Details

Principles of Tribology


Principles of Tribology


1. Aufl.

von: Shizhu Wen, Ping Huang

111,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 18.10.2011
ISBN/EAN: 9781118062906
Sprache: englisch
Anzahl Seiten: 512

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Professors Wen and Huang present current developments in tribology research along with tribology fundamentals and applications, including lubrication theory, lubrication design, friction mechanism, wear mechanism, friction control, and their applications. In addition to classical tribology, Wen and Huang cover the research areas of the modern tribology, as well as the regularities and characteristics of tribological phenomena in practice. Furthermore, the authors present the basic theory, numerical analysis methods, and experimental measuring techniques of tribology as well as their applications in engineering. <ul type="disc"> <li>Provides a systematic presentation of tribology fundamentals and their applications</li> <li>Discusses the current states and development trends in tribology research</li> <li>Applies the applications to modern day engineering</li> <li>Computer programs available for download from the book’s companion site</li> </ul> <p><i>Principles of Tribology</i> is aimed at postgraduates and senior-level undergraduates studying tribology, and can be used for courses covering theory and applications. Tribology professionals and students specializing in allied areas of mechanical engineering and materials science will also find the book to be a helpful reference or introduction to the topic.</p> <p>Companion website for the book: www.wiley.com/go/wen/tribology</p>
About the Authors xv <p>Preface xvii</p> <p>Introduction xix</p> <p>PART I LUBRICATION THEORY 1</p> <p>1 Properties of Lubricants 3</p> <p>1.1 Lubrication States 3</p> <p>1.2 Density of Lubricant 6</p> <p>1.3 Viscosity of Lubricant 7</p> <p>1.3.1 Dynamic Viscosity and Kinematic Viscosity 7</p> <p>1.3.2 Relationship between Viscosity and Temperature 9</p> <p>1.3.3 Relationship between Viscosity and Pressure 11</p> <p>1.3.4 Relationships between Viscosity, Temperature and Pressure 12</p> <p>1.4 Non-Newtonian Behaviors 12</p> <p>1.4.1 Ree-Eyring Constitutive Equation 13</p> <p>1.4.2 Visco-Plastic Constitutive Equation 13</p> <p>1.4.3 Circular Constitutive Equation 14</p> <p>1.4.4 Temperature-Dependent Constitutive Equation 14</p> <p>1.4.5 Visco-Elastic Constitutive Equation 14</p> <p>1.4.6 Nonlinear Visco-Elastic Constitutive Equation 15</p> <p>1.4.7 A Simple Visco-Elastic Constitutive Equation 16</p> <p>1.5 Wettability of Lubricants 17</p> <p>1.5.1 Wetting and Contact Angle 17</p> <p>1.5.2 Surface Tension 18</p> <p>1.6 Measurement and Conversion of Viscosity 19</p> <p>1.6.1 Rotary Viscometer 19</p> <p>1.6.2 Off-Body Viscometer 20</p> <p>1.6.3 Capillary Viscometer 20</p> <p>References 22</p> <p>2 Basic Theories of Hydrodynamic Lubrication 23</p> <p>2.1 Reynolds Equation 24</p> <p>2.1.1 Basic Assumptions 24</p> <p>2.1.2 Derivation of Reynolds Equation 24</p> <p>2.2 Hydrodynamic