Details

Principles and Case Studies of Simultaneous Design


Principles and Case Studies of Simultaneous Design


1. Aufl.

von: William L. Luyben

150,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 08.02.2012
ISBN/EAN: 9781118001646
Sprache: englisch
Anzahl Seiten: 344

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

There are many comprehensive design books, but none of them provide a significant number of detailed economic design examples of typically complex industrial processes. Most of the current design books cover a wide variety of topics associated with process design. In addition to discussing flowsheet development and equipment design, these textbooks go into a lot of detail on engineering economics and other many peripheral subjects such as written and oral skills, ethics, "green" engineering and product design. This book presents general process design principles in a concise readable form that can be easily comprehended by students and engineers when developing effective flow sheet and control structures. <p>Ten detailed case studies presented illustrate an in-depth and quantitative way the application of these general principles. Detailed economic steady-state designs are developed that satisfy economic criterion such as minimize total annual cost of both capital and energy or return on incremental capital investment. Complete detailed flow sheets and Aspen Plus files are provided. Then conventional PI control structures are be developed and tested for their ability to maintain product quality during disturbances. Complete Aspen Dynamics files are be provided of the dynamic simulations.</p>
PREFACE xv <p><b>1 INTRODUCTION 1</b></p> <p>1.1 Overview / 1</p> <p>1.2 History / 3</p> <p>1.3 Books / 4</p> <p>1.4 Tools / 4</p> <p>Reference Textbooks / 5</p> <p><b>2 PRINCIPLES OF REACTOR DESIGN AND CONTROL 7</b></p> <p>2.1 Background / 7</p> <p>2.2 Principles Derived from Chemistry / 8</p> <p>2.2.1 Heat of Reaction / 8</p> <p>2.2.2 Reversible and Irreversible Reactions / 9</p> <p>2.2.3 Multiple Reactions / 10</p> <p>2.3 Principles Derived from Phase of Reaction / 11</p> <p>2.4 Determining Kinetic Parameters / 12</p> <p>2.4.1 Thermodynamic Constraints / 12</p> <p>2.4.2 Kinetic Parameters from Plant Data / 13</p> <p>2.5 Principles of Reactor Heat Exchange / 13</p> <p>2.5.1 Continuous Stirred-Tank Reactors / 13</p> <p>2.5.2 Tubular Reactors / 14</p> <p>2.5.3 Feed-Effluent Heat Exchangers / 16</p> <p>2.6 Heuristic Design of Reactor/Separation Processes / 17</p> <p>2.6.1 Introduction / 17</p> <p>2.6.2 Process Studied / 18</p> <p>2.6.3 Economic Optimization / 21</p> <p>2.6.4 Other Cases / 22</p> <p>2.6.5 Real Example / 27</p> <p>2.7 Conclusion / 28</p> <p>References / 29</p> <p><b>3 PRINCIPLES OF DISTILLATION DESIGN AND CONTROL 31</b></p> <p>3.1 Principles of Economic Distillation Design / 32</p> <p>3.1.1 Operating Pressure / 32</p> <p>3.1.2 Heuristic Optimization / 33</p> <p>3.1.3 Rigorous Optimization / 33</p> <p>3.1.4 Feed Preheating and Intermediate Reboilers and Condensers / 34</p> <p>3.1.5 Heat Integration / 34</p> <p>3.2 Principles of Distillation Control / 35</p> <p>3.2.1 Single-End Control / 36</p> <p>3.2.2 Dual-End Control / 38</p> <p>3.2.3 Alternative Control Structures / 38</p> <p>3.3 Conclusion / 39</p> <p>References / 39</p> <p><b>4 PRINCIPLES OF PLANTWIDE CONTROL 41</b></p> <p>4.1 History / 42</p> <p>4.2 Effects of Recycle / 42</p> <p>4.2.1 Time