Details

Printable Solar Cells


Printable Solar Cells


Advances in Hydrogen Production and Storage (AHPS) 1. Aufl.

von: Nurdan Demirci Sankir, Mehmet Sankir

215,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 25.04.2017
ISBN/EAN: 9781119283744
Sprache: englisch
Anzahl Seiten: 576

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Printable Solar Cells <p><b>The book brings together the recent advances, new and cutting edge materials from solution process and manufacturing techniques that are the key to making photovoltaic devices more efficient and inexpensive.</b> <p><i>Printable Solar Cells</i> provides an overall view of the new and highly promising materials and thin film deposition techniques for printable solar cell applications. The book is organized in four parts. Organic and inorganic hybrid materials and solar cell manufacturing techniques are covered in Part I. Part II is devoted to organic materials and processing technologies like spray coating. This part also demonstrates the key features of the interface engineering for the printable organic solar cells. The main focus of Part III is the perovskite solar cells, which is a new and promising family of the photovoltaic applications. Finally, inorganic materials and solution based thin film formation methods using these materials for printable solar cell application is discussed in Part IV. <p><b>Audience</b> <p>The book will be of interest to a multidisciplinary group of fields, in industry and academia, including physics, chemistry, materials science, biochemical engineering, optoelectronic information, photovoltaic and renewable energy engineering, electrical engineering, mechanical and manufacturing engineering.
<p>Preface xv</p> <p><b>Part I Hybrid Materials and Process Technologies for Printable Solar Cells</b></p> <p><b>1 Organic and Inorganic Hybrid Solar Cells 3<br /> </b><i>Serap Güneş and Niyazi Serdar Sariciftci</i></p> <p>1.1 Introduction 4</p> <p>1.2 Organic/Inorganic Hybrid Solar Cells 5</p> <p>1.2.1 Introduction to Hybrid Solar Cells 5</p> <p>1.2.2 Hybrid Solar Cells 5</p> <p>1.2.2.1 Operational Principles of Bulk</p> <p>Heterojunction Hybrid Solar Cells 5</p> <p>1.2.2.2 Bulk Heterojunction Hybrid Solar Cells 8</p> <p>1.2.2.3 Bilayer Heterojunction Hybrid Solar Cells 12</p> <p>1.2.2.4 Inverted-Type Hybrid Bulk Heterojunction Solar Cells 15</p> <p>1.2.2.5 Dye-Sensitized Solar Cells 16</p> <p>1.2.2.6 Perovskite Solar Cells 21</p> <p>1.3 Conclusion  23</p> <p>References 25</p> <p><b>2 Solution Processing and Thin Film Formation of Hybrid Semiconductors for Energy Applications 37<br /> </b><i>J. Ciro, J.F. Montoya, R. Betancur and F. Jaramillo</i></p> <p>2.1 Physical Chemical Principles of Film Formation by Solution Processes: From Suspensions of Nanoparticles and Solutions to Nucleation, Growth, Coarsening and Microstructural Evolution of Films 38</p> <p>2.2 Solution-Processing Techniques for Thin Film Deposition 40</p> <p>2.2.1 Spin Coating 42</p> <p>2.2.2 Doctor Blade 43</p> <p>2.2.3 Slot-Die Coating 44</p> <p>2.2.4 Spray Coating 46</p> <p>2.3 Properties and Characterization of Thin Films: Transport, Active and Electrode Layers in Thin