Lubrication 27</p> <p>2.2.1 Mechanism of Hydrodynamic Lubrication 27</p> <p>2.2.2 Boundary Conditions and Initial Conditions of Reynolds Equation 28</p> <p>2.2.3 Calculation of Hydrodynamic Lubrication 29</p> <p>2.3 Elastic Contact Problems 30</p> <p>2.3.1 Line Contact 30</p> <p>2.3.2 Point Contact 33</p> <p>2.4 Entrance Analysis of EHL 36</p> <p>2.4.1 Elastic Deformation of Line Contacts 36</p> <p>2.4.2 Reynolds Equation Considering the Effect of Pressure-Viscocity 37</p> <p>2.4.3 Discussion 37</p> <p>2.4.4 Grubin Film Thickness Formula 39</p> <p>2.5 Grease Lubrication 40</p> <p>References 42</p> <p>3 Numerical Methods of Lubrication Calculation 43</p> <p>3.1 Numerical Methods of Lubrication 44</p> <p>3.1.1 Finite Difference Method 44</p> <p>3.1.2 Finite Element Method and Boundary Element Method 50</p> <p>3.1.3 Numerical Techniques 53</p> <p>3.2 Numerical Solution of the Energy Equation 57</p> <p>3.2.1 Conduction and Convection of Heat 57</p> <p>3.2.2 Energy Equation 59</p> <p>3.2.3 Numerical Solution of Energy Equation 61</p> <p>3.3 The Numerical Solution of Elastohydrodynamic Lubrication 62</p> <p>3.3.1 EHL Numerical Solution of Line Contacts 62</p> <p>3.3.2 EHL Numerical Solution of Point Contacts 67</p> <p>3.4 Multi-Grid Method for Solving EHL Problems 70</p> <p>3.4.1 Basic Principles of Multi-Grid Method 70</p> <p>3.4.2 Nonlinear Full Approximation Scheme of Multi-Grid Method 72</p> <p>3.4.3 V and W Iterations 74</p> <p>3.4.4 Multi-Grid Solution of EHL Problems 74</p> <p>3.4.5 Multi-Grid Integration Method 76</p> <p>References 79</p> <p>4 Lubrication Design of Typical Mechanical Elements 81</p> <p>4.1 Slider and Thrust Bearing 81</p> <p>4.1.1 Basic Equations 81</p> <p>4.1.2 Solutions of Slider Lubrication 82</p> <p>4.2 Journal Bearing 85</p> <p>4.2.1 Axis Position and Clearance Shape 85</p> <p>4.2.2 Infinitely Narrow Bearing 86</p> <p>4.2.3 Infinitely Wide Bearing 88</p> <p>4.3 Hydrostatic Bearing 92</p> <p>4.3.1 Hydrostatic Thrust Plate 93</p> <p>4.3.2 Hydrostatic Journal Bearings 94</p> <p>4.3.3 Bearing Stiffness and Throttle 94</p> <p>4.4 Squeeze Bearing 96</p> <p>4.4.1 Rectangular Plate Squeeze 97</p> <p>4.4.2 Disc Squeeze 98</p> <p>4.4.3 Journal Bearing Squeeze 99</p> <p>4.5 Dynamic Bearing 100</p> <p>4.5.1 Reynolds Equation of Dynamic Journal Bearings 101</p> <p>4.5.2 Simple Dynamic Bearing Calculation 103</p> <p>4.5.3 General Dynamic Bearings 104</p> <p>4.6 Gas Lubrication Bearings 107</p> <p>4.6.1 Basic Equations of Gas Lubrication 107</p> <p>4.6.2 Types of Gas Lubrication Bearings 108</p> <p>4.7 Rolling Contact Bearing 111</p> <p>4.7.1 Equivalent Radius R 111</p> <p>4.7.2 Average Velocity U 112</p> <p>4.7.3 Carrying Load Per Width W/b 112</p> <p>4.8 Gear Lubrication 113</p> <p>4.8.1 Involute Gear Transmission 113</p> <p>4.8.2 Arc Gear Transmission EHL 117</p> <p>4.9 Cam Lubrication 119</p> <p>References 121</p> <p>5 Special Fluid Medium Lubrication 123</p> <p>5.1 Magnetic Hydrodynamic Lubrication 123</p> <p>5.1.1 Composition and Classification of Magnetic Fluids 123</p> <p>5.1.2 Properties of Magnetic Fluids 124</p> <p>5.1.3 Basic Equations of Magnetic Hydrodynamic Lubrication 126</p> <p>5.1.4 Influence Factors on the Magnetic EHL 129</p> <p>5.2 Micro-polar Hydrodynamic Lubrication 129</p> <p>5.2.1 Basic Equations of Micro-polar Fluid Lubrication 130</p> <p>5.2.2 Influence Factors on Micro-polar Fluid Lubrication 133</p> <p>5.3 Liquid Crystal Lubrication 135</p> <p>5.3.1 Types of Liquid Crystal 136</p> <p>5.3.2 Deformation Analysis of Liquid Crystal Lubrication 138</p> <p>5.3.3 Friction Mechanism of Liquid Crystal as a Lubricant Additive 142</p> <p>5.4 Electric Double Layer Effect in Water Lubrication 143</p> <p>5.4.1 Electric Double Layer Hydrodynamic Lubrication Theory 144</p> <p>5.4.2 Influence of Electric Double Layer on Lubrication Properties 148</p> <p>References 151</p> <p>6 Lubrication Transformation and Nanoscale Thin Film Lubrication 153</p> <p>6.1 Transformations of Lubrication States 153</p> <p>6.1.1 Thickness-Roughness Ratio 153</p> <p>6.1.2 Transformation from Hydrodynamic Lubrication to EHL 154</p> <p>6.1.3 Transformation from EHL to Thin Film Lubrication 155</p> <p>6.2 Thin Film Lubrication 159</p> <p>6.2.1 Phenomena of Thin Film Lubrication 159</p> <p>6.2.2 Time Effect of Thin Film Lubrication 161</p> <p>6.2.3 Shear Strain Rate Effect on Thin Film Lubrication 163</p> <p>6.3 Analysis of Thin Film Lubrication 165</p> <p>6.3.1 Difficulties in Numerical Analysis of Thin Film Lubrication 165</p> <p>6.3.2 Tichy's Thin Film Lubrication Models 166</p> <p>6.4 Nano-Gas Film Lubrication 168</p> <p>6.4.1 Rarefied Gas Effect 168</p> <p>6.4.2 Bounardy Slip 169</p> <p>6.4.3 Reynolds Equation Considering the Rarefied Gas Effect 172</p> <p>6.4.4 Calculation of Magnetic Head/Disk of Ultra Thin Gas Lubrication 173</p> <p>References 176</p> <p>7 Boundary Lubrication and Additives 177</p> <p>7.1 Types of Boundary Lubrication 177</p> <p>7.1.1 Stribeck Curve 177</p> <p>7.1.2 Adsorption Films and their Lubrication Mechanisms 178</p> <p>7.1.3 Chemical Reaction Film and its Lubrication Mechanism 183</p> <p>7.1.4 Other Boundary Films and their Lubrication Mechanisms 185</p> <p>7.2 Theory of Boundary Lubrication 186</p> <p>7.2.1 Boundary Lubrication Model 186</p> <p>7.2.2 Factors Influencing Performances of Boundary Film 187</p> <p>7.2.3 Strength of Boundary Film 190</p> <p>7.3 Lubricant Additives 191</p> <p>7.3.1 Oily Additives 191</p> <p>7.3.2 Tackifier 192</p> <p>7.3.3 Extreme Pressure Additives (EP Additives) 193</p> <p>7.3.4 Anti-Wear Additives (AWAdditives) 193</p> <p>7.3.5 Other Additives 194</p> <p>References 195</p> <p>8 Lubrication Failure and Mixed Lubrication 197</p> <p>8.1 Roughness and Viscoelastic Material Effects on Lubrication 197</p> <p>8.1.1 Modifications of micro-EHL 197</p> <p>8.1.2 Viscoelastic Model 198</p> <p>8.1.3 Lubricated Wear 199</p> <p>8.2 Influence of Limit Shear Stress on Lubrication Failure 202</p> <p>8.2.1 Visco-Plastic Constitutive Equation 203</p> <p>8.2.2 Slip of Fluid-Solid Interface 203</p> <p>8.2.3 Influence of Slip on Lubrication Properties 204</p> <p>8.3 Influences of Temperature on Lubrication Failure 207</p> <p>8.3.1 