Details

Principles of Tribology


Principles of Tribology


2. Aufl.

von: Shizhu Wen, Ping Huang

134,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 30.05.2017
ISBN/EAN: 9781119214915
Sprache: englisch
Anzahl Seiten: 608

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>Updated to include the timely and important topics of MEMS and rolling friction, <i>Principles of Tribology</i> is a compilation of current developments from tribology research, coupled with tribology fundamentals and applications. Essential topics include lubrication theory, lubrication design, friction mechanism, wear mechanism, friction control, and their applications. Besides classical tribology content, the book also covers intersecting research areas of tribology, as well as the regularities and characteristics of the tribological phenomena in practice. Furthermore, it presents the basic theory, numerical analysis methods and experimental measuring techniques of tribology as well as their application in engineering.  </p> <ul> <li>Newly expanded and updated to include new tribological material on MEMS and green tribology, its key concepts and applications</li> <li>Systematically brings the reader through fundamental theories, basic mechanisms through to the latest research</li> <li>Emphasizes practical tribological phenomena, supported by numerical analysis and experimental measurement techniques</li> <li>Discusses nano-tribology, thin film lubrication and its applications, topics which are growing in importance</li> </ul> <p>A comprehensive look at the fundamentals and latest research, this second edition of <i>Principles of Tribology</i> is an essential textbook for graduate and senior undergraduate students specializing in tribology and related mechanical engineering fields.</p>
<p>About the Authors xxi</p> <p>Second Edition Preface xxiii</p> <p>Preface xxv</p> <p>Introduction xxvii</p> <p><b>Part I Lubrication Theory 1</b></p> <p><b>1 Properties of Lubricants 3</b></p> <p>1.1 Lubrication States 3</p> <p>1.2 Density of Lubricant 5</p> <p>1.3 Viscosity of Lubricant 7</p> <p>1.3.1 Dynamic Viscosity and Kinematic Viscosity 7</p> <p>1.3.1.1 Dynamic Viscosity 7</p> <p>1.3.1.2 Kinematic Viscosity 8</p> <p>1.3.2 Relationship between Viscosity and Temperature 9</p> <p>1.3.2.1 Viscosity–Temperature Equations 9</p> <p>1.3.2.2 ASTM Viscosity–Temperature Diagram 9</p> <p>1.3.2.3 Viscosity Index 10</p> <p>1.3.3 Relationship between Viscosity and Pressure 10</p> <p>1.3.3.1 Relationships between Viscosity, Temperature and Pressure 11</p> <p>1.4 Non-Newtonian Behaviors 12</p> <p>1.4.1 Ree–Eyring Constitutive Equation 12</p> <p>1.4.2 Visco-Plastic Constitutive Equation 13</p> <p>1.4.3 Circular Constitutive Equation 13</p> <p>1.4.4 Temperature-Dependent Constitutive Equation 13</p> <p>1.4.5 Visco-Elastic Constitutive Equation 14</p> <p>1.4.6 Nonlinear Visco-Elastic Constitutive Equation 14</p> <p>1.4.7 A Simple Visco-Elastic Constitutive Equation 15</p> <p>1.4.7.1 Pseudoplasticity 16</p> <p>1.4.7.2 Thixotropy 16</p> <p>1.5 Wettability of Lubricants 16</p> <p>1.5.1 Wetting and Contact Angle 17</p> <p>1.5.2 Surface Tension 17</p> <p>1.6 Measurement and Conversion of Viscosity 19</p> <p>1.6.1 Rotary Viscometer 19</p> <p>1.6.2 Off-Body Viscometer 19</p> <p>1.6.3 Capillary Viscometer 19</p> <p>References 21</p> <p><b>2 Basic Theories of Hydrodynamic Lubrication 22</b></p> <p>2.1 Reynolds Equation 22</p> <p>2.1.1 Basic Assumptions 22</p> <p>2.1.2 Derivation of the Reynolds Equation 23</p> <p>2.1.2.1 Force Balance 23</p> <p>2.1.2.2 General Reynolds Equation 25</p> <p>2.2 Hydrodynamic Lubrication 26</p> <p>2.2.1 Mechanism of Hydrodynamic Lubrication 26</p> <p>2.2.2 Boundary Conditions and Initial Conditions of the Reynolds Equation 27</p> <p>2.2.2.1 Boundary Conditions 27</p> <p>2.2.2.2 Initial Conditions 28</p> <p>2.2.3 Calculation of Hydrodynamic Lubrication 28</p> <p>2.2.3.1 Load-Carrying CapacityW 28</p> <p>2.2.3.2 Friction ForceF 28</p> <p>2.2.3.3 Lubricant FlowQ 29</p> <p>2.3 Elastic Contact Problems 29</p> <p>2.3.1 Line Contact 29</p> <p>2.3.1.1 Geometry and Elasticity Simulations 29</p> <p>2.3.1.2 Contact Area and Stress 30</p> <p>2.3.2 Point Contact 31</p> <p>2.3.2.1 Geometric Relationship 31</p> <p>2.3.2.2 Contact Area and Stress 32</p> <p>2.4 Entrance Analysis of EHL 34</p> <p>2.4.1 Elastic Deformation of Line Contacts 35</p> <p>2.4.2 Reynolds Equation Considering the Effect of Pressure-Viscosity 