Cover Page

Nanobiomaterials

Classification, Fabrication and Biomedical Applications

 

Edited by XiuMei Wang, Murugan Ramalingam,
Xiangdong Kong, and Lingyun Zhao

 

 

 

 

 

Wiley Logo

 

 

 

 

 

 

 

 

Preface

Over the past decade, the integration of advances in materials and life sciences with cutting-edge nanotechnologies has driven biomaterials science into the “nano era.” A new term, nanobiomaterials which describes biomaterials with the constituent or surface feature sized between 1 and 100 nm, but usually 1–100 nm in at least one dimension, has emerged and caused great attention, either in research or industry. Because of their unique nano effects and characteristics, nanobiomaterials possess extraordinarily unique structures and properties. Therefore, nanobiomaterials have blossomed into one of the most important branches in biomaterials, which show great promise in biomedical applications, such as regenerative medicine, cancer therapy, molecular imaging and theranostics, diagnostics, and drug delivery. In the next decade, the applications of nanobiomaterials in the biomedical area will definitely get major breakthroughs and even create more fantastic modern medical techniques.

This book, Nanobiomaterials: Classification, Fabrication, and Biomedical Applications, aims to address state-of-the-art research progresses in the field of nanobiomaterials. The main topics include nanotechnologies for nanobiomaterials fabrication, developments in biomedical applications, and the challenges of biosafety in clinical applications. The book defines the scope and classification of the field of nanobiomaterials and compiles a broad spectrum from fundamental principles to current technological advances, from materials synthesis to biomedical applications along with future prospects.

The book consists of a collection of invited chapters contributed by leading researchers around the world. Chapter 1 firstly defines the scope of nanobiomaterials and reviews the current status and future perspectives. Then, multiple classes of nanobiomaterials are presented. Next, five typical nanotechnology-based approaches exemplify the methods and ideas in biomaterials fabrications. More than that, the book provides a detailed overview of the biomedical applications of nanobiomaterials ranging from tissue regeneration to molecular diagnosis, imaging, and therapy. Finally, it also highlights the biosafety issues associated with nanobiomaterials, including the biocompatibility and regulation for clinical translation.

Currently, the field of nanobiomaterials is in a rapidly developing period with fast-moving changes every day. The development of novel nanobiomaterials depends on the advanced nanotechnologies and biotechnologies, and vice versa. The strategies for designing and synthesizing nanobiomaterials introduced in this book are not only suitable for biomedical applications but also for other applications such as microelectron, new energy, and environment science. Therefore, the main target audiences are researchers and other professionals working in the fields of, but not limited to, materials science and engineering, biomaterials, life sciences, biomedical devices, medicine, and nano-science. And, the book might be useful for graduate students who could also be our audience.

Beijing, November 2016

Xiumei Wang
Murugan Ramalingam
Lingyun Zhao
Xiangdong Kong

Part I
Introduction