Mechanism of Lubrication Failure Caused by Temperature 208</p> <p>8.3.2 Thermal Fluid Constitutive Equation 208</p> <p>8.3.3 Analysis of Lubrication Failure 209</p> <p>8.4 Mixed Lubrication 210</p> <p>References 215</p> <p>PART II FRICTION AND WEAR 217</p> <p>9 Surface Topography and Contact 219</p> <p>9.1 Parameters of Surface Topography 219</p> <p>9.1.1 Arithmetic Mean Deviation Ra 219</p> <p>9.1.2 Root-Mean-Square Deviation (RMS) s or Rq 219</p> <p>9.1.3 Maximum Height Rmax 220</p> <p>9.1.4 Load-carrying Area Curve 220</p> <p>9.1.5 Arithmetic Mean Interception Length of Centerline Sma 220 219</p> <p>9.2 Statistical Parameters of Surface Topography 222</p> <p>9.2.1 Height Distribution Function 222</p> <p>9.2.2 Deviation of Distribution 224</p> <p>9.2.3 Autocorrelation Function of Surface Profile 225</p> <p>9.3 Structures and Properties of Surface 226</p> <p>9.4 Rough Surface Contact 227</p> <p>9.4.1 Single Peak Contact 228</p> <p>9.4.2 Ideal Roughness Contact 229</p> <p>9.4.3 Random Roughness Contact 230</p> <p>9.4.4 Plasticity Index 232</p> <p>References 232</p> <p>10 Solid Friction and Control 233</p> <p>10.1 Basic Characteristics of Friction 233</p> <p>10.1.1 Influence of Stationary Contact Time 234</p> <p>10.1.2 Jerking Motion 234</p> <p>10.1.3 Pre-Displacement 235</p> <p>10.2 Macro-friction Theory 236</p> <p>10.2.1 Mechanical Engagement Theory 236</p> <p>10.2.2 Molecular Action Theory 237</p> <p>10.2.3 Adhesive Friction Theory 238</p> <p>10.2.4 Plowing Effect 241</p> <p>10.2.5 Deformation Energy Friction Theory 243</p> <p>10.2.6 Binomial Friction Theory 245</p> <p>10.3 Micro-friction Theory 246</p> <p>10.3.1 ‘‘Cobblestone’’ Model 246</p> <p>10.3.2 Oscillator Models 248</p> <p>10.3.3 Phonon Friction Model 251</p> <p>10.4 Sliding Friction 251</p> <p>10.4.1 Influence of Load 252</p> <p>10.4.2 Influence of Sliding Velocity 252</p> <p>10.4.3 Influence of Temperature 253</p> <p>10.4.4 Influence of Surface Film 253</p> <p>10.5 Rolling Friction 254</p> <p>10.5.1 Rolling Friction Mechanism 256</p> <p>10.5.2 Resistances of Rolling Friction 256</p> <p>10.6 Special Friction and Friction Control 257</p> <p>10.6.1 Special Friction 257</p> <p>10.6.2 Friction Control 258</p> <p>References 261</p> <p>11 Characteristics and Mechanisms of Wear 263</p> <p>11.1 Classification of Wear 263</p> <p>11.1.1 Wear Categories 264</p> <p>11.1.2 Wear Process 264</p> <p>11.1.3 Conversion of Wear 266</p> <p>11.2 Abrasive Wear 266</p> <p>11.2.1 Types of Abrasive Wear 267</p> <p>11.2.2 Influence Factors on Abrasive Wear 267</p> <p>11.2.3 Mechanism of Abrasive Wear 271</p> <p>11.3 Adhesive Wear 272</p> <p>11.3.1 Types of Adhesive Wear 272</p> <p>11.3.2 Influence Factors on Adhesive Wear 273</p> <p>11.3.3 Adhesive Wear Mechanism 275</p> <p>11.3.4 Criteria of Scuffing 277</p> <p>11.4 Fatigue Wear 280</p> <p>11.4.1 Types of Fatigue Wear 280</p> <p>11.4.2 Influence Factors on Fatigue Wear 281</p> <p>11.4.3 Criteria of Fatigue Strength and Fatigue Life 285</p> <p>11.5 Corrosive Wear 289</p> <p>11.5.1 Oxidation Wear 289</p> <p>11.5.2 Special Corrosive Wear 