Film Solar Cells 46</p> <p>2.4 Understanding the Crystallization Processes in Hybrid Semiconductor Films: Hybrid Perovskite as a Model 50</p> <p>2.4.1 Thermal Transitions Revealed by DSC 50</p> <p>2.4.2 Heat Transfer Processes in a Meso-Superstructured Perovskite Solar Cell 53</p> <p>2.4.3 Effect of the Annealing Process on Morphology and Crystalline Properties of Perovskite Films 55</p> <p>2.4.4 Role of Precursor Composition in the Crystallinity of Perovskite Films: Understanding the Role of Additives and Moisture in the Final Properties of Perovskite Layers 56</p> <p>References  57</p> <p><b>3 Organic-Inorganic Hybrid Solar Cells Based on Quantum Dots 65<br /> </b><i>Wenjin Yue</i></p> <p>3.1 Introduction 65</p> <p>3.2 Polymer/QD Solar Cells 67</p> <p>3.2.1 Working Principle 67</p> <p>3.2.2 Device Parameters 68</p> <p>3.2.2.1 Open-Circuit Voltage (Voc) 68</p> <p>3.2.2.2 Short-Circuit Current (Jsc) 68</p> <p>3.2.2.3 Fill Factor (FF) 69</p> <p>3.2.3 Device Structure 70</p> <p>3.2.4 Progress of Polymer/QD Solar Cells 71</p> <p>3.2.4.1 Device Based on Cd Compound 71</p> <p>3.2.4.2 Device Based on Pb Compound 74</p> <p>3.2.4.3 Device Based on CuInS2 76</p> <p>3.2.5 Strategy for Improved Device Performance 78</p> <p>3.2.5.1 QDs Surface Treatment 78</p> <p>3.2.5.2 In-Situ Synthesis of QDs 81</p> <p>3.2.5.3 Polymer End-Group Functionalization 82</p> <p>3.3 Outlooks and Conclusions 83</p> <p>Acknowledgment 83</p> <p><b>4 Hole Transporting Layers in Printable Solar Cells 93<br /> </b><i>David Curiel and Miriam Más-Montoya</i></p> <p>4.1 Introduction 94</p> <p>4.2 Hole Transporting Layers in Organic Solar Cells 97</p> <p>4.2.1 Utility of Hole Transporting Layers 97</p> <p>4.2.1.1 Energy Level Alignment at the Interfaces and Effect on the Open-Circuit Voltage 98</p> <p>4.1.1.2 Definition of Device Polarity, Charge Transport and Use as Blocking Layer 102</p> <p>4.1.1.3 Optical Spacer 103</p> <p>4.1.1.4 Modulation of the Active Layer Morphology and Use as Protective Layer 103</p> <p>4.1.2 Overview of Materials Used as Hole Transporting Layers 104</p> <p>4.1.2.1 Polymers 104</p> <p>4.1.2.2 Small Molecules 109</p> <p>4.1.2.3 Metals 112</p> <p>4.1.2.4 Metal Oxides 112</p> <p>4.1.2.5 Metal Salts 116</p> <p>4.1.2.6 Carbon Nanotubes 116</p> <p>4.1.2.7 Graphene-Based Materials 116</p> <p>4.1.2.8 Self-Assembled Monolayers 119</p> <p>4.2 Hole Transporting Layers in Dye-Sensitized Solar Cells 121</p> <p>4.2.1 Overview of Materials Used as Hole Transporting Layers 123</p> <p>4.2.1.1 Small Molecules 123</p> <p>4.2.1.2 Polymers 126</p> <p>4.3 Hole Transporting Layers in Perovskite Solar Cells 127</p> <p>4.3.1 Overview of Materials Used as Hole Transporting Layers 128</p> <p>4.3.1.1 Small Molecules 128</p> <p>4.3.1.2 Polymers 137</p> <p>4.3.1.3 Metal Oxides 139</p> <p>4.3.1.4 Metal Salts 140</p> <p>4.3.1.5 Carbon Nanotubes 141</p> <p>4.3.1.6 Graphene-Based Materials 142</p> <p>4.4 Concluding Remarks 143</p> <p><b>5 Printable Solar Cells 163<br /> </b><i>Alexander Kovalenko and Michal Hrabal</i></p> <p>5.1 Introduction 164</p> <p>5.2 Printable Solar Cells Working Principles 165</p> <p>5.2.1 CIGS Solar Cells 165</p> <p>5.2.2 Perovskite Solar Cells 