35</p> <p>2.4.3 Discussion 36</p> <p>2.4.4 Grubin FilmThickness Formula 37</p> <p>2.5 Grease Lubrication 38</p> <p>References 40</p> <p><b>3 Numerical Methods of Lubrication Calculation 41</b></p> <p>3.1 Numerical Methods of Lubrication 42</p> <p>3.1.1 Finite Difference Method 42</p> <p>3.1.1.1 Hydrostatic Lubrication 44</p> <p>3.1.1.2 Hydrodynamic Lubrication 44</p> <p>3.1.2 Finite Element Method and Boundary Element Method 48</p> <p>3.1.2.1 Finite Element Method (FEM) 48</p> <p>3.1.2.2 Boundary Element Method 49</p> <p>3.1.3 Numerical Techniques 51</p> <p>3.1.3.1 Parameter Transformation 51</p> <p>3.1.3.2 Numerical Integration 51</p> <p>3.1.3.3 Empirical Formula 53</p> <p>3.1.3.4 SuddenThickness Change 53</p> <p>3.2 Numerical Solution of the Energy Equation 54</p> <p>3.2.1 Conduction and Convection of Heat 55</p> <p>3.2.1.1 Conduction Heat Hd 55</p> <p>3.2.1.2 Convection Heat Hv 55</p> <p>3.2.2 Energy Equation 56</p> <p>3.2.3 Numerical Solution of Energy Equation 59</p> <p>3.3 Numerical Solution of Elastohydrodynamic Lubrication 60</p> <p>3.3.1 EHL Numerical Solution of Line Contacts 60</p> <p>3.3.1.1 Basic Equations 60</p> <p>3.3.1.2 Solution of the Reynolds Equation 62</p> <p>3.3.1.3 Calculation of Elastic Deformation 62</p> <p>3.3.1.4 Dowson–Higginson FilmThickness Formula of Line Contact EHL 64</p> <p>3.3.2 EHL Numerical Solution of Point Contacts 64</p> <p>3.3.2.1 The Reynolds Equation 65</p> <p>3.3.2.2 Elastic Deformation Equation 66</p> <p>3.3.2.3 Hamrock–Dowson FilmThickness Formula of Point Contact EHL 66</p> <p>3.4 Multi-Grid Method for Solving EHL Problems 68</p> <p>3.4.1 Basic Principles of Multi-Grid Method 68</p> <p>3.4.1.1 Grid Structure 68</p> <p>3.4.1.2 Discrete Equation 68</p> <p>3.4.1.3 Transformation 69</p> <p>3.4.2 Nonlinear Full Approximation Scheme for the Multi-Grid Method 69</p> <p>3.4.3 V andWIterations 71</p> <p>3.4.4 Multi-Grid Solution of EHL Problems 71</p> <p>3.4.4.1 Iteration Methods 71</p> <p>3.4.4.2 Iterative Division 72</p> <p>3.4.4.3 Relaxation Factors 73</p> <p>3.4.4.4 Numbers of Iteration Times 73</p> <p>3.4.5 Multi-Grid Integration Method 73</p> <p>3.4.5.1 Transfer Pressure Downwards 74</p> <p>3.4.5.2 Transfer Integral Coefficients Downwards 74</p> <p>3.4.5.3 Integration on the Coarser Mesh 74</p> <p>3.4.5.4 Transfer Back Integration Results 75</p> <p>3.4.5.5 Modification on the Finer Mesh 75</p> <p>References 76</p> <p><b>4 Lubrication Design of Typical Mechanical Elements 78</b></p> <p>4.1 Slider and Thrust Bearings 78</p> <p>4.1.1 Basic Equations 78</p> <p>4.1.1.1 Reynolds Equation 78</p> <p>4.1.1.2 Boundary Conditions 78</p> <p>4.1.1.3 Continuous Conditions 79</p> <p>4.1.2 Solutions of Slider Lubrication 79</p> <p>4.2 Journal Bearings 81</p> <p>4.2.1 Axis Position and Clearance Shape 81</p> <p>4.2.2 Infinitely Narrow Bearings 82</p> <p>4.2.2.1 Load-Carrying Capacity 83</p> <p>4.2.2.2 Deviation Angle and Axis Track 83</p> <p>4.2.2.3 Flow 84</p> <p>4.2.2.4 Frictional Force and Friction Coefficient 84</p> <p>4.2.3 InfinitelyWide Bearings 85</p> <p>4.3 Hydrostatic Bearings 88</p> <p>4.3.1 Hydrostatic Thrust Plate 89</p> <p>4.3.2 Hydrostatic Journal Bearings 90</p> <p>4.3.3 Bearing Stiffness andThrottle 90</p> <p>4.3.3.1 Constant Flow Pump 91</p> <p>4.3.3.2 Capillary Throttle 91</p> <p>4.3.3.3 Thin-Walled OrificeThrottle 92</p> <p>4.4 Squeeze Bearings 92</p> <p>4.4.1 Rectangular Plate Squeeze 93</p> <p>4.4.2 Disc Squeeze 94</p> <p>4.4.3 Journal Bearing Squeeze 94</p> <p>4.5 Dynamic Bearings 96</p> <p>4.5.1 Reynolds Equation of Dynamic Journal Bearings 96</p> <p>4.5.2 Simple Dynamic Bearing Calculation 98</p> <p>4.5.2.1 A Sudden Load 98</p> <p>4.5.2.2 Rotating Load 99</p> <p>4.5.3 General Dynamic Bearings 100</p> <p>4.5.3.1 Infinitely Narrow Bearings 100</p> <p>4.5.3.2 Superimposition Method of Pressures 101</p> <p>4.5.3.3 Superimposition Method of Carrying Loads 101</p> <p>4.6 Gas Lubrication Bearings 102</p> <p>4.6.1 Basic Equations of Gas Lubrication 102</p> <p>4.6.2 Types of Gas Lubrication Bearings 103</p> <p>4.7 Rolling Contact Bearings 106</p> <p>4.7.1 Equivalent Radius R 107</p> <p>4.7.2 Average Velocity U 107</p> <p>4.7.3 Carrying Load PerWidthW/b 107</p> <p>4.8 Gear Lubrication 108</p> <p>4.8.1 Involute Gear Transmission 109</p> <p>4.8.1.1 Equivalent Curvature Radius R 110</p> <p>4.8.1.2 Average Velocity U 111</p> <p>4.8.1.3 Load PerWidthW/b 112</p> <p>4.8.2 Arc Gear Transmission EHL 112</p> <p>4.9 Cam Lubrication 114</p> <p>References 116</p> <p><b>5 Special Fluid Medium Lubrication 118</b></p> <p>5.1 Magnetic Hydrodynamic Lubrication 118</p> <p>5.1.1 Composition and Classification of Magnetic Fluids 118</p> <p>5.1.2 Properties of Magnetic Fluids 119</p> <p>5.1.2.1 Density of Magnetic Fluids 119</p> <p>5.1.2.2 Viscosity of Magnetic Fluids 119</p> <p>5.1.2.3 Magnetization Strength of Magnetic Fluids 120</p> <p>5.1.2.4 Stability of Magnetic Fluids 120</p> <p>5.1.3 Basic Equations of Magnetic Hydrodynamic Lubrication 121</p> <p>5.1.4 Influence Factors on Magnetic EHL 123</p> <p>5.2 Micro-Polar Hydrodynamic Lubrication 124</p> <p>5.2.1 Basic Equations of Micro-Polar Fluid Lubrication 124</p> <p>5.2.1.1 Basic Equations of Micro-Polar Fluid Mechanics 124</p> <p>5.2.1.2 Reynolds Equation of Micro-Polar Fluid 125</p> <p>5.2.2 Influence Factors on Micro-Polar Fluid Lubrication 128</p> <p>5.2.2.1 Influence of Load 128</p> <p>5.2.2.2 Main Influence Parameters of Micro-Polar Fluid 129</p> <p>5.3 Liquid Crystal Lubrication 130</p> <p>5.3.1 Types of Liquid Crystal 130</p> <p>5.3.1.1 Tribological Properties of Lyotropic Liquid Crystal 131</p> <p>5.3.1.2 Tribological Properties ofThermotropic Liquid Crystal 131</p> <p>5.3.2 Deformation Analysis of Liquid Crystal Lubrication 132</p> <p>5.3.3 Friction Mechanism of Liquid Crystal as a Lubricant Additive 136</p> <p>5.3.3.1 Tribological Mechanism of 4-pentyl-4′-cyanobiphenyl 136</p> <p>5.3.3.2 Tribological Mechanism of Cholesteryl Oleyl Carbonate 136</p> <p>5.4 Electric Double Layer Effect inWater Lubrication 137</p> <p>5.4.1 Electric Double Layer Hydrodynamic Lubrication Theory 138</p> <p>5.4.1.1 Electric Double Layer Structure 138</p> <p>5.4.1.2 Hydrodynamic Lubrication Theory of Electric Double Layer 138</p> <p>5.4.2 Influence of Electric Double Layer on Lubrication Properties 142</p> <p>5.4.2.1 Pressure Distribution 142</p> <p>5.4.2.2 Load-Carrying Capacity 143</p> <p>5.4.2.3 Friction Coefficient 144</p> <p>5.4.2.4 An Example 144</p> <p>References 145</p> <p><b>6 Lubrication Transformation and Nanoscale Thin Film Lubrication 147</b></p> <p>6.1 Transformations of Lubrication States 147</p> <p>6.1.1 Thickness-Roughness Ratio ;; 147</p> <p>6.1.2 Transformation from Hydrodynamic Lubrication to EHL 148</p> <p>6.1.3 Transformation from EHL to Thin Film Lubrication 149</p> <p>6.2 Thin Film Lubrication 152</p> <p>6.2.1 Phenomenon ofThin Film Lubrication 153</p> <p>6.2.2 Time Effect of Thin Film Lubrication 154</p> <p>6.2.3 Shear Strain Rate Effect onThin Film Lubrication 157</p> <p>6.3 Analysis ofThin Film Lubrication 158</p> <p>6.3.1 Difficulties in Numerical Analysis of Thin Film Lubrication 158</p> <p>6.3.2 Tichy’s Thin Film Lubrication Models 160</p> <p>6.3.2.1 Direction Factor Model 160</p> <p>6.3.2.2 Surface Layer Model 161</p> <p>6.3.2.3 Porous Surface Layer Model 161</p> <p>6.4 Nano-Gas Film Lubrication 161</p> <p>6.4.1 Rarefied Gas Effect 162</p> <p>6.4.2 Boundary Slip 163</p> <p>6.4.2.1 Slip Flow 163</p> <p>6.4.2.2 Slip Models 163</p> <p>6.4.2.3 Boltzmann Equation for Rarefied Gas Lubrication 165</p> <p>6.4.3 Reynolds Equation Considering the Rarefied Gas Effect 165</p> <p>6.4.4 Calculation of Magnetic Head/Disk of UltraThin Gas Lubrication 166</p> <p>6.4.4.1 Large Bearing Number Problem 167</p> <p>6.4.4.2 Sudden Step Change Problem 167</p> <p>6.4.4.3 Solution of Ultra-Thin Gas Lubrication of Multi-Track Magnetic Heads 167</p> <p>References 169</p> <p><b>7 Boundary Lubrication and Additives 171</b></p> <p>7.1 Types of Boundary Lubrication 171</p> <p>7.1.1 Stribeck Curve 171</p> <p>7.1.2 Adsorption Films and Their Lubrication Mechanisms 172</p> <p>7.1.2.1 Adsorption Phenomena and Adsorption Films 172</p> <p>7.1.2.2 Structure and Property of Adsorption Films 174</p> <p>7.1.3 Chemical Reaction Film and its Lubrication Mechanism 177</p> <p>7.1.3.1 Additives of Chemical Reaction Film 178</p> <p>7.1.3.2 Notes for Applications of Extreme Pressure Additives 178</p> <p>7.1.4 Other Boundary Films and their Lubrication Mechanisms 179</p> <p>7.1.4.1 High Viscosity Thick Film 179</p> <p>7.1.4.2 Polishing Thin Film 179</p> <p>7.1.4.3 Surface Softening Effect 179</p> <p>7.2 Theory of Boundary Lubrication 179</p> <p>7.2.1 Boundary Lubrication Model 179</p> <p>7.2.2 Factors Influencing Performance of Boundary Films 181</p> <p>7.2.2.1 Internal Pressure Caused by Surface Tension 181</p> <p>7.2.2.2 Adsorption Heat of Boundary Film 182</p> <p>7.2.2.3 Critical Temperature 