291</p> <p>11.5.3 Fretting 291</p> <p>11.5.4 Cavitation Erosion 292</p> <p>References 295</p> <p>12 Macro-wear Theory 297</p> <p>12.1 Friction Material 298</p> <p>12.1.1 Friction Material Properties 298</p> <p>12.1.2 Wear-Resistant Mechanism 299</p> <p>12.2 Wear Process Curve 300</p> <p>12.2.1 Types of Wear Process Curves 300</p> <p>12.2.2 Running-In 301</p> <p>12.3 Surface Quality and Wear 304</p> <p>12.3.1 Influence of Geometric Quality 304</p> <p>12.3.2 Physical Quality 307</p> <p>12.4 Theory of Adhesion Wear 308</p> <p>12.5 Theory of Energy Wear 309</p> <p>12.6 Delamination Wear Theory and Fatigue Wear Theory 311</p> <p>12.6.1 Delamination Wear Theory 311</p> <p>12.6.2 Fatigue Wear Theory 312</p> <p>12.7 Wear Calculation 313</p> <p>12.7.1 IBM Wear Calculation Method 313</p> <p>12.7.2 Calculation Method of Combined Wear 314</p> <p>References 319</p> <p>13 Anti-Wear Design and Surface Coating 321</p> <p>13.1 Selection of Lubricant and Additive 321</p> <p>13.1.1 Lubricant Selection 322</p> <p>13.1.2 Grease Selection 324</p> <p>13.1.3 Solid Lubricants 325</p> <p>13.1.4 Seal and Filter 326</p> <p>13.2 Matching Principles of Friction Materials 326</p> <p>13.2.1 Material Mating for Abrasive Wear 327</p> <p>13.2.2 Material Mating for Adhesive Wear 328</p> <p>13.2.3 Material Mating for Contact Fatigue Wear 329</p> <p>13.2.4 Material Mating for Fretting Wear 330</p> <p>13.2.5 Material Mating for Corrosion Wear 330</p> <p>13.2.6 Surface Hardening 330</p> <p>13.3 Surface Coating 331</p> <p>13.3.1 Commonly Plating Methods 331</p> <p>13.3.2 Design of Surface Coating 338</p> <p>13.4 Coating Performance Testing 339</p> <p>13.4.1 Appearance and Structure 339</p> <p>13.4.2 Bond Strength Test 340</p> <p>13.4.3 Hardness Test 344</p> <p>13.4.4 Wear Test 345</p> <p>13.4.5 Tests of Other Performances 345</p> <p>References 346</p> <p>14 Tribological Experiments 347</p> <p>14.1 Tribological Experimental Method and Device 347</p> <p>14.1.1 Experimental Methods 347</p> <p>14.1.2 Commonly Used Friction and Wear Testing Machines 349</p> <p>14.1.3 EHL and Thin Film Lubrication Test 349</p> <p>14.2 Measurement of Wear Capacity 352</p> <p>14.2.1 Weighing Method 352</p> <p>14.2.2 Length Measurement Method 352</p> <p>14.2.3 Profile Method 352</p> <p>14.2.4 Indentation Method 353</p> <p>14.2.5 Grooving Method 356</p> <p>14.2.6 Precipitation Method and Chemical Analysis Method 357</p> <p>14.2.7 Radioactive Method 357</p> <p>14.3 Analysis of Friction Surface Morphology 358</p> <p>14.3.1 Analysis of Surface Topography 358</p> <p>14.3.2 Atomic Force Microscope (AFM) 358</p> <p>14.3.3 Surface Structure Analysis 360</p> <p>14.3.4 Surface Chemical Composition Analysis 362</p> <p>14.4 Wear State Detection 363</p> <p>14.4.1 Ferrography Analysis 363</p> <p>14.4.2 Spectral Analysis 365</p> <p>14.4.3 Lubricant Composition Analysis 365</p> <p>14.4.4 Mechanical Vibration and Noise Analysis 365</p> <p>14.4.5 Lubrication State Analysis 365</p> <p>14.5 Wear Failure Analysis 365</p> <p>14.5.1 Site Investigation 365</p> <p>14.5.2 Lubricant and its Supply System 366</p> <p>14.5.3 Worn