167</p> <p>5.2.3 Organic Solar Cells 170</p> <p>5.2.4 Printable Charge-Carrier Selective Layers 172</p> <p>5.3 Solution-Based Deposition of Thin Film Layers 173</p> <p>5.3.1 Coating Techniques 174</p> <p>5.3.1.1 Casting 174</p> <p>5.3.1.2 Spin Coating 174</p> <p>5.3.1.3 Blade Coating 176</p> <p>5.3.1.4 Slot-Die Coating 177</p> <p>5.3.2 Printing Techniques 179</p> <p>5.3.2.1 Screen Printing 180</p> <p>5.3.2.2 Gravure Printing 182</p> <p>5.3.2.3 Flexographic Printing 184</p> <p>5.3.2.4 Inkjet Printing 185</p> <p>5.4 Characterization Techniques 189</p> <p>5.4.1 Characterization of Thin Layers 189</p> <p>5.4.2 Electrical Characterization of Solar Cells 190</p> <p>5.5 Conclusion 194</p> <p>References 197</p> <p><b>Part II Organic Materials and Process Technologies for Printable Solar Cells</b></p> <p><b>6 Spray-Coated Organic Solar Cells 205<br /> </b><i>Yifan Zheng and Junsheng Yu</i></p> <p>6.1 Introduction 205</p> <p>6.2 Introduction of Spray-Coating Method 206</p> <p>6.2.1 History of Spray Coating 206</p> <p>6.2.2 Spray-Coating Equipment 206</p> <p>6.2.2.1 Airbrush Spray Deposition 206</p> <p>6.2.2.2 Ultrasonic Spray Deposition 209</p> <p>6.2.2.3 Electrospray Deposition 210</p> <p>6.2.3 Spray-Coating Treatment 212</p> <p>6.2.3.1 Thermal Annealing 213</p> <p>6.2.3.2 Solvent Treatments 214</p> <p>6.3 Materials for Spray Coating 216</p> <p>6.3.1 Organic Materials 216</p> <p>6.3.2 Metal Oxide and Nanoparticles 220</p> <p>6.3.3 Perovskite 222</p> <p>6.4 Application of Spray Coating 224</p> <p>6.5 Conclusions 226</p> <p>Acknowledgment 226</p> <p>References 226</p> <p><b>7 Interface Engineering: A Key Aspect for the Potential Commercialization of Printable Organic Photovoltaic Cells 235<br /> </b><i>Varun Vohra, Nur Tahirah Razali and Hideyuki Murata</i></p> <p>7.1 Introduction 236</p> <p>7.2 SD-PSCs Based on P3HT:PCBM Active Layers 240</p> <p>7.2.1 Increase in Donor-Acceptor Interface through Nanostructuration of SD-PSCs 240</p> <p>7.2.2 Generation of Vertical Concentration Gradient by Addition of Regiorandom P3HT in SD-PSCs 242</p> <p>7.2.3 Generation of Vertical Concentration Gradient and Molecular Orientation by Rubbing P3HT in SD-PSCs 246</p> <p>7.3 High Performance BHJ-PSCs with Favorable Molecular Orientation Resulting from Active Layer/Substrate</p> <p>Interactions 248</p> <p>7.4 Strongly Bond Metal Leaves as Laminated Top Electrodes for Low-Cost PSC Fabrication 252</p> <p>7.5 Conclusions 257</p> <p>References 258</p> <p><b>8 Structural, Optical, Electrical and Electronic Properties of  PEDOT: PSS Thin Films and Their Application in Solar Cells 263<br /> </b><i>Sheng Hsiung Chang, Cheng-Chiang Chen, Hsin-Ming Cheng and Sheng-Hui Chen</i></p> <p>8.1 Introduction 264</p> <p>8.2 Chemical Structure of PEDOT:PSS 265</p> <p>8.3 Optical and Electrical Characteristics of PEDOT:PSS 267</p> <p>8.4 Electronic Characteristics of PEDOT:PSS 270</p> <p>8.5 Highly Conductive PEDOT:PSS Thin Films 271</p> <p>8.6 Hole-Transporting Materials: PEDOT:PSS Thin Films 273</p> <p>8.6.1 Effect of PEDOT/PSS Ratio 274</p> <p>8.6.2 Effect of Spin Rate 275</p> <p>8.6.3 Effect of Thermal Annealing Temperature 277</p> <p>8.6.4 Effects of Viscosity of PEDOT:PSS