183</p> <p>7.2.3 Strength of Boundary Film 184</p> <p>7.3 Lubricant Additives 185</p> <p>7.3.1 Oily Additives 185</p> <p>7.3.2 Tackifier 186</p> <p>7.3.3 Extreme Pressure Additives (EP Additives) 187</p> <p>7.3.4 Anti-Wear Additives 187</p> <p>7.3.5 Other Additives 187</p> <p>References 189</p> <p><b>8 Lubrication Failure and Mixed Lubrication 190</b></p> <p>8.1 Roughness and Viscoelastic Material Effects on Lubrication 190</p> <p>8.1.1 Modifications of Micro-EHL 190</p> <p>8.1.2 Viscoelastic Model 191</p> <p>8.1.3 LubricatedWear 192</p> <p>8.1.3.1 LubricatedWear Criteria 193</p> <p>8.1.3.2 LubricatedWear Model 193</p> <p>8.1.3.3 LubricatedWear Example 193</p> <p>8.2 Influence of Limit Shear Stress on Lubrication Failure 195</p> <p>8.2.1 Visco-Plastic Constitutive Equation 195</p> <p>8.2.2 Slip of Fluid–Solid Interface 196</p> <p>8.2.3 Influence of Slip on Lubrication Properties 196</p> <p>8.3 Influence of Temperature on Lubrication Failure 200</p> <p>8.3.1 Mechanism of Lubrication Failure Caused by Temperature 200</p> <p>8.3.2 Thermal Fluid Constitutive Equation 201</p> <p>8.3.3 Analysis of Lubrication Failure 202</p> <p>8.4 Mixed Lubrication 203</p> <p>References 207</p> <p><b>Part II Friction andWear 209</b></p> <p><b>9 Surface Topography and Contact 211</b></p> <p>9.1 Parameters of Surface Topography 211</p> <p>9.1.1 ArithmeticMean Deviation Ra 211</p> <p>9.1.2 Root-Mean-Square Deviation (RMS) ;; or Rq 211</p> <p>9.1.3 Maximum Height Rmax 212</p> <p>9.1.4 Load-Carrying Area Curve 212</p> <p>9.1.5 ArithmeticMean Interception Length of Centerline Sma 212</p> <p>9.1.5.1 Slope ż a or ż q 213</p> <p>9.1.5.2 Peak Curvature Ca or Cq 213</p> <p>9.2 Statistical Parameters of Surface Topography 213</p> <p>9.2.1 Height Distribution Function 214</p> <p>9.2.2 Deviation of Distribution 215</p> <p>9.2.3 Autocorrelation Function of Surface Profile 216</p> <p>9.3 Structures and Properties of Surface 217</p> <p>9.4 Rough Surface Contact 219</p> <p>9.4.1 Single Peak Contact 219</p> <p>9.4.2 Ideal Roughness Contact 220</p> <p>9.4.3 Random Roughness Contact 221</p> <p>9.4.4 Plasticity Index 223</p> <p>References 223</p> <p><b>10 Sliding Friction and its Applications 225</b></p> <p>10.1 Basic Characteristics of Friction 225</p> <p>10.1.1 Influence of Stationary Contact Time 226</p> <p>10.1.2 Jerking Motion 226</p> <p>10.1.3 Pre-Displacement 227</p> <p>10.2 Macro-FrictionTheory 228</p> <p>10.2.1 Mechanical EngagementTheory 228</p> <p>10.2.2 Molecular Action Theory 229</p> <p>10.2.3 Adhesive FrictionTheory 229</p> <p>10.2.3.1 Main Points of Adhesive Friction Theory 230</p> <p>10.2.3.2 Revised Adhesion Friction Theory 232</p> <p>10.2.4 Plowing Effect 233</p> <p>10.2.5 Deformation Energy Friction Theory 235</p> <p>10.2.6 Binomial FrictionTheory 236</p> <p>10.3 Micro-FrictionTheory 238</p> <p>10.3.1 “Cobblestone” Model 238</p> <p>10.3.2 Oscillator Models 240</p> <p>10.3.2.1 Independent Oscillator Model 240</p> <p>10.3.2.2 Composite Oscillator Model 241</p> <p>10.3.2.3 FK Model 242</p> <p>10.3.3 Phonon Friction Model 242</p> <p>10.4 Sliding Friction 243</p> <p>10.4.1 Influence of Load 243</p> <p>10.4.2 Influence of Sliding Velocity 244</p> <p>10.4.3 Influence of Temperature 245</p> <p>10.4.4 Influence of Surface Film 245</p> <p>10.5 Other Friction Problems and Friction Control 246</p> <p>10.5.1 Friction in SpecialWorking Conditions 246</p> <p>10.5.1.1 High Velocity Friction 246</p> <p>10.5.1.2 High Temperature Friction 246</p> <p>10.5.1.3 Low Temperature Friction 247</p> <p>10.5.1.4 Vacuum Friction 247</p> <p>10.5.2 Friction Control 247</p> <p>10.5.2.1 Method of Applying Voltage 247</p> <p>10.5.2.2 Effectiveness of Electronic Friction Control 248</p> <p>10.5.2.3 Real-Time Friction Control 249</p> <p>References 250</p> <p><b>11 Rolling Friction and its Applications 252</b></p> <p>11.1 Basic Theories of Rolling Friction 252</p> <p>11.1.1 Rolling Resistance Coefficient 252</p> <p>11.1.2 Rolling Friction Theories 254</p> <p>11.1.2.1 HysteresisTheory 255</p> <p>11.1.2.2 Plastic DeformationTheory 256</p> <p>11.1.2.3 Micro Slip Theory 257</p> <p>11.1.3 Adhesion Effect on Rolling Friction 258</p> <p>11.1.4 Factors Influencing Rolling Friction of Wheel and Rail 260</p> <p>11.1.5 Thermal Analysis ofWheel and Rail 262</p> <p>11.1.5.1 Heat Transferring Model ofWheel and Rail Contact 262</p> <p>11.1.5.2 Temperature Rise Analysis of Wheel and Rail Contact 264</p> <p>11.1.5.3 Transient Temperature Rise Analysis ofWheel for Two-DimensionalThermal</p> <p>Shock 268</p> <p>11.1.5.4 Three-Dimensional Transient Analysis of Temperature Rise of Contact 269</p> <p>11.1.5.5 Thermal Solution for the Rail 270</p> <p>11.2 Applications of Rolling Tribology in Design of Lunar Rover 271</p> <p>11.2.1 Foundations of Force Analysis for Rigid Wheel 271</p> <p>11.2.1.1 Resistant Force of Driving RigidWheel 271</p> <p>11.2.1.2 Driving Force and Sliding/Rolling Ratio of the Wheel 274</p> <p>11.2.2 Mechanics Model of a Wheel on a Soft Surface 275</p> <p>11.2.2.1 Wheel Sinkage 276</p> <p>11.2.2.2 Soil Deformation and Stress Model 276</p> <p>11.2.2.3 Interaction Force between Wheel and Soil 277</p> <p>11.2.3 Dynamic Analysis of Rolling Mechanics of Lunar Rover with Unequal Diameter</p> <p>Wheel 278</p> <p>11.2.3.1 Structure with Unequal DiameterWheel 278</p> <p>11.2.3.2 Interaction model of wheel and soil 278</p> <p>11.2.3.3 Model and Calculation of Movement for Unequal Diameter Wheel 280</p> <p>References 280</p> <p><b>12 Characteristics andMechanisms of Wear 282</b></p> <p>12.1 Classification ofWear 282</p> <p>12.1.1 Wear Categories 282</p> <p>12.1.1.1 MechanicalWear 282</p> <p>12.1.1.2 Molecular and MechanicalWear 283</p> <p>12.1.1.3 Corrosive and MechanicalWear 283</p> <p>12.1.2 Wear Process 283</p> <p>12.1.2.1 Surface Interaction 283</p> <p>12.1.2.2 Variation of Surface 283</p> <p>12.1.2.3 Forms of Surface Damage 284</p> <p>12.1.3 Conversion ofWear 285</p> <p>12.2 AbrasiveWear 285</p> <p>12.2.1 Types of AbrasiveWear 285</p> <p>12.2.2 Factors Influencing AbrasiveWear 286</p> <p>12.2.3 Mechanism of AbrasiveWear 289</p> <p>12.3 AdhesiveWear 290</p> <p>12.3.1 Types of AdhesiveWear 291</p> <p>12.3.1.1 Light AdhesiveWear 291</p> <p>12.3.1.2 Common AdhesiveWear 291</p> <p>12.3.1.3 Scratch 291</p> <p>12.3.1.4 Scuffing 291</p> <p>12.3.2 Factors Influencing AdhesiveWear 291</p> <p>12.3.2.1 Load 291</p> <p>12.3.2.2 Surface Temperature 292</p> <p>12.3.2.3 Materials 293</p> <p>12.3.3 AdhesiveWear Mechanism 294</p> <p>12.3.4 Criteria of Scuffing 296</p> <p>12.3.4.1 p0Us ≤ c Criterion 296</p> <p>12.3.4.2 WUns ≤ c 296</p> <p>12.3.4.3 Instantaneous Temperature Criterion 297</p> <p>12.3.4.4 Scuffing Factor Criterion 298</p> <p>12.4 FatigueWear 298</p> <p>12.4.1 Types of FatigueWear 298</p> <p>12.4.1.1 Superficial FatigueWear and Surface FatigueWear 298</p> <p>12.4.1.2 Pitting and Peeling 299</p> <p>12.4.2 Factors Influencing FatigueWear 300</p> <p>12.4.2.1 Load Property 300</p> <p>12.4.2.2 Material Property 302</p> <p>12.4.2.3 Physical and Chemical Effects of the Lubricant 302</p> <p>12.4.3 Criteria of Fatigue Strength and Fatigue Life 303</p> <p>12.4.3.1 Contact Stress State 303</p> <p>12.4.3.2 Contact Fatigue Strength Criteria 304</p> <p>12.4.3.3 Contact Fatigue Life 306</p> <p>12.5 CorrosiveWear 307</p> <p>12.5.1 OxidationWear 307</p> <p>12.5.2 Special CorrosiveWear 309</p> <p>12.5.2.1 Factors Influencing the CorrosionWear 309</p> <p>12.5.2.2 Chemical-Mechanical Polishing 309</p> <p>12.5.3 Fretting 309</p> <p>12.5.4 Cavitation Erosion 310</p> <p>References 312</p> <p><b>13 Macro-Wear Theory 314</b></p> <p>13.1 Friction Material 315</p> <p>13.1.1 Friction Material Properties 315</p> <p>13.1.1.1 Mechanical Properties 315</p> <p>13.1.1.2 Anti-Friction andWear-Resistance 315</p> <p>13.1.1.3 Thermal Property 316</p> <p>13.1.1.4 Lubrication Ability 316</p> <p>13.1.2 Wear-Resistant Mechanism 316</p> <p>13.1.2.1 Hard Phase Bearing Mechanism 316</p> <p>13.1.2.2 Soft Phase Bearing Mechanism 316</p> <p>13.1.2.3 Porous Saving Oil Mechanism 316</p> <p>13.1.2.4 Plastic Coating Mechanism 317</p> <p>13.2 Wear Process Curve 317</p> <p>13.2.1 Types ofWear Process Curves 317</p> <p>13.2.2 Running-In 317</p> <p>13.2.2.1 Working Life 318</p> <p>13.2.2.2 Measures to Improve the Running-in Performance 319</p> <p>13.3 Surface Quality andWear 320</p> <p>13.3.1 Influence of Geometric Quality 321</p> <p>13.3.2 Physical Quality 323</p> <p>13.4 Theory of AdhesionWear 324</p> <p>13.5 Theory of EnergyWear 325</p> <p>13.6 DelaminationWearTheory and FatigueWear Theory 327</p> <p>13.6.1 DelaminationWearTheory 327</p> <p>13.6.2 FatigueWear Theory 329</p> <p>13.7 Wear Calculation 329</p> <p>13.7.1 IBMWear Calculation Method 329</p> <p>13.7.1.1 Type A 330</p> <p>13.7.1.2 Type B 331</p> <p>13.7.2 Calculation Method of CombinedWear 331</p> <p>References 335</p> <p><b>14 Anti-Wear Design and Surface Coating 337</b></p> <p>14.1 Selection of Lubricant and Additive 337</p> <p>14.1.1 Lubricant Selection 337</p> <p>14.1.1.1 Viscosity, Viscosity Index and Viscosity-Pressure Coefficient 339</p> <p>14.1.1.2 Stability 339</p> <p>14.1.1.3 Other Requirements 339</p> <p>14.1.2 Grease Selection 340</p> <p>14.1.2.1 The Composition of Grease 340</p> <p>14.1.2.2 Function of Densifier 340</p> <p>14.1.2.3 Grease Additives 340</p> <p>14.1.3 Solid Lubricants 341</p> <p>14.1.4 Seal and Filter 341</p> <p>14.2 Matching Principles of Friction Materials 343</p> <p>14.2.1 MaterialMating for AbrasiveWear 343</p> <p>14.2.2 MaterialMating for AdhesiveWear 344</p> <p>14.2.3 MaterialMating for Contact FatigueWear 345</p> <p>14.2.4 Material Mating for FrettingWear 345</p> <p>14.2.5 MaterialMating for CorrosionWear 345</p> <p>14.2.6 Surface Hardening 346</p> <p>14.3 Surface Coating 346</p> <p>14.3.1 Common PlatingMethods 347</p> <p>14.3.1.1 BeadWelding 347</p> <p>14.3.1.2 Thermal Spraying 348</p> <p>14.3.1.3 Slurry Coating 349</p> <p>14.3.1.4 Electric Brush Plating 350</p> <p>14.3.1.5 Plating 350</p> <p>14.3.2 Design of Surface Coating 354</p> <p>14.3.2.1 General Principles of Coating Design 354</p> <p>14.3.2.2 Selection of Surface PlatingMethod 354</p> <p>14.4 Coating Performance Testing 355</p> <p>14.4.1 Appearance and Structure 355</p> <p>14.4.1.1 Coating Appearance 355</p> <p>14.4.1.2 Measurement of CoatingThickness 355</p> <p>14.4.1.3 Determination of Coating Porosity 355</p> <p>14.4.2 Bond Strength Test 356</p> <p>14.4.2.1 Drop Hammer Impact Test 356</p> <p>14.4.2.2 Vibrator Impact Test 356</p> <p>14.4.2.3 Scratch Test 357</p> <p>14.4.2.4 Broken Test 357</p> <p>14.4.2.5 Tensile Bond Strength Test 357</p> <p>14.4.2.6 Shear Bond Strength Test 357</p> <p>14.4.2.7 Measurement of Internal Bond Strength of Coating 358</p> <p>14.4.3 Hardness Test 360</p> <p>14.4.3.1 Micro-Hardness (Hm) Testing 360</p> <p>14.4.3.2 Hoffman Scratch Hardness Testing 360</p> <p>14.4.4 Wear Test 360</p> <p>14.4.5 Tests of Other Performances 361</p> <p>14.4.5.1 Fatigue Test 361</p> <p>14.4.5.2 Measurement of Residual Stress 361</p> <p>References 362</p> <p><b>15 Tribological Experiments 363</b></p> <p>15.1 Tribological ExperimentalMethod and Devices 363</p> <p>15.1.1 ExperimentalMethods 363</p> <p>15.1.1.1 Laboratory Specimen Test 363</p> <p>15.1.1.2 Simulation Test 363</p> <p>15.1.1.3 Actual Test 363</p> <p>15.1.2 Commonly Used Friction andWear Testing Machines 364</p> <p>15.1.3 EHL andThin Film Lubrication Test 365</p> <p>15.1.3.1 EHL andThin Film Lubrication Test Machine 365</p> <p>15.1.3.2 Principle of Relative Light Intensity 366</p> <p>15.2 Measurement ofWear Capacity 368</p> <p>15.2.1 Weighing Method 368</p> <p>15.2.2 Length Measurement Method 368</p> <p>15.2.3 Profile Method 368</p> <p>15.2.4 IndentationMethod 369</p> <p>15.2.5 Grooving Method 371</p> <p>15.2.6 PrecipitationMethod and Chemical AnalysisMethod 372</p> <p>15.2.7 Radioactive Method 373</p> <p>15.3 Analysis of Friction Surface Morphology 373</p> <p>15.3.1 Analysis of Surface Topography 373</p> <p>15.3.2 Atomic Force Microscope (AFM) 374</p> <p>15.3.3 Surface Structure Analysis 375</p> <p>15.3.4 Surface Chemical Composition Analysis 377</p> <p>15.3.4.1 Energy Spectrum Analysis 377</p> <p>15.3.4.2 Electron Probe Micro-Analysis (EPMA) 377</p> <p>15.4 Wear State Detection 378</p> <p>15.4.1 Ferrography Analysis 378</p> <p>15.4.2 Spectral Analysis 379</p> <p>15.4.3 Lubricant Composition Analysis 380</p> <p>15.4.4 Mechanical Vibration and Noise Analysis 380</p> <p>15.4.5 Lubrication State Analysis 380</p> <p>15.5 Wear Failure Analysis 380</p> <p>15.5.1 Site Investigation 380</p> <p>15.5.2 Lubricant and its Supply System 381</p> <p>15.5.3 Worn Part Analysis 381</p> <p>15.5.4 Design and Operation 381</p> <p>References 383</p> <p><b>Part III Applied Tribology 385</b></p> <p><b>16 Micro-Tribology 387</b></p> <p>16.1 Micro-Friction 387</p> <p>16.1.1 Macro-Friction and Micro-Friction 387</p> <p>16.1.2 Micro-Friction and Surface Topography 388</p> <p>16.1.3 Plowing Effect and Adhesion Effect 391</p> <p>16.1.3.1 Plowing Effect 391</p> <p>16.1.3.2 Adhesion Effect 391</p> <p>16.2 Micro-Contact and Micro-Adhesion 393</p> <p>16.2.1 Solid Micro-Contact 393</p> <p>16.2.1.1 Zero Load Contact 393</p> <p>16.2.1.2 Elastic, Elastic-Plastic and Plastic Contacts 393</p> <p>16.2.2 Solid Adhesion and Surface Force 394</p> <p>16.2.2.1 Solid Adhesion Phenomena 394</p> <p>16.2.2.2 Adhesion and Surface Force 395</p> <p>16.3 Micro-Wear 396</p> <p>16.3.1 Micro-Wear Experiment 396</p> <p>16.3.2 Micro-Wear of Magnetic Head and Disk 398</p> <p>16.4 Molecular Film and Boundary Lubrication 401</p> <p>16.4.1 Static Shear Property of Molecular Layer 401</p> <p>16.4.2 Dynamic Shear Property of Monolayer and Stick-Slip Phenomenon 402</p> <p>16.4.3 Physical State and Phase Change 404</p> <p>16.4.4 Temperature Effect and Friction Mechanism 405</p> <p>16.4.5 Rheological Property of Molecular Film 406</p> <p>16.4.6 Organized Molecular Film 408</p> <p>16.4.6.1 LB Film 408</p> <p>16.4.6.2 Self-Assembled Monolayer 409</p> <p>References 410</p> <p><b>17 Metal Forming Tribology 412</b></p> <p>17.1 Mechanics Basis of Metal Forming 412</p> <p>17.1.1 Yield Criterion 412</p> <p>17.1.2 Friction Coefficient and Shear Factor 413</p> <p>17.1.2.1 Friction Coefficient and Interface Adhesion 413</p> <p>17.1.2.2 Shear Factor 414</p> <p>17.1.3 Influence of Friction on Metal Forming 414</p> <p>17.1.3.1 Influence of Friction on Deformation Force 415</p> <p>17.1.3.2 Non-Uniform Deformation 415</p> <p>17.2 Forging Tribology 416</p> <p>17.2.1 Upsetting Friction 416</p> <p>17.2.1.1 Cylinder Upsetting 416</p> <p>17.2.1.2 Ring Upsetting 417</p> <p>17.2.2 Friction of Open Die Forging 418</p> <p>17.2.3 Friction of Closed-Die Forging 418</p> <p>17.2.4 Lubrication andWear 418</p> <p>17.3 Drawing Tribology 421</p> <p>17.3.1 Friction and Temperature 421</p> <p>17.3.2 Lubrication 422</p> <p>17.3.2.1 Establishment of Hydrodynamic Lubrication 423</p> <p>17.3.2.2 Hydrodynamic Lubrication Calculation of Drawing 424</p> <p>17.3.3 Wear of Drawing Die 424</p> <p>17.3.3.1 Wear of Die Shape 424</p> <p>17.3.3.2 Wear Mechanism 425</p> <p>17.3.3.3 Measures to ReduceWear 425</p> <p>17.3.4 Anti-Friction of Ultrasound in Drawing 427</p> <p>17.4 Rolling Tribology 429</p> <p>17.4.1 Friction in Rolling 429</p> <p>17.4.1.1 Pressure Distribution and Frictional Force 429</p> <p>17.4.1.2 Friction Coefficient of Rolling 430</p> <p>17.4.2 Lubrication in Rolling 432</p> <p>17.4.2.1 Full Film Lubrication 432</p> <p>17.4.2.2 Mixed Lubrication 432</p> <p>17.4.3 RollerWear 434</p> <p>17.4.4 Emulsion Lubricity in Rolling 434</p> <p>References 435</p> <p><b>18 Bio-Tribology 437</b></p> <p>18.1 Mechanics Basis for Soft Biological Tissue 437</p> <p>18.1.1 Rheological Properties of Soft Tissue 437</p> <p>18.1.2 Stress–Strain Curve Analysis 437</p> <p>18.1.3 Anisotropy Relationships 439</p> <p>18.2 Characteristics of Joint Lubricating Fluid 440</p> <p>18.2.1 Joint Lubricating Fluid 440</p> <p>18.2.2 Lubrication Characteristics of Joint Fluid 441</p> <p>18.3 Lubrication of Human and Animal Joints 443</p> <p>18.3.1 Performance of Human Joint 444</p> <p>18.3.2 Joint Lubricating Fluid 445</p> <p>18.3.3 Lubrication Mechanism of Joint 446</p> <p>18.4 Friction andWear of Artificial Joint 447</p> <p>18.4.1 Friction andWear Test 447</p> <p>18.4.2 Wear of Artificial Joint 448</p> <p>18.4.2.1 ExperimentalMethod and Apparatus 449</p> <p>18.4.2.2 Test Results 449</p> <p>18.5 Other Bio-Tribological Studies 451</p> <p>Referencess 452</p> <p><b>19 Space Tribology 453</b></p> <p>19.1 Features of Space Agency and Space Tribology 453</p> <p>19.1.1 Working Conditions in Space 453</p> <p>19.1.2 Features of Space Tribology Problems 455</p> <p>19.2 Analysis of Performances of Space Tribology 456</p> <p>19.2.1 Starved Lubrication 456</p> <p>19.2.2 Parched Lubrication 456</p> <p>19.2.3 Volatility Analysis 458</p> <p>19.2.4 Creeping 460</p> <p>19.3 Space Lubricating Properties 462</p> <p>19.3.1 EHL Characteristics of Space Lubricant 462</p> <p>19.3.2 Space Lubrication of Rolling Contact Bearing 463</p> <p>19.3.2.1 Bearing Coating 463</p> <p>19.3.2.2 Lubricant Film Transfer Technology 464</p> <p>19.3.2.3 Cage Instability 464</p> <p>References 465</p> <p><b>20 Tribology of Micro Electromechanical System 466</b></p> <p>20.1 Introduction 466</p> <p>20.2 Tribological Analysis Technique for MEMS 467</p> <p>20.2.1 Measurement of Micro/Nano-Frictional Force 467</p> <p>20.2.2 Stick-Slip Phenomenon 470</p> <p>20.2.3 Measurement of Micro Adhesive Force 473</p> <p>20.2.4 Factors Influencing Surface Analysis 473</p> <p>20.2.4.1 Normal Load 473</p> <p>20.2.4.2 Temperature 478</p> <p>20.2.4.3 Sliding Velocity 483</p> <p>20.3 Tribological Study of a Micro Motor 484</p> <p>20.3.1 Lubrication of Micro Motor 486</p> <p>20.3.2 Measurement of Frictional Force 487</p> <p>20.3.3 Influence Factors 488</p> <p>20.3.3.1 Intermittent Time 488</p> <p>20.3.3.2 Humidity 489</p> <p>20.3.3.3 Hydrodynamic Film and Boundary Film 490</p> <p>20.4 Wear Analysis of MEMS 491</p> <p>20.4.1 Mechanism of MicroWear 492</p> <p>20.4.2 MicroWear of Monocrystalline Silicon 494</p> <p>20.4.3 MicroWear of Nickel Titanium Shape Memory Alloy 496</p> <p>20.4.3.1 Indentation 497</p> <p>20.4.3.2 Temperature 499</p> <p>20.4.4 Analysis of Surface Bulging 501</p> <p>20.4.4.1 Bulging Phenomenon 502</p> <p>20.4.4.2 Mechanism of Bulging 504</p> <p>References 507</p> <p><b>21 Ecological Tribology 509</b></p> <p>21.1 Zero Friction and Superlubrication 509</p> <p>21.1.1 Phenomenon of Superlubrication 509</p> <p>21.1.2 Mechanisms of Superlubrication 510</p> <p>21.1.2.1 Superfluidity 510</p> <p>21.1.2.2 Superlubrication for Special Surface Pair and in a Special Direction 511</p> <p>21.1.2.3 Superdynamic Friction 512</p> <p>21.1.2.4 Molecular Polymer Film 513</p> <p>21.1.3 Discussion of Superlubrication 514</p> <p>21.1.3.1 Molecular Organization 514</p> <p>21.1.3.2 Types of Molecular Films 514</p> <p>21.1.3.3 Influence of External Field 515</p> <p>21.2 Green Lubricant 516</p> <p>21.2.1 Introduction of Green Lubricants 517</p> <p>21.2.1.1 Harmfulness of petroleum products 517</p> <p>21.2.1.2 Harmfulness ofWaste Oil 517</p> <p>21.2.1.3 Harmfulness ofWaste Gas 517</p> <p>21.2.1.4 Green Basis Oils, Lubricating Oil and Additives 517</p> <p>21.2.2 Development of Green Lubricating Oil for Refrigeration 518</p> <p>21.2.3 Application Tests 520</p> <p>21.2.3.1 Application Test of Polyether Oil GE-30T 520</p> <p>21.2.3.2 Application Test GT-50T 521</p> <p>21.2.4 Biodegradation Test 521</p> <p>21.3 Friction-Induced Noise and Control 523</p> <p>21.3.1 Stick-Slip Model 523</p> <p>21.3.2 Friction-Induced Noise of Wheel-Rail 524</p> <p>21.3.3 Friction-Induced Noise of Rolling Contact Bearing 526</p> <p>21.3.3.1 Sources of Noise 526</p> <p>21.3.3.2 Influence Factors of Noise 527</p> <p>21.4 Remanufacturing and Self-Repairing 528</p> <p>21.4.1 Remanufacturing 529</p> <p>21.4.1.1 Laser Remanufacturing Technology 529</p> <p>21.4.1.2 Electric Brush Plating Technology 530</p> <p>21.4.1.3 Nano Brush Plating Technology 530</p> <p>21.4.1.4 Supersonic Spray Coating Technology 530</p> <p>21.4.2 Self-Repairing 531</p> <p>21.4.2.1 Spreading Film 531</p> <p>21.4.2.2 Eutectic Film 531</p> <p>References 532</p> <p>Index 535</p> <p> </p>
<p><b> SHIZHU WEN,</b> Tsinghua University, China <p><b> PING HUANG,</b> South China University of Technology, China
<p>Updated to include the timely and important topics of MEMS and rolling friction, <i>Principles of Tribology</i> is a compilation of current developments from tribology research, coupled with tribology fundamentals and applications. Essential topics include lubrication theory, lubrication design, friction mechanism, wear mechanism, friction control, and their applications. Besides classical tribology content, the book also covers intersecting research areas of tribology, as well as the regularities and characteristics of the tribological phenomena in practice. Furthermore, it presents the basic theory, numerical analysis methods and experimental measuring techniques of tribology as well as their application in engineering.</p> <ul> <li>Newly expanded and updated to include new tribological material on MEMS and green tribology, its key concepts and applications</li> <li>Systematically brings the reader through fundamental theories, basic mechanisms through to the latest research</li> <li>Emphasizes practical tribological phenomena, supported by numerical analysis and experimental measurement techniques</li> <li>Discusses nano-tribology, thin film lubrication and its applications, topics which are growing in importance</li> </ul> <p>A comprehensive look at the fundamentals and latest research, this second edition of <i>Principles of Tribology</i> is an essential textbook for graduate and senior undergraduate students specializing in tribology and related mechanical engineering fields.</p>

Diese Produkte könnten Sie auch interessieren:

Turbulent Drag Reduction by Surfactant Additives
Turbulent Drag Reduction by Surfactant Additives
von: Feng-Chen Li, Bo Yu, Jin-Jia Wei, Yasuo Kawaguchi
PDF ebook
156,99 €
Turbulent Drag Reduction by Surfactant Additives
Turbulent Drag Reduction by Surfactant Additives
von: Feng-Chen Li, Bo Yu, Jin-Jia Wei, Yasuo Kawaguchi
EPUB ebook
156,99 €
Wear
Wear
von: Gwidon W. Stachowiak
PDF ebook
159,99 €