Part Analysis 366</p> <p>14.5.4 Design and Operation 366</p> <p>References 367</p> <p>PART III APPLIED TRIBOLOGY 369</p> <p>15 Micro-tribology 371</p> <p>15.1 Micro-friction 371</p> <p>15.1.1 Macro-friction and Micro-friction 371</p> <p>15.1.2 Micro-friction and Surface Topography 372</p> <p>15.1.3 Plowing Effect and Adhesion Effective 375</p> <p>15.2 Micro-contact and Micro-adhesion 377</p> <p>15.2.1 Solid Micro-contact 377</p> <p>15.2.2 Solid Adhesion and Surface Force 378</p> <p>15.3 Micro-Wear 380</p> <p>15.3.1 Micro-Wear Experiment 380</p> <p>15.3.2 Micro-Wear of Magnetic Head and Disk 382</p> <p>15.4 Molecular Film and Boundary Lubrication 385</p> <p>15.4.1 Static Shear Property of Molecular Layer 386</p> <p>15.4.2 Dynamic Shear Property of Monolayer and Stick-Slip Phenomenon 387</p> <p>15.4.3 Physical State and Phase Change 389</p> <p>15.4.4 Temperature Effect and Friction Mechanism 390</p> <p>15.4.5 Rheological Property of Molecular Film 390</p> <p>15.4.6 Ordered Molecular Film 393</p> <p>References 395</p> <p>16 Metal Forming Tribology 397</p> <p>16.1 Mechanics Basis of Metal Forming 397</p> <p>16.1.1 Yield Criterion 397</p> <p>16.1.2 Friction Coefficient and Shear Factor 398</p> <p>16.1.3 Influence of Friction on Metal Forming 400</p> <p>16.2 Forging Tribology 401</p> <p>16.2.1 Upsetting Friction 401</p> <p>16.2.2 Friction of Open Die Forging 403</p> <p>16.2.3 Friction of Closed-Die Forging 403</p> <p>16.2.4 Lubrication and Wear 404</p> <p>16.3 Drawing Tribology 406</p> <p>16.3.1 Friction and Temperature 406</p> <p>16.3.2 Lubrication 407</p> <p>16.3.3 Wear of Drawing Die 409</p> <p>16.3.4 Anti-Friction of Ultrasound in Drawing 412</p> <p>16.4 Rolling Tribology 415</p> <p>16.4.1 Friction in Rolling 415</p> <p>16.4.2 Lubrication in Rolling 417</p> <p>16.4.3 Roller Wear 419</p> <p>16.4.4 Emulsion Lubricity in Rolling 421</p> <p>References 421</p> <p>17 Bio-Tribology 423</p> <p>17.1 Mechanics Basis for Soft Biological Tissue 423</p> <p>17.1.1 Rheological Property of Soft Tissue 423</p> <p>17.1.2 Stress-Strain Curve Analysis 423</p> <p>17.1.3 Anisotropy Relationship 425</p> <p>17.2 Characteristics of Joint Lubricating Fluid 426</p> <p>17.2.1 Joint Lubricating Fluid 426</p> <p>17.2.2 Lubrication Characteristics of Joint Fluid 427</p> <p>17.3 Lubrication of Human and Animal Joints 430</p> <p>17.3.1 Performance of Human Joint 430</p> <p>17.3.2 Joint Lubricating Fluid 431</p> <p>17.3.3 Lubrication Mechanism of Joint 432</p> <p>17.4 Friction and Wear of Artificial Joint 434</p> <p>17.4.1 Friction and Wear Test 434</p> <p>17.4.2 Wear of Artificial Joint 435</p> <p>17.5 Other Bio-Tribological Studies 438</p> <p>References 438</p> <p>18 Space Tribology 439</p> <p>18.1 Features of Space Agency and Space Tribology 439</p> <p>18.1.1 Working Conditions in Space 439</p> <p>18.1.2 Features of Space Tribology Problems 441</p> <p>18.2 Analysis of Performances of Space Tribology 442</p> <p>18.2.1 Starved Lubrication 442</p> <p>18.2.2 Parched Lubrication 443</p> <p>18.2.3 Volatility Analysis 444</p> <p>18.2.4 Creeping 446</p> <p>18.3 Space Lubricating Properties 448</p> <p>18.3.1 EHL Characteristics of Space Lubricant 448</p> <p>18.3.2 Space Lubrication of Rolling Contact Bearing 449</p> <p>References 450</p> <p>Index 453</p>