Solutions 278</p> <p>8.7 Directions for Future Development 281</p> <p>8.8 Conclusion 282</p> <p>Reference 283</p> <p><b>Part III Perovskites and Process Technologies for Printable Solar Cells</b></p> <p><b>9 Organometal Trihalide Perovskite Absorbers: Optoelectronic Properties and Applications for Solar Cells 291<br /> </b><i>Timur Sh. Atabaev and Nguyen Hoa Hong</i></p> <p>9.1 Introduction 291</p> <p>9.2 Optical Properties of Organic-Inorganic Perovskite Materials 293</p> <p>9.3 Charge Transport Properties 294</p> <p>9.4 Electron Transporting Materials (ETM) 295</p> <p>9.5 Hole-Transporting Materials (HTM) 295</p> <p>9.6 Perovskite Solar Cells Architectures 296</p> <p>9.7 Perovskite Deposition Methods 298</p> <p>9.8 Photoexcited States 300</p> <p>9.9 Hysteresis 300</p> <p>9.10 Stability in Humid Environment 302</p> <p>9.11 Stability Under UV Light Exposure 302</p> <p>9.12 Stability at High Temperatures 303</p> <p>9.13 Additives 304</p> <p>9.14 Conclusions and Outlook 305</p> <p>Acknowledgment 306</p> <p>References 306</p> <p><b>10 Organic-Inorganic Hybrid Perovskite Solar Cells with Scalable and Roll-to-Roll Compatible Printing/Coating Processes 313<br /> </b><i>Dechan Angmo, Mei Gao and Doojin Vak</i></p> <p>10.1 Introduction 314</p> <p>10.2 Optoelectronic Properties 316</p> <p>10.3 History 317</p> <p>10.4 Device Configurations 318</p> <p>10.5 Functional Materials 321</p> <p>10.5.1 The Organic-Inorganic Halide Perovskites 322</p> <p>10.5.2 Electron-Selective Layer 324</p> <p>10.5.3 Hole-Selective Layer 325</p> <p>10.5.4 Transparent Electrode 325</p> <p>10.5.5 Counter Electrode 326</p> <p>10.6 Spin Coating 327</p> <p>10.7 Roll-to-Roll Processing 331</p> <p>10.8 Substrate Limitation 331</p> <p>10.9 Printing and Coating Methods 333</p> <p>10.9.1 Coating Methods 335</p> <p>10.9.1.1 Slot-Die Coating 335</p> <p>10.9.1.2 Spray Coating 339</p> <p>10.9.1.3 Doctor Blade Coating 342</p> <p>10.9.1.4 Knife Coating 344</p> <p>10.9.1.5 Reverse Gravure Coating 345</p> <p>10.9.2 Printing Methods 346</p> <p>10.9.2.1 Gravure Printing 346</p> <p>10.9.2.2 Flexographic Printing 347</p> <p>10.9.2.3 Screen Printing 349</p> <p>10.9.2.4 Inkjet Printing 350</p> <p>10.10 Future Outlook 352</p> <p>References 352</p> <p><b>11 Inkjet Printable Processes for Dye-Sensitized and Perovskite Solar Cells and Modules Based on Advanced Nanocomposite Materials 363<br /> </b><i>Theodoros Makris, Argyroula Mourtzikou, Andreas Rapsomanikis and Elias Stathatos</i></p> <p>11.1 Introduction 364</p> <p>11.1.1 Dye-Sensitized Solar Cells 364</p> <p>11.1.2 Perovskite Solar Cells 367</p> <p>11.2 Inkjet Printing Process 369</p> <p>11.2.1 Inkjet Printing in DSSC Technology 370</p> <p>11.2.1.1 Inkjet Printing of Transition Metal Oxides 372</p> <p>11.2.1.2 Inkjet Printing of Dyes on Semiconducting Oxides 373</p> <p>11.2.1.3 Inkjet Printing of Ionic Liquid-Based Electrolytes 374</p> <p>11.2.2 Inkjet Printing in Perovskite Solar Cell Technology 377</p> <p>11.2.2.1 Inkjet Printing of Perovskite Material 378</p> <p>11.3 Conclusions 379</p> <p>References 379</p> <p><b>Part IV Inorganic Materials and Process Technologies for Printable Solar Cells 383</b></p> <p><b>12 Solution-Processed