprache des Chemikers zu verstehen. Diese beiden Einheiten müssen daher vorab diskutiert werden.

Die Maßeinheit für die Menge ist das Mol (mol) bzw. Millimol (mmol) und für die Masse das Gramm (g) bzw. Milligramm (mg). Einheiten, die davon abgeleitet werden, sind beispielsweise die Konzentrationen (z. B. mmol/l und mg/l). Was bedeuten in diesem Zusammenhang Menge und Masse?

Im täglichen Leben ist die Unterscheidung von Menge und Masse jedem geläufig: im Supermarkt kauft man Eier nach ihrer Menge (z. B. 10 Stück). Eier sind offenbar leichter zu zählen als zu wägen. Das Vorhaben, in einem Laden 100 Gramm Eier zu kaufen, erscheint uns daher absurd.

Mehl kauft man dagegen nach seiner Masse (z. B. 500 g). Beim Mehl gibt es (unter realistischen Bedingungen) keine sinnvoll zählbaren Portionen. Also wird Mehl gewogen. Der Vorsatz, in einem Laden 10 Stück Mehl zu kaufen, ist daher ebenfalls absurd.

Wenn das Mol ein Maß für die Menge eines Stoffes ist, muss entsprechend den bisherigen Ausführungen das Mol ein Zahlwort sein, ebenso wie das Dutzend oder die Million. Der Zahlenwert des Mol liegt bei 6,02 × 1023 (Loschmidt’sche Zahl). Es gilt die Übereinkunft, dass man die Bezeichnung „Mol“ nur für Atome, Ionen, Moleküle und Ladungen im atomaren bzw. molekularen Bereich anwendet.

Definitionsgrundlage für das Mol ist die relative Atommasse bzw. Molmasse (früher: „Atomgewicht“ und „Molekulargewicht“). Ein Mol einer Substanz hat eine Masse in Gramm, die der relativen Atommasse bzw. Molmasse dieser Substanz entspricht. Ursprünglich hat man dem Wasserstoffals dem leichtesten aller Elemente eine relative Atommasse von genau 1 zugeordnet. Die relative Atommasse von Sauerstoff lag bei 15,872 und die von Kohlenstoff bei 11,916. Später hat man aus Gründen der Zweckmäßigkeit den Sauerstoff mit einer relativen Atommasse von genau 16 als Bezugsgröße gewählt. Die heutigen relativen Atommassen basieren auf dem Kohlenstoffisotop 12C mit einer relativen Atommasse von genau 12. Jedes Mol einer Substanz enthält gleichviel Teilchen, nämlich 6,02 × 1023.

Die relative Atommasse der Elemente und die relativen Molmassen der Verbindungen können überall nachgelesen werden, wo Aussagen über Elemente und Verbindungen gemacht werden, also nicht nur in einschlägigen Nachschlagewerken, sondern auch in Chemikalienkatalogen und oft auch auf den Etiketten von Chemikalienbehältnissen.

Chemiker und Nicht-Chemiker haben eines gemeinsam: sie neigen dazu, in Massen und in Massenkonzentrationen (z. B. Gramm pro Liter) zu denken. Das hat einen einfachen Grund: Das wichtigste Bindeglied zwischen der Materie und dem Menschen ist die Waage. Massen und Massenkonzentrationen sind daher sehr viel anschaulicher als Mengen und molare Konzentrationen. Dass die Neigung zum Gebrauch von Masseneinheiten nicht immer sinnvoll ist, soll das folgende Beispiel zeigen:

„Wie viele kg Reifen (= x) passen auf 80 kg Felgen?“ Wenn man von einer relativen Reifenmasse von 1,5 und von einer relativen Felgenmasse von 0,8 ausgeht, resultiert: x = 1,5/0,8 × 80 = 150 kg. Auf 80 kg Felgen passen also 150 kg Reifen. Wie man leicht nachprüfen kann, lässt sich das Ergebnis auch folgendermaßen schreiben: „150/1,5 = 100 Stück Reifen passen auf 80/0,8 = 100 Stück Felgen“.

Anmerkung

Die relativen Reifenund Felgenmassen sind dimensionslos und entsprechen in der Chemie den relativen Atom - bzw. Molekülmassen. Die Mengeneinheit entspricht in der Chemie dem Mol. Die Stückzahl innerhalb einer Menge spielt, ebenso wie die Loschmidt’sche Zahl in der Chemie, keine besonders wichtige Rolle.

Das Beispiel zeigt, dass Substanzen, die miteinander wechselwirken, nur über die beteiligten Mengen sinnvoll beschrieben werden können. Dies gilt für Reifen und Felgen ebenso wie für chemische Substanzen. Weil aber die Masseneinheiten anschaulicher sind, ist das häufige Hin- und Her-Rechnen zwischen Massenund Mengeneinheiten in der Chemie, speziell in der Wasserchemie, an der Tagesordnung.

Die bisherigen Ausführungen haben deutlich gemacht, dass für den Chemiker und denjenigen, der ihn verstehen möchte, die molaren Einheiten unverzichtbar sind. Sie werden beispielsweise benötigt bei der Auswertung von Analysenergebnissen, bei der Beurteilung der Analysengenauigkeit, bei der Aufstellung von Reaktionsgleichungen und bei der Berechnung von Stoffumsätzen chemischer Reaktionen. Wenn unterschiedliche Wasserinhaltsstoffe (z. B. Calcium und Magnesium) zu einer übergeordneten Gruppe (z. B. „Wasserhärte“) zusammengefasst werden sollen, ist das nur in molaren Einheiten (z. B. „Summe Erdalkalien“ in mmol/l) sinnvoll möglich. Wichtig ist auch, dass der pH- Wert auf molarer Grundlage definiert ist. Molare Größen vom Typ „Kilomol pro Hektar“ (kmol/ha) sind daher auch Standard bei der Angabe von Umweltbelastungen durch Säuren, beispielsweise im Zusammenhang mit dem sauren Regen.

Natürlich haben auch Massen und Massenkonzentrationen als Einheiten eine Berechtigung. Bei manchen Wasserinhaltsstoffen sind molare Angaben nicht erforderlich, nicht sinnvoll und oft nicht einmal möglich. Der letztgenannte Fall gilt vor allem für Substanzen, die als Gruppe behandelt werden wie beispielsweise die „Kohlenwasserstoffe“ und die „oberflächenaktiven Stoffe“ und andere. Nicht erforderlich sind molare Angaben bei Stoffen, die im Trinkwasser schon im Spurenbereich unerwünscht sind und deren Konzentrationen üblicherweise nicht nur unterhalb der jeweiligen Grenzwerte, sondern meist auch unterhalb der analytischen Bestimmungsgrenzen liegen. Die Trinkwasserverordnung vom Mai 2001 und der Referentenentwurf vom 28.11.2008 zur Novelle der Trinkwasserverordnung verwenden nur Massenkonzentrationen (mg/l). In allen älteren Fassungen der Trinkwasserverordnung wurden Konzentrationen, soweit sinnvoll möglich, zweigleisig in Massen– und in molaren Konzentrationen angegeben.

Tabelle 12.1 im Tabellenanhang enthält diejenigen relativen Atom- bzw. Molekülmassen, die zur Auswertung und zum Verständnis von Wasseranalysen häufiger benötigt werden. In Abschnitt 1.3.6 „Reaktionsgleichungen“ wird gezeigt, wie mit molaren Einheiten umzugehen ist.

1.2 Dezimalvorsilben

Die Konzentrationen, die in der Wasserchemie benutzt werden, bewegen sich über einen Bereich von ca. 9 Dezimalstellen, in Einzelfällen auch mehr. Es gibt gute Gründe dafür, auch bei großen Konzentrationsunterschieden die Konzentrationseinheit beizubehalten (in der Regel die Einheit mg/l) und unterschiedliche Konzentrationsbereiche durch das Dezimalkomma auszudrücken. Beispielsweise schreibt die Trinkwasserverordnung vom Mai 2001 für polycyclische aromatische Kohlenwasserstoffe (PAK) einen Grenzwert von 0,0001 mg/l (entsprechend 0,1 μg/l) vor. Mit einer solchen Schreibweise vermeidet man Fehler, die beim Wechsel der Maßeinheit entstehen können. Solche Fehler waren in der Vergangenheit vor allem dadurch vorprogrammiert, dass das Zeichen μ zum Schreiben der Einheit Mikrogramm auf vielen Schreibmaschinen nicht verfügbar war und z.T. auf abenteuerliche Weise zu Papier gebracht wurde.

Dieser Gesichtspunkt spielt heute keine Rolle mehr, sodass der Autor die Schreibweise mit entsprechenden Dezimalvorsilben vorzieht. Auf diese Weise vermeidet man Fehler beim Abzählen der Kommastellen. Solche Fehler sind vorprogrammiert durch eine Redeweise, bei der aus Bequemlichkeit Wörter oder Silben ausgelassen werden. Das gesprochene „null null eins“ kann (je nach Art der Auslassung) bedeuten: 0,01 oder 0,001. Bequemlichkeiten dieser Art dürfen unter keinen Umständen akzeptiert werden.

Es bedeuten:

c01_image001.jpg

Einige dieser Vorsilben sind nur in speziellen Zusammenhängen gebräuchlich, z. B. bei der Angabe der Lichtwellenlänge in nm oder des jährlichen Strombedarfs einer Industriegesellschaft in Terawattstunden. Hohe Zahlenwerte bis in den 1012-Bereich werden bei der Angabe von Radioaktivitätswerten in Becquerel und sehr niedrige bis in den 10–12-Bereich bei der Angabe in Curie erreicht.

Die Dezimalvorsilbe Kilo ist in „Kilogramm“ gebräuchlich, im Zusammenhang mit molaren Einheiten dagegen ungewohnt. Mit der Einheit „Kilomol pro Flächenund Zeiteinheit“ (kmol × ha–1 × a–1) wird die Säurebelastung aus den sauren Niederschlägen pro Jahr (a) angegeben.

1.3 Reaktionstypen

Im Wasserfach ist es zweckmäßig, die folgenden Reaktionstypen zu unterscheiden:

1.3.1 Lösungsund Fällungsreaktionen

Hierbei handelt es sich um Reaktionen, die auf Unterschieden der Löslichkeit von Substanzen beruhen. Als Auslöser einer solchen Reaktion kommen beispielsweise in Betracht: Änderungen der Temperatur, des pH- Wertes oder der Konzentration sowie die Zumischung anderer Substanzen, die mit den bereits vorhandenen Substanzen reagieren. Bekannte Beispiele sind die Auflösung von Kalk durch Kohlenstoffdioxid und die Abscheidung von Kalk durch Erwärmen des Wassers, durch CO2-Ausgasung oder durch Erhöhen des pH- Wertes.

Die Sättigungskonzentration einer Substanz ist nicht so eindeutig definiert, wie man glauben könnte: Über einem feinkörnigen Bodenkörper entsteht eine höhere Sättigungskonzentration als über einem grobkörnigen Bodenkörper. Große Kristalle müssen daher auf Kosten kleinerer Kristalle wachsen. Außerdem können aus einer Lösung, die hinsichtlich größerer Kristalle übersättigt ist, keine Kristallisationskeime entstehen, solange für solche kleinen Kristallkeime die Lösung noch untersättigt ist. Daher kann, wenn kein „passender“ Bodenkörper vorhanden ist, eine Lösung lange Zeit in einem übersättigten Zustand verharren. Es darf also keineswegs überraschen, wenn man in der Natur übersättigte Wässer vorfindet.

Das Wasser zu Analysenbeispiel 12 ist im Hinblick auf Strontiumsulfat übersättigt. Dabei handelt es sich um einen Modellfall für ein übersättigtes Wasser, der in Abschnitt 4.1.3 diskutiert wird.

Ein weiteres Phänomen sei am Beispiel des Calciumphosphats erläutert: Aus einer wässrigen Lösung, die Calcium- und Phosphationen enthält, können drei verschiedene Verbindungen auskristallisieren: Calciumhydrogenphosphat (CaHPO4), Calciumphosphat (Ca3(PO4)2) und Hydroxylapatit (Ca5[OH|(PO4)3]). Jeder dieser Bodenkörper besitzt eine individuelle Sättigungskonzentration. In solchen Fällen ist es erforderlich, den Bodenkörper zu nennen, für den eine Aussage, z. B. zur Löslichkeit, gelten soll. Eine besonders niedrige Sättigungskonzentration hat der Hydroxylapatit. Damit Kristalle dieses Minerals entstehen können, muss ein Kristallgitter aufgebaut werden, das komplizierter ist als das von Calciumhydrogenphosphat. Dies könnte der Grund dafür sein, dass phosphathaltige Lösungen gegenüber Hydroxylapatit besonders stark zur Übersättigung neigen.

Zu beachten ist das Phänomen „unterschiedliche Bodenkörper“ auch für das Silicat und (zumindest theoretisch) für das Calciumcarbonat, das als Calcit und Aragonit auskristallisieren kann. Um allen Zweifeln vorzubeugen, wird im Zusammenhang mit der Calcitsättigung stets die genaue Mineralform, nämlich Calcit, genannt.

1.3.2 Reduktions- und Oxidationsreaktionen („Redoxreaktionen“)

Der Begriff „Redox-Reaktion“ drückt die Tatsache aus, dass an solchen Reaktionen zwei Reaktionspartner beteiligt sind, von denen einer reduziert und der andere oxidiert wird. Dies gilt auch für Reaktionen, an denen Sauerstoff beteiligt ist. Dieser wird bei Redoxreaktionen (z. B. bei der Oxidation von Eisen(II) zu Eisen(III)) üblicherweise zu OH reduziert.

Anmerkung

Bei manchen Redoxreaktionen werden Wasserstoffionen freigesetzt (beispielsweise bei Reaktion 4.2). Wenn die Wasserstoffionen mit festem Calciumcarbonat als Komponente des Grundwasserleiters reagieren, steigt die Konzentration von CO2 und von Hydrogencarbonat im Wasser an. Dadurch wird eine Reaktion vorgetäuscht, bei der organischer Kohlenstoff an den Redoxreaktionen teilnimmt und dabei oxidiert wird. Diese beiden möglichen Ursachen des Konzentrationsanstiegs von CO2 und von Hydrogencarbonat sind völlig unterschiedlich zu bewerten (KÖLLE, 1999). In der Vergangenheit sind mehrfach Fehlinterpretationen vorgekommen. Als Faustregel kann formuliert werden: Bei der Denitrifikation ist organischer Kohlenstoff mit einem Anteil von maximal ca. 2 Prozent beteiligt, bei der Desulfurikation mit einem Anteil von ca. 100 Prozent. Begründet wird diese Regel später, insbesondere in Abschnitt 6.

„Alle Energie-Umsätze bei Lebensprozessen beruhen auf Redoxreaktionen“. Diese Behauptung ist vor allem deswegen interessant, weil auch der Umkehrschluss zutrifft: „Alle Redoxreaktionen beruhen auf Energie-Umsätzen bei Lebensprozessen“. Allerdings gilt der Umkehrschluss nur für bestimmte Randbedingungen, nämlich für wässrige Lösungen, für kinetisch gehemmte Reaktionen und für Situationen, wie sie auch in der Natur auftreten können. Die Regel gilt also beispielsweise nicht für photochemische Prozesse in der Atmosphäre (weil sie nicht im Wasser ablaufen), nicht für die Oxidation von Eisen(II) durch Sauerstoff bei pH 9 (weil bei diesem pH- Wert die Reaktion auch ohne Mithilfe von Mikroorganismen extrem schnell abläuft) und nicht für Reaktionen mit freiem Chlor (weil dieses in der Natur nicht vorkommt).

Trotz dieser Einschränkungen hat es sich als sehr nützlich erwiesen, grundsätzlich hinter jeder Redoxreaktion einen Mikroorganismus zu vermuten, der diese Reaktion durchführt. Für den Chemiker handelt es sich dabei um einen (lebenden) Katalysator, den man vergiften kann oder dem man gestattet, unter optimalen Bedingungen zu arbeiten. Für die Trinkwasseraufbereitung hat dies eine sehr große Bedeutung, auch in wirtschaftlicher Hinsicht. Eine Vergiftung bedeutet z. B. das Spülen eines Filters mit gechlortem Wasser mit der Folge, dass die Nitrifikation und die Entmanganung zusammenbrechen.

Die optimale Arbeitsweise der Mikroorganismen beruht auf einem Rückkoppelungseffekt: Für Redoxreaktionen in einem Kiesfilter gilt, dass dort, wo sich die meisten Mikroorganismen angesiedelt haben, der Umsatz am höchsten ist und dort, wo der Umsatz am höchsten ist, sich die meisten Mikroorganismen ansiedeln können. Änderungen der Filtergeschwindigkeit verschieben die Lage der Arbeitszone in einem Filter und gefährden dadurch diesen Rückkoppelungseffekt. Aus diesem Grund muss angestrebt werden, die Filtergeschwindigkeit nach Möglichkeit konstant zu halten.

In der Mikrobiologie ist eine ökologische Nische im Wesentlichen durch die Anwesenheit von Redoxpartnern und die mit ihnen möglichen Redoxreaktionen definiert. Daneben spielen natürlich auch andere Faktoren wie die Temperatur, der pH- Wert, die Spurennährstoffe und der Stofftransport (bzw. die Fließbedingungen) eine Rolle. Die Redoxreaktionen, die ein Organismus zur Aufrechterhaltung seiner Lebensfunktionen nutzt, sind so wichtig und charakteristisch, dass sie oft namengebend benutzt werden. So bedeutet beispielsweise der Name des „Thiobacillus denitrificans“ in freier Übersetzung „Nitratreduzierender Schwefeloxidierer“.

1.3.2.1 Biofilme

Die meisten Mikroorganismen bevorzugen eine sesshafte Lebensweise und bilden Biofilme. Diese können als dünne, schleimige Überzüge auf Feststoffoberflächen, als massive Makrokolonien, als Flocken und als Schlämme in Erscheinung treten. Eine wesentliche Komponente von Biofilmen ist die schleim- oder gelartige Matrix, in die die Mikroorganismen eingebettet sind und die aus „extrazellulären polymeren Substanzen“ („EPS“) besteht.

Biofilme sind erstaunlich robust und können sich den örtlichen Umweltbedingungen optimal anpassen. In der Wasserversorgung bilden sich Biofilme an allen Stellen, an denen Redoxreaktionen ablaufen können: Brunnen, in denen Verockerungsoder Verschleimungsreaktionen ablaufen, Filterkorn von Enteisenungs- und Entmanganungsfiltern, mikrobielle Teilprozesse bei der Korrosion von Stahl und Gusseisen sowie Makrokolonien, die sich in Behältern und Leitungen bilden können, wenn Spuren von Nährstoffen aus tieferen Bereichen des Werkstoffs in Richtung Wasser diffundieren. Sehr detaillierte Erläuterungen zum Thema „Biofilme“ findet man bei FLEMMING et al. (2001 und 2002).

Für denjenigen, der sich mit Wasser beschäftigt, ist nicht nur die Tatsache wichtig, dass für den Ablauf von Redoxreaktionen in der Regel Mikroorganismen verantwortlich sind, sondern dass man es in Wirklichkeit mit Biofilmen zu tun hat. Mit Hilfe von Biofilmen können Mikroorganismen Effekte erzielen, die ganz unverfroren „gegen den gesunden Menschenverstand“ verstoßen.

Anmerkung

In einer Trinkwasserleitung aus Grauguss hatten sich Kristalle abgeschieden, die röntgendiffraktometrisch als Gips identifiziert wurden. Die Sulfatkonzentration des transportierten Wassers erreichte bestenfalls 20 Prozent des Wertes, der für die Abscheidung von Gips erforderlich gewesen wäre. In einem Gespräch mit Hans-Curt Flemming fiel in diesem Zusammenhang erstmals der Begriff „Biofilm“. Offenbar bildeten sich die Kristalle auf der Außenseite von Inkrustierungen, aber unterhalb eines einhüllenden Biofilms. Auf diese Weise konnte ein Konzentrationsgefälle aufrecht erhalten werden, das für die Abscheidung der Kristalle ausreichte. Da Biofilme zur Hauptsache aus Wasser bestehen, waren nach dem Trocknen der Inkrustierungen zwar die Gipskristalle, aber keine Hinweise mehr auf einen Biofilm erkennbar (s. Bild D im Verzeichnis „4.4.2.10 Sulfat und Schwefel“ auf der CD-ROM). In einem anderen Fall haben sulfatreduzierende Organismen zur Lochfraßkorrosion an der Wandung eines Stahlbehälters geführt. Bemerkenswert war in diesem Falle die Tatsache, dass es sich bei dem Behälter um einen Kalksättiger handelte. Der Biofilm hat sich offenbar im Kontakt mit Kalkwasser erfolgreich gegen den hier herrschenden pH- Wert von ca. 12,5 abgeschottet.

Besonders interessant ist die Tatsache, dass sich bei der Entmanganung offenbar zwei Biofilme bilden, die beide tiefschwarz sind: ein flockiges Produkt, das beim Rückspülen der Filter als Filterschlamm abgeführt wird und ein widerstandsfähiger Überzug auf dem Filterkorn, der zum „Kornwachstum“ beiträgt. Dieser Überzug besteht im Wesentlichen aus stark wasserhaltiger extrazellulärer polymerer Substanz und wenig Mangandioxid. Durch das Trocknen entsteht ein poröses, manganhaltiges Produkt mit einer Dichte von ca. 0,9 g/cm3, in dessen Zentrum das Quarzkorn des ursprünglichen Filtermaterials sitzt. Je dicker die Überzüge werden, desto widerstandfähiger werden sie gegenüber Oxidationsbzw. Desinfektionsmitteln. Sollte dennoch (z. B. nach Reparaturarbeiten) eine Desinfektion eines Entmanganungsfilters erforderlich werden, wird sie zweckmäßigerweise mit Kaliumpermanganat durchgeführt.

Ein weiterer Punkt, an dem Mikroorganismen als Biofilme in Erscheinung treten, ist die Denitrifikation durch Eisendisulfide (bzw. die Oxidation von Eisendisulfiden durch Nitrat) im Grundwasserleiter. Dieser Prozess läuft in zwei mikrobiell katalysierten Teilreaktionen ab, die in den Abschnitten 1.3.6 und 4.3.1 erläutert werden. Die Reaktion, bei der Schwefel oxidiert und Eisen(II) freigesetzt wird, verläuft in einem Biofilm, der auf Feststoffoberflächen des Eisendisulfids angewiesen ist. Bei der Folgereaktion des gelösten Eisen(II) mit Nitrat handelt es sich formal um eine Reaktion in der homogenen wässrigen Phase. Auch für diese Reaktion wird sich irgendwo (im Grundwasserleiter, in der Kiesschüttung bzw. in den Filterschlitzen eines Brunnens oder in der Rohwasserleitung) ein Biofilm mit eisenoxidierenden Organismen bilden. Die räumliche Entflechtung der beiden Biofilme führt dazu, dass die beiden Reaktionen auch in thermodynamischer Hinsicht entflochten sind. Es gibt also beispielsweise keine thermodynamisch begründeten Ausschlussregeln, mit denen sie sich gegenseitig beeinflussen könnten. Im Hinblick auf die Reaktionsgeschwindigkeiten sind sie allerdings voneinander abhängig. So kann der zweite Biofilm nicht mehr Eisen(II) oxidieren, als der erste Biofilm pro Zeiteinheit zur Verfügung stellt.

Bilder und weitere Information zum Thema „Entmanganung im Filter“ findet der Leser auf der CD im Abschnitt „4.3.2.10 Auswahl 1, Entmanganung im Filter“. Eisensulfide und Verockerungsprodukte werden auf der CD-ROM in Abschnitt „4.3.1.10 Auswahl 1, Pyrit, Denitrifikation, Verockerung“ gezeigt.

1.3.3 Ionenaustauschreaktionen

Bei diesen Reaktionen wird ein Ion gegen ein anderes Ion ausgetauscht. In der Natur können Fälle auftreten, in denen das Wasser sein gesamtes Inventar an zweiwertigen Kationen (Calcium und Magnesium) an Tonminerale abgibt und im Austausch dafür Natriumionen erhält (Analysenbeispiel 17). Sehr häufig beobachtet man Ionenaustauschreaktionen im Zusammenhang mit der Kalidüngung (Analysenbeispiele 2, 3 und andere). Kaliumionen werden an den Tonmineralen des Bodens festgehalten und üblicherweise gegen Calciumionen ausgetauscht. Geringe Ionenaustauschkapazitäten besitzen sehr viele Komponenten von Grundwasserleitern (MATTHESS, 1990).

In der öffentlichen Trinkwasserversorgung werden Ionenaustauscher nur selten eingesetzt, hauptsächlich zur Enthärtung, zur Entcarbonisierung und zur Elimination von Huminstoffen (BOHNSACK et al., 1989). Auch für den Privathaushalt werden Enthärtungsanlagen auf Ionenaustauscherbasis angeboten. Im kleineren Maßstab sitzt eine solche Anlage in jeder Geschirrspülmaschine.

1.3.4 Neutralisationsreaktionen

Bei der chemischen Synthese von Wasser wird sehr viel Energie frei. Man erkennt das bei der Explosion eines Gemischs von Wasserstoff und Sauerstoff („Knallgas“), beim Betrieb einer Knallgasflamme und bei der Neutralisation von Säure und Lauge. Die Neutralisationsreaktion entspricht einer Synthese von Wasser aus Wasserstoffionen und Hydroxidionen nach der Reaktionsgleichung:

(1.1) c01_image002.jpg

Die frei werdende Energie führt zu einer Erwärmung der Lösung. Die sonstigen Ionen, die im Wasser enthalten sind (das Kation der Lauge und das Anion der Säure), nehmen am Neutralisationsvorgang nicht teil. Die entstehende Lösung entspricht einer Salzlösung. Beispielsweise entsteht bei der Neutralisation von Natronlauge mit Salzsäure eine Kochsalzlösung (Siehe auch Abschnitt 3.3 „pH- Wert …“).

1.3.5 Sortionsreaktionen

Eine klassische Sorptionsreaktion im Grundwasserleiter ist die Sorption von Chlorkohlenwasserstoffen durch partikuläre organische Substanzen („Braunkohle“, „fossiles Holz“), die in reduzierenden Grundwasserleitern vorhanden sein können (CORNEL, 1983). Zu den klassischen Sorptionsreaktionen ist auch die Elimination organischer Substanzen in der Trinkwasseraufbereitung durch Aktivkohle zu rechnen.

Große Bedeutung haben Effekte, die man üblicherweise gar nicht bewusst wahrnimmt. Beispielsweise ist das Mangan(IV)-oxid, das sich bei der Entmanganung bildet, hilfreich, wenn es außer Mangan(II) auch andere Schwermetallionen, z. B. Nickel(II) festhält. Mangan(IV)-oxid, das sich in Wasserverteilungssystemen bildet, ist dagegen gefährlich, weil es organische Substanzen adsorbiert, die Anlass für Bakterienwachstum sein können. Eisen(III)-oxidhydrat ist ein schwaches Sorbens für Ammonium. Es ist davon auszugehen, dass die Sorption schneller verläuft als die Oxidation (Nitrifikation) und dadurch die Elimination des Ammoniums bei der Wasseraufbereitung unterstützt. Wichtig ist dieser Effekt deshalb, weil bei Gegenwart von Ammonium die Entmanganung gehemmt ist.

Sehr große Umsätze sind für Ionensorptionsreaktionen anzunehmen. Solche Reaktionen scheinen an verwitternde Silicate gebunden zu sein. Zu ihrer Erklärung kann eine Hypothese herangezogen werden, die auf den Ausführungen von SCHEFFER/SCHACHTSCHABEL (1998) im Abschnitt „Bildung und Umbildung der Tonminerale“ beruht. Danach geben Silicate (z. B. Feldspäte, Glimmer...) bei der Verwitterung Natrium-, Kalium-, Magnesiumund Calciumionen an das Wasser ab. Unter bestimmten Bedingungen können diese Reaktionen auch rückwärts ablaufen, und zwar in dem Sinne, dass die entstandenen Zwischenprodukte die genannten Ionen wieder aufnehmen und erneut in die feste Matrix einbauen. Dieser Einbau kann nicht im Sinne des klassischen Ionenaustauschs erfolgen, da die Matrix keine austauschbaren Ionen mehr enthält. Zur Wahrung der Elektroneutralität müssen daher auch Anionen aus dem Anioneninventar des Wassers an die feste Matrix gebunden werden. Auf diese Weise kann beispielsweise auch Nitrat im Untergrund gespeichert werden. Bei dieser rückwärts ablaufenden Verwitterung entstehen allerdings nicht wieder die Ausgangsstoffe, sondern Tonminerale (z. B. Smectit, Vermiculit …).

Wenn die Verwitterungsreaktionen bis zu ihrem Ende ablaufen, entstehen Endprodukte (Aluminiumsilicate sowie Oxide und Hydroxide des Aluminiums und Eisens), die im Hinblick auf Ionensorptionsreaktionen weitgehend „tot“ sind.

Die Tatsache, dass über diese Reaktionen nur geringe Kenntnisse verfügbar sind, ist wahrscheinlich auf die folgenden Probleme zurückzuführen: Die Zwischenprodukte der Silicatverwitterung, die zu Ionensorptionsreaktionen fähig sind, haben sich bisher der analytischen Aufklärung entzogen. Es existieren daher auch keine Kalibriermöglichkeiten oder Testsubstanzen, mit deren Hilfe man Analysenmethoden entwickeln könnte. Es gibt daher auch keine verlässlichen Analysenmethoden. Allerdings sind schon Untersuchungen durchgeführt worden, bei denen Ionensorptionsvorgänge unmittelbar beobachtet werden konnten. Auch ein Vergleich unterschiedlicher Sedimentproben im Hinblick auf ihr Verhalten bei Ionensorptionsprozessen ist möglich (KÖLLE, 1996 und 1999).

Für Wässer, die durch Ionensorptionsprozesse geprägt sind, können keine einfachen Erkennungsmerkmale angegeben werden. Ihr wichtigstes Erkennungsmerkmal ist die Tatsache, dass sie sich jedem Versuch einer klassischen stofflichen Bilanzierung (Einbeziehung der Stoffanlieferung aus den Niederschlägen und dem Boden, Berücksichtigung klassischer Redoxreaktionen und Ionenaustauschprozesse sowie Annahme eines plausiblen Alters des Wassers) widersetzen. Bilder zu den Themen „Tonminerale“ sowie Angaben zur Ionensorption findet der Leser auf der CD im Verzeichnis „1.3.5 Tonminerale, Ionensorption“.

1.3.6 Reaktionsgleichungen

Die Anmerkungen zum Thema „Reaktionsgleichungen“ seien auf die folgenden Hinweise beschränkt: Reaktionsgleichungen folgen den gleichen logischen Gesetzmäßigkeiten wie mathematische Gleichungen. Der Reaktionspfeil bzw. der Doppelpfeil hat dabei die gleiche Funktion wie das Gleichheitszeichen in der Mathematik. Zur Verdeutlichung dieses Sachverhalts sind im Folgenden zwei Reaktionen als Beispiele aufgeführt. Sie beschreiben die erste und die zweite Stufe der Denitrifikation durch Eisendisulfide („Pyrit“) im Grundwasserleiter (siehe auch: Abschnitt 4.3.1). Man vergewissere sich, dass rechts und links des Reaktionspfeils von jedem Element gleich viele Atome vorhanden sind und dass sich auch die Ionen-Ladungen auf beiden Seiten der Gleichung entsprechen. Es ist erlaubt, Gleichungen zu addieren. Hierbei müssen Komponenten links des Pfeils und solche rechts des Pfeils jeweils ihre Seite beibehalten.

(1.2) c01_image003.jpg

(1.3) c01_image003.jpg

Als Summe beider Gleichungen resultiert eine Gleichung für den Gesamtumsatz beider Reaktionen. Auf diese Gleichung können alle mathematisch erlaubten Additions-, Subtraktions- und Kürzungsregeln angewandt werden. Wenn auf einer Seite der Gleichung Ionen auftauchen, die miteinander reagieren, so wird diese Reaktion innerhalb der Formel vollzogen, beispielsweise werden H+- und OH-Ionen zu H2O-Molekülen vereinigt.