<p><b>Prof. Wen Shizhu, Tsinghua University, China</b><br />Wen Shizhu is a Professor at Tsinghua University and a CAS Academician. His research fields cover lubrication theory, nano-tribology and the mechanism and control of friction and wear. In 1956, he participated in drafting 12th "National Scientific Development Plan," and finished the first development planning of friction, wear and lubrication engineering. In the late 80s, he was involved in drafting the "Tribology Field Plan and Development Strategy Report" for the National Science and Technology Committee, the Education Committee, and the National Natural Science Foundation Committee.</p> <p><b>Prof. Huang Ping, South China University of Technology, China</b><br />Huang Ping is a Professor at South China University of Technology. He obtained his PhD degree from Department of Engineering Mechanics, Tsinghua University, and has worked in the State Key Laboratory of Tribology at Tsinghua University for eight years. He is the head of Institute of mechanical design and equipment, and the State Experimental Training Center of Basic Mechanics of South China University of Technology.</p>
Professors Wen and Huang present current developments in tribology research along with tribology fundamentals and applications, including lubrication theory, lubrication design, friction mechanism, wear mechanism, friction control, and their applications. In addition to classical tribology, Wen and Huang cover the research areas of the modern tribology, as well as the regularities and characteristics of tribological phenomena in practice. Furthermore, the authors present the basic theory, numerical analysis methods, and experimental measuring techniques of tribology as well as their applications in engineering. <ul type="disc"> <li>Provides a systematic presentation of tribology fundamentals and their applications</li> <li>Discusses the current states and development trends in tribology research</li> <li>Applies the applications to modern day engineering</li> <li>Computer programs available for download from the book’s companion site</li> </ul> <p><i>Principles of Tribology</i> is aimed at postgraduates and senior-level undergraduates studying tribology, and can be used for courses covering theory and applications. Tribology professionals and students specializing in allied areas of mechanical engineering and materials science will also find the book to be a helpful reference or introduction to the topic.</p> <p>Companion website for the book:</p> <p>www.wiley.com/go/wen/tribology</p>

Diese Produkte könnten Sie auch interessieren:

Movement Equations 4
Movement Equations 4
von: Michel Borel, Georges Vénizélos
EPUB ebook
139,99 €
Movement Equations 4
Movement Equations 4
von: Michel Borel, Georges Vénizélos
PDF ebook
139,99 €
Applied Mechanical Design
Applied Mechanical Design
von: Ammar Grous
PDF ebook
144,99 €