Kesterite Solar Cells 385<br /> </b><i>Fangyang Liu</i></p> <p>12.1 Introduction 385</p> <p>12.2 Fundamental Aspects of Kesterite Solar Cells 386</p> <p>12.2.1 Crystal Structure 386</p> <p>12.2.2 Phase Space and Secondary Phases 388</p> <p>12.2.3 Optical and Electrical Properties 390</p> <p>12.2.4 Device Architecture 391</p> <p>12.3 Keterite Absorber Deposition Strategies 393</p> <p>12.4 Electrodeposition 395</p> <p>12.4.1 Stacked Elemental Layer (SEL) Electrodeposition 396</p> <p>12.4.2 Metallic Alloy Co-electrodeposition 398</p> <p>12.4.3 Chalcogenide Co-electrodeposition 399</p> <p>12.5 Direct Solution Coating 400</p> <p>12.5.1 Hydrazine Solution Coating 401</p> <p>12.5.2 Particulate-Based Solution Coating 402</p> <p>12.5.3 Molecular-Based Solution Coating 405</p> <p>12.6 Conclusion 409</p> <p>References 409</p> <p><b>13 Inorganic Hole Contacts for Perovskite Solar Cells: Towards High-Performance Printable Solar Cells 423<br /> </b><i>Xingtian Yin and Wenxiu Que</i></p> <p>13.1 Introduction 424</p> <p>13.2 Transition Metal Oxides 426</p> <p>13.2.1 Molybdenum Oxide (MoOx, x < 3) 426</p> <p>13.2.2 Nickel Oxide (NiO) 428</p> <p>13.2.2.1 Mesoscopic NiO Perovskite Solar Cells 428</p> <p>13.2.2.2 Planar NiO Perovskite Solar Cells 429</p> <p>13.2.3 Binary Copper Oxide (CuO and Cu2O) 439</p> <p>13.2.4 Other Transition Metal Oxides 440</p> <p>13.3 Non-Oxide Copper Compounds 440</p> <p>13.3.1 Cuprous Iodide (CuI) 441</p> <p>13.3.2 Cuprous Rhodanide (CuSCN) 441</p> <p>13.3.3 Copper Sulfide (CuS) 442</p> <p>13.3.4 CuAlO2 443</p> <p>13.3.5 CuInS2 and Cu2ZnSnS4 444</p> <p>13.4 Other Inorganic HTMs 444</p> <p>13.4.1 PdS Quantum Dots (QDs)  444</p> <p>13.4.2 Two-Dimensional (2D) Materials  445</p> <p>13.5 Towards Printable Solar Cells  446</p> <p>13.6 Conclusions and Perspectives  449</p> <p>Acknowledgment 450</p> <p>References 450</p> <p><b>14 Electrode Materials for Printable Solar Cells 457<br /> </b><i>Lijun Hu, Ke Yang, Wei Chen, Falin Wu, Jiehao Fu, Wenbo Sun, Hongyan Huang, Baomin Zhao, Kuan Sun and Jianyong Ouyang</i></p> <p>14.1 Introduction 458</p> <p>14.2 Transparent Conjugated Polymers 459</p> <p>14.2.1 Solvent Additive Method 460</p> <p>14.2.2 Post-Treatment of PEDOT:PSS Films 461</p> <p>14.2.3 Printing PEDOT:PSS Inks 463</p> <p>14.3 Carbon-Based Nanomaterials 463</p> <p>14.3.1 Graphene 466</p> <p>14.3.2 Carbon Nanotubes 472</p> <p>14.4 Metallic Nanostructures 476</p> <p>14.4.1 Metal Nanomeshes 476</p> <p>14.4.2 Metal Nanowire Networks 480</p> <p>14.4.3 Ultrathin Metal Films 482</p> <p>14.5 Multilayer Thin Films 486</p> <p>14.6 Printable Metal Back Electrodes 491</p> <p>14.7 Carbon-Based Back Electrodes 494</p> <p>14.8 Summary and Outlook 497</p> <p>Acknowledgment 498</p> <p>References 498</p> <p><b>15 Photonic Crystals for Photon Management in Solar Cells 513<br /> </b><i>Shuai Zhang, Zhongze Gu and Jian-Ning Ding</i></p> <p>15.1 Introduction 513</p> <p>15.2 Fundamentals of PCs 515</p> <p>15.3 Fabrication Strategies of PCs for Photovoltaics 518</p> <p>15.3.1 1D Multilayer PCs 519</p> <p>15.3.2 2D PCs 524</p> <p>15.3.3 3D PCs 527</p> <p>15.4 Different Functionalities of PCs in Solar Cells 530</p> <p>15.4.1 PC Reflectors 531</p> <p>15.4.2 PC Absorbers 535</p> <p>15.4.3 Front-Side PCs 538</p> <p>15.4.4 PCs for Other Functionalities 540</p> <p>15.5 Summary and Outlook 540</p> <p>Acknowledgment 542</p> <p>References 542</p>
<p><b>Nurdan Demirci Sankir </b>is currently an Associate Professor in the Materials Science and Nanotechnology Engineering Department at the TOBB University of Economics and Technology, Ankara, Turkey. She received her M.Eng and PhD degrees in Materials Science and Engineering from the Virginia Polytechnic and State University, USA in 2005. She then joined NanoSonic Inc. in Virginia, USA as R&D engineer and program manager, and in 2007 she enrolled at TOBB ETU where she established the Energy Research and Solar Cell Laboratories. Nurdan has actively carried out research activities in many areas including solar driven water splitting, photocatalytic degradation and nanostructured semiconductors.</p> <p><b>Mehmet Sankir </b>received his PhD in Macromolecular Science and Engineering from the Virginia Polytechnic and State University, USA in 2005. He is currently an Associate Professor in the Department of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, Ankara, Turkey and group leader of Advanced Membrane Technologies Laboratory. Mehmet has actively carried out research and consulting activities in the areas of membranes for fuel cells, flow batteries, hydrogen generation and desalination.
<p><b>The book brings together the recent advances, new and cutting edge materials from solution process and manufacturing techniques that are the key to making photovoltaic devices more efficient and inexpensive.</b></p> <p><i>Printable Solar Cells</i> provides an overall view of the new and highly promising materials and thin film deposition techniques for printable solar cell applications. The book is organized in four parts. Organic and inorganic hybrid materials and solar cell manufacturing techniques are covered in Part I. Part II is devoted to organic materials and processing technologies like spray coating. This part also demonstrates the key features of the interface engineering for the printable organic solar cells. The main focus of Part III is the perovskite solar cells, which is a new and promising family of the photovoltaic applications. Finally, inorganic materials and solution based thin film formation methods using these materials for printable solar cell application is discussed in Part IV. <p><b>Audience</b> <p>The book will be of interest to a multidisciplinary group of fields, in industry and academia, including physics, chemistry, materials science, biochemical engineering, optoelectronic information, photovoltaic and renewable energy engineering, electrical engineering, mechanical and manufacturing engineering.

Diese Produkte könnten Sie auch interessieren:

Regenerative Energietrager
Regenerative Energietrager
von: Martin Wietschel, Wolf Fichtner, Otto Rentz
PDF ebook
33,99 €
Fundamentals of Power System Economics
Fundamentals of Power System Economics
von: Daniel S. Kirschen, Goran Strbac
PDF ebook
104,99 €
Fuel Cells, Engines and Hydrogen
Fuel Cells, Engines and Hydrogen
von: Frederick J. Barclay
PDF ebook
110,99 €