Constants of Integrated Plant with Recycle / 42</p> <p>4.2.2 Recycle Snowball Effect / 43</p> <p>4.3 Management of Fresh Feed Streams / 45</p> <p>4.3.1 Fundamentals / 45</p> <p>4.3.2 Process with Two Recycles and Two Fresh Feeds / 46</p> <p>4.4 Conclusion / 52</p> <p><b>5 ECONOMIC BASIS 53</b></p> <p>5.1 Level of Accuracy / 53</p> <p>5.2 Sizing Equipment / 54</p> <p>5.2.1 Vessels / 54</p> <p>5.2.2 Heat Exchangers / 55</p> <p>5.2.3 Compressors / 56</p> <p>5.2.4 Pumps, Valves, and Piping / 56</p> <p>5.3 Equipment Capital Cost / 56</p> <p>5.3.1 Vessels / 56</p> <p>5.3.2 Heat Exchangers / 56</p> <p>5.3.3 Compressors / 57</p> <p>5.4 Energy Costs / 57</p> <p>5.5 Chemical Costs / 57</p> <p>References / 57</p> <p><b>6 DESIGN AND CONTROL OF THE ACETONE PROCESS VIA DEHYDROGENATION OF ISOPROPANOL 59</b></p> <p>6.1 Process Description / 60</p> <p>6.1.1 Reaction Kinetics / 61</p> <p>6.1.2 Phase Equilibrium / 62</p> <p>6.2 Turton Flowsheet / 62</p> <p>6.2.1 Vaporizer / 63</p> <p>6.2.2 Reactor / 64</p> <p>6.2.3 Heat Exchangers, Flash Tank, and Absorber / 64</p> <p>6.2.4 Acetone Column C1 / 66</p> <p>6.2.5 Water Column C2 / 66</p> <p>6.3 Revised Flowsheet / 66</p> <p>6.3.1 Effect of Absorber Pressure / 66</p> <p>6.3.2 Effect of Water Solvent and Absorber Stages / 68</p> <p>6.3.3 Effect of Reactor Size / 68</p> <p>6.3.4 Optimum Distillation Design / 69</p> <p>6.4 Economic Comparison / 69</p> <p>6.5 Plantwide Control / 71</p> <p>6.5.1 Control Structure / 71</p> <p>6.5.2 Column Control Structure Selection / 75</p> <p>6.5.3 Dynamic Performance Results / 76</p> <p>6.6 Conclusion / 81</p> <p>References / 81</p> <p><b>7 DESIGN AND CONTROL OF AN AUTO-REFRIGERATED ALKYLATION PROCESS 83</b></p> <p>7.1 Introduction / 84</p> <p>7.2 Process Description / 84</p> <p>7.2.1 Reaction Kinetics / 85</p> <p>7.2.2 Phase Equilibrium / 85</p> <p>7.2.3 Flowsheet / 86</p> <p>7.2.4 Design Optimization Variables / 88</p> <p>7.3 Design of Distillation Columns / 89</p> <p>7.3.1 Depropanizer / 89</p> <p>7.3.2 Deisobutanizer / 89</p> <p>7.4 Economic Optimization of Entire Process / 91</p> <p>7.4.1 Flowsheet Convergence / 91</p> <p>7.4.2 Yield / 91</p> <p>7.4.3 Effect of Reactor Size / 91</p> <p>7.4.4 Optimum Economic Design / 93</p> <p>7.5 Alternative Flowsheet / 94</p> <p>7.6 Plantwide Control / 96</p> <p>7.6.1 Control Structure / 96</p> <p>7.6.2 Controller Tuning / 100</p> <p>7.6.3 Dynamic Performance / 101</p> <p>7.7 Conclusion / 103</p> <p>References / 105</p> <p><b>8 DESIGN AND CONTROL OF THE BUTYL ACETATE PROCESS 107</b></p> <p>8.1 Introduction / 108</p> <p>8.2 Chemical Kinetics and Phase Equilibrium / 108</p> <p>8.2.1 Chemical Kinetics and</p> <p>Chemical Equilibrium / 108</p> <p>8.2.2 Vapor-Liquid Equilibrium / 110</p> <p>8.3 Process Flowsheet / 112</p> <p>8.3.1 Reactor / 112</p> <p>8.3.2 Column C1 / 113</p> <p>8.3.3 Column C2 / 113</p> <p>8.3.4 Column C3 / 113</p> <p>8.3.5 Flowsheet Convergence / 115</p> <p>8.4 Economic Optimum Design / 117</p> <p>8.4.1 Reactor Size and Temperature / 117</p> <p>8.4.2 Butanol Recycle and Composition / 118</p> <p>8.4.3 Distillation Column Design / 119</p> <p>8.4.4 System Economics / 120</p> <p>8.5 Plantwide Control / 121</p> <p>8.5.1 Column C1 / 121</p> <p>8.5.2 Column C2 / 122</p> <p>8.5.3 Column C3 / 122</p> <p>8.5.4 Plantwide Control Structure / 123</p> <p>8.5.5 Dynamic Performance / 124</p> <p>8.6 Conclusion / 133</p> <p>References / 133</p> <p><b>9 DESIGN AND CONTROL OF THE CUMENE PