Asymmetric Metal Catalysis in Enantioselective Domino Reactions, First by Hélène Pellissier

Asymmetric Metal Catalysis in Enantioselective Domino Reactions

Hélène Pellissier

Wiley Logo

Preface

The importance of chiral molecules in medicine has made asymmetric catalysis the most challenging field of modern organic chemistry [1]. Indeed, the use of chiral drugs in an enantiopure form is now a standard requirement for virtually every new chemical entity, and the development of new synthetic methods to obtain enantiopure compounds has become a key goal for pharmaceutical companies. Asymmetric synthesis constitutes one of the main strategies to achieve chiral compounds. Especially, asymmetric metal catalysis has been the subject of intense research in the past few decades to become a powerful tool to perform highly enantioselective transformations [2].

Another challenging goal in synthetic chemistry is the discovery of efficient routes for single‐step elaboration of relevant products from simple and readily available building blocks. This has become possible with the development of domino reactions [3]. The concept of domino reaction was introduced by Tietze in 1993 as a reaction that involves two or more bond‐forming transformations, taking place under the same reaction conditions, without adding additional reagents and catalysts, and in which the subsequent reactions result as a consequence of the functionality formed by bond formation or fragmentation in the previous step [4]. Ever since, an explosive number of these fascinating one‐pot reactions have been developed, allowing easily building complex chiral molecular architectures from simple materials to be achieved in one step, with economic advantages, such as avoiding costly protecting groups and time‐consuming purification procedures after each step. The more steps a domino reaction includes the greater is the probability to convert simple substrates into complex products. In addition to being economic, another advantage of these one‐pot reactions deals with the benefit on the environment and natural resources, since they allow reducing the waste produced compared to normal multistep procedures and minimize the amount of chemicals required for the preparation of products. Moreover, most of domino processes provide high stereocontrol and good yields. Actually, the immense development of enantioselective metal‐catalyzed domino reactions is a consequence of the considerable impact of the advent of asymmetric transition‐metal catalysis. The wide variety of asymmetric domino processes well reflects that of the metal employed to promote them. Among metals, the use of metals of high abundance, low cost, and toxicity, such as copper, cobalt, iron, magnesium, nickel, titanium, zinc, or zirconium, is in line with the new concept of green chemistry.

This book collects the major progress in the field of enantioselective one‐, two‐, and multicomponent domino reactions promoted by chiral metal catalysts, covering the literature since the beginning of 2006. It illustrates how enantioselective metal‐catalyzed processes constitute outstanding tools for the development of a wide variety of fascinating one‐pot asymmetric domino reactions, allowing a number of complex important products to be easily generated from simple materials in a single step. It strictly follows the definition of domino reactions by Tietze as single‐, two‐, as well as multicomponent transformations, excluding reactions in which the addition of the components is carried out sequentially or those requiring adjustment of the reaction conditions throughout the process.

The book is divided into twelve chapters, dealing successively with enantioselective copper‐, palladium‐, rhodium‐, scandium‐, silver‐, nickel‐, gold‐, magnesium‐, cobalt‐, zinc‐, yttrium and ytterbium‐, and other metal‐catalyzed domino reactions. Most of the chapters are divided into two parts dealing successively with one‐ and two‐component domino reactions, and three‐component processes. Each part is subdivided according to the nature of domino reactions. Each chapter of the book includes selected applications of synthetic methodologies to prepare natural and biologically active products.

The author hopes that this book will provide an insight into the present stage of asymmetric domino reactions promoted by chiral metal catalysts and stimulate the design of novel asymmetric domino reactions and their use in the synthesis of natural products, pharmaceuticals, agrochemicals, and materials not only in academic institutions but also in industry.

References

  1. 1 (a) Nogradi, M. (1995). Stereoselective Synthesis. Weinheim: Wiley‐VCH.(b) Jacobsen, E.N., Pfaltz, A., and Yamamoto, H. (1999). Comprehensive Asymmetric Catalysis. Berlin: Springer.
  2. 2 (a) Noyori, R. (1994). Asymmetric Catalysts in Organic Synthesis. New York: Wiley‐VCH.(b) Beller, M. and Bolm, C. (1998). Transition Metals for Organic Synthesis, Vols I and II. Weinheim: Wiley‐VCH.(c) Ojima, I. (2000). Catalytic Asymmetric Synthesis, 2e. New York: Wiley‐VCH.(d) Poli, G., Giambastiani, G., and Heumann, A. (2000). Tetrahedron 56: 5959–5989.(e) Negishi, E. (2002). Handbook of Organopalladium Chemistry for Organic Synthesis, vol. 2, 1689–1705. Hoboken, NJ: Wiley.(f) de Meijere, A., von Zezschwitz, P., Nüske, H., and Stulgies, B. (2002). J. Organomet. Chem. 653: 129–140.(g) Beller, M. and Bolm, C. (2004). Metals for Organic Synthesis, 2e. Weinheim: Wiley‐VCH.(h) Tietze, L.F., Hiriyakkanavar, I., and Bell, H.P. (2004). Chem. Rev. 104: 3453–3516.(i) Ramon, D.J. and Yus, M. (2006). Chem. Rev. 106: 2126–2208.(j) Pellissier, H. and Clavier, H. (2014). Chem. Rev. 114: 2775–2823.(k) Pellissier, H. (2015). Coord. Chem. Rev. 284: 93–110.(l) Pellissier, H. (2016). Coord. Chem. Rev. 313: 1–37.
  3. 3 (a) Posner, G.H. (1986). Chem. Rev. 86: 831–844.(b) Ho, T.‐L. (1992). Tandem Organic Reactions. New York: Wiley.(c) Waldmann, H. (1992). Nachr. Chem. Tech. Lab. 40: 1133–1140.(d) Fukumoto, K. (1994). Synth. Org. Chem. Jpn. 52: 2–18.(e) Bunce, R.A. (1995). Tetrahedron 51: 13103–13159.(f) Parsons, P.J., Penkett, C.S., and Shell, A.J. (1996). Chem. Rev. 96: 195–206.(g) Balaure, P.C.F. and Filip, P.I.A. (2002). Rev. Roum. Chim. 46 (8): 809–833.(h) Capdevila, E., Rayo, J., Carrion, F. et al. (2003). Afinidad 506: 317–337.(i) Hulme, C. and Gore, V. (2003). Curr. Med. Chem. 10: 51–80.(j) Tietze, L.F. and Rackelmann, N. (2004). Pure Appl. Chem. 76: 1967–1983.(k) Dalko, P.I. and Moisan, L. (2004). Angew. Chem. Int. Ed. 43: 5138–5175.(l) Ramon, D.J. and Yus, M. (2005). Angew. Chem. Int. Ed. 44: 1602–1634.(m) Zhu, J. and Bienaymé, H. (2005). Multicomponent Reactions. Weinheim: Wiley‐VCH.(n) Pellissier, H. (2006). Tetrahedron 62: 2143–2173.(o) Pellissier, H. (2006). Tetrahedron 62: 1619–1665.(p) Enders, D., Grondal, C., and Hüttl, M.R.M. (2007). Angew. Chem. Int. Ed. 46: 1570–1581.(q) Guillena, G., Ramon, D.J., and Yus, M. (2007). Tetrahedron Asymmetry 18: 693–700.(r) D'Souza, D.M. and Müller, T.J.J. (2007). Chem. Soc. Rev. 36: 1095–1108.(s) Chapman, C.J. and Frost, C.G. (2007). Synthesis 1–21.(t) Padwa, A. and Bur, S.K. (2007). Tetrahedron 63: 5341–5378.(u) Alba, A.‐N., Companyo, X., Viciano, M., and Rios, R. (2009). Curr. Org. Chem. 13: 1432–1474.(v) Nicolaou, K.C. and Chen, J.S. (2009). Chem. Soc. Rev. 38: 2993–3009.(w) Touré, B.B. and Hall, D.G. (2009). Chem. Rev. 109: 4439–4486.(x) Grondal, C., Jeanty, M., and Enders, D. (2010). Nat. Chem. 2: 167–178.(y) Biggs‐Houck, J.E., Younai, A., and Shaw, J.T. (2010). Curr. Opin. Chem. Biol. 14: 371–382.(z) Ruiz, M., Lopez‐Alvarado, P., Giorgi, G., and Menéndez, J.C. (2011). Chem. Soc. Rev. 40: 3445–3454.(aa) Albrecht, L., Jiang, H., and Jorgensen, K.A. (2011). Angew. Chem. Int. Ed. 50: 8492–8509.(ab) Pellissier, H. (2012). Adv. Synth. Catal. 354: 237–294.(ac) De Graaff, C., Ruijter, E., and Orru, R.V.A. (2012). Chem. Soc. Rev. 41: 3969–4009.(ad) Clavier, H. and Pellissier, H. (2012). Adv. Synth. Catal. 354: 3347–3403.(ae) Pellissier, H. (2013). Chem. Rev. 113: 442–524.(af) Pellissier, H. (2013). Asymmetric Domino Reactions. Cambridge: Royal Society of Chemistry.(ag) Pellissier, H. (2016). Curr. Org. Chem. 20: 234–265.(ah) Snyder, S.A. (2016). Science of Synthesis. Applications of Domino Transformations in Organic Synthesis, Vols 1–Vols 2. Stuttgart: Thieme Verlag.(ai) Pellissier, H. (2016). Adv. Synth. Catal. 358: 2194–2259.(aj) Evans, C.S. and Davis, L.O. (2018). Molecules 23: 33/1–33/13.(ak) Chauhan, P., Mahajan, S., and Enders, D. (2017). Acc. Chem. Res. 50: 2809–2821.(al) Chanda, T. and Zhao, J.C.‐G. (2018). Adv. Synth. Catal. 360: 2–79.
  4. 4 (a) Tietze, L.F. and Beifuss, U. (1993). Angew. Chem. Int. Ed. Engl. 32: 131–163.(b) Tietze, L.F. (1996). Chem. Rev. 96: 115–136.(c) Tietze, L.F., Brasche, G., and Gericke, K. (2006). Domino Reactions in Organic Synthesis. Weinheim: Wiley‐VCH.(d) Tietze, L.F. (2014). Domino Reactions ‐ Concepts for Efficient Organic Synthesis. Weinheim: Wiley‐VCH.

List of Abbreviations

acac
acetylacetonate
Ad
1‐adamantyl
AMP
adenosine monophosphate
AQN
anthraquinone
Ar
aryl
BArF
tetrakis[3,5‐bis(trifluoromethyl)phenyl]borate
BBN
9‐borabicyclo[3.3.1]nonane
bdpp
2,4‐bis(diphenylphosphino)pentane
BINAP
2,2′‐bis(diphenylphosphino)‐1,1′‐binaphthyl
BINAP(O)
2‐diphenylphosphino‐2′‐diphenylphosphinyl‐1,1′‐binaphthalene
BINEPINE
phenylbinaphthophosphepine
BINIM
binapthyldiimine
BINOL
1,1′‐bi‐2‐naphthol
BIPHEP
2,2′‐bis(diphenylphosphino)‐1,1′‐biphenyl
Bipy
bipyridine
Bn
benzyl
Boc
tert‐butoxycarbonyl
bod
bicyclo[2.2.2]octane‐2,5‐diene
Box
bisoxazoline
BOXAX
2,2′‐bis(oxazolyl)‐1,1′‐binaphthyl
bpe
1,2‐bis(2‐pyridyl)ethane
BPTV
N‐benzene‐fused phthaloyl‐valine
Bs
p‐bromobenzenesulfonyl (brosyl)
Bu
butyl
Bz
benzoyl
Cat
catechol
Cbz
benzyloxycarbonyl
Chiraphos
2,3‐bis(diphenylphosphine)butane
CMOF
chiral mixed metal‐organic framework
cod
cyclooctadiene
coe
cyclooctene
Cp
cyclopentadienyl
CPME
cyclopentyl methyl ether
Cy
cyclohexyl
DABCO
1,4‐diazabicyclo[2.2.2]octane
dba
(E,E)‐dibenzylideneacetone
DBDMH
1,3‐dibromo‐5,5‐dimethylhydantoin
DBU
1,8‐diazabicyclo[5.4.0]undec‐7‐ene
DCE
dichloroethane
DDQ
2,3‐dichloro‐5,6‐dicyano‐p‐benzoquinone
de
diastereomeric excess
Dec
decyl
DET
diethyl tartrate
DFT
density functional theory
DHQ
hydroquinine
DHQD
dihydroquinidine
DIBAL‐H
diisobutylaluminum hydride
DIFLUORPHOS
5,5′‐bis(diphenylphosphino)‐2,2,2′,2′‐tetrafluoro‐4,4′‐bi‐1,3‐benzodioxole
DIOP
(2,3‐O‐isopropylidene‐2,3‐dihydroxy‐1,4‐bis(diphenylphosphino)butane)
DIPEA
diisopropylethylamine
DMA
dimethylacetamide
DMDO
dimethyl dioxirane
DME
1,2‐dimethoxyethane
DMF
N,N‐dimethylformamide
DMSO
dimethylsulfoxide
DOSP
Np‐dodecylbenzenesulfonylprolinate
DPEN
1,2‐diphenylethylenediamine
DPP
N‐diphenylphosphinoyl
dtb
ditertbutyl
DTBM
ditertbutylmethoxy
E
electrophile
ee
enantiomeric excess
EPR
electron paramagnetic resonance
Et
ethyl
EWG
electron‐withdrawing group
FBIP
ferrocene bis‐imidazoline bis‐palladacycle
Fc
ferrocenyl
Fesulphos
1‐phosphino‐2‐sulfenylferrocene
FOXAP
ferrocenyloxazolinylphosphine
GABA
gamma aminobutyric acid
Hept
heptyl
Hex
hexyl
HFIP
hexafluoroisopropyl
HFIPA
hexafluoroisopropanol alcohol
HMPA
hexamethylphosphoramide
i‐Pr‐DuPhos
1,2‐Bis(2,5‐diisopropylphospholano)benzene
JohnPhos
(2‐biphenyl)di‐tert‐butylphosphine
Josiphos
1‐[2‐(diphenylphosphino)ferrocenyl]ethyldicyclohexylphosphine ethanol adduct
L
ligand
LDA
lithium diisopropylamide
Mandyphos
1,1′‐bis[(dimethylamino)benzyl]‐2,2′‐bis(diphenylphosphino)ferrocene
MCPBA
3‐chloroperoxybenzoic acid
Me
methyl
Me‐DuPhos
1,2‐Bis(2,5‐dimethylphospholano)benzene
MEDAM
bis(dimethylanisyl)methyl
MOM
methoxymethyl
Naph
naphthyl
NBS
N‐bromosuccinimide
NHC
N‐heterocyclic carbene
NIS
N‐iodosuccinimide
NMI
N‐methylimidazole
Ms
mesyl
MS
molecular sieves
MTBE
methyl tert‐butyl ether
MWI
microwave irradiation
Naph
naphthyl
Norphos
2,3‐bis(diphenylphosphino)‐bicyclo[2.2.1]hept‐5‐ene
Ns
nosyl (4‐nitrobenzene sulfonyl)
Nu
nucleophile
Oct
octyl
Pent
pentyl
PG
protecting group
Ph
phenyl
PHAL
1,4‐phthalazinediyl
Phos
phosphinyl
Phox
phosphinooxazoline
Phth
phthalimido
Pin
pinacolato
PINAP
4‐[2‐(diphenylphosphino)‐1‐naphthalenyl]‐N‐[1‐phenylethyl]‐1‐phthalazinamine
Piv
pivaloyl
PMB
p‐methoxybenzyl
PMP
1,2,2,6,6‐pentamethylpiperidine
Pr
propyl
PTAD
4‐phenyl‐1,2,4‐triazoline‐3,5‐dione
Py
pyridyl
Pybox
2,6‐bis(2‐oxazolyl)pyridine
QN
quinoleine
QUINAP
1‐(2‐diphenylphosphino‐1‐naphthyl)isoquinoline
QUINOX
(quinolin‐2‐yl)‐oxazoline
QUOX
quinoline‐oxazoline
rs
regioselectivity ratio
r.t.
room temperature
SDS
sodium dodecyl sulfate
Segphos
5,5′‐Bis(diphenylphosphino)‐4,4′‐bi‐1,3‐benzodioxole
SES
β‐trimethylsilylethanesulfonyl
Solphos
7,7′‐bis(diphenylphosphino)‐3,3′,4,4′‐tetrahydro‐4,4′‐dimethyl‐8,8′‐bis‐2H‐1,4‐benzoxazine
SPRIX
spiro bis(isoxazoline)
Synphos
6,6′‐bis(diphenylphosphino)‐2,2′,3,3′‐tetrahydro‐5,5′‐bi‐1,4‐benzodioxin
TANGPHOS
1,1′‐Di‐tert‐butyl‐(2,2′)‐diphospholane
Taniaphos
[2‐diphenylphosphinoferrocenyl](N,N‐dimethylamino)(2‐diphenylphosphinophenyl)methane
TBD
1,5,7‐triazabicyclo[4.4.0]dec‐5‐ene
TBDPS
tert‐butyldiphenylsilyl
TBS
tert‐butyldimethylsilyl
TC
thiophene carboxylate
TCPTTL
N‐tetrachlorophthaloyl‐tert‐leucinate
TEA
triethylamine
Tf
trifluoromethanesulfonyl
TFA
trifluoroacetic acid
TF‐Biphamphos
N 2‐(Diphenylphosphino)‐4,4′,6,6′‐tetrakis(trifluoromethyl)‐[1,1′‐biphenyl]‐2,2′‐diamine
TFE
2,2,2‐trifluoroethanol
THF
tetrahydrofuran
TIPS
triisopropylsilyl
TMG
1,1,3,3‐tetramethylguanidine
TMS
trimethylsilyl
Tol
tolyl
Ts
4‐toluenesulfonyl (tosyl)
C 3‐Tunephos
1,13‐Bis(diphenylphosphino)‐7,8‐dihydro‐6H‐dibenzo[f,h][1,5]dioxonin
VANOL
3,3′‐diphenyl‐2,2′‐bi‐1‐naphthol
VAPOL
2,2′‐diphenyl‐[3,3′‐biphenanthrene]‐4,4′‐diol
Walphos
1‐{2‐[2′‐(diphenylphosphino)phenyl]ferrocenyl}ethyldi[3,5‐bis(trifluoromethyl)phenyl]phosphine
Xyl
3,5‐dimethylphenyl

About the Author

Hélène Pellissier is currently researcher at the National Center for Scientific Research (CNRS) at Aix‐Marseille Université (France). She carried out her PhD under the supervision of Dr. G. Gil in Marseille in 1987. After a postdoctoral period in Professor K.P.C. Vollhardt's group at the University of California, Berkeley, she joined the group of Professor M. Santelli in Marseille in 1992, where she developed novel very short total syntheses of unnatural steroids starting from 1,3‐butadiene and benzocyclobutenes. She is the author of 120 papers including reviews in international journals, 10 books, and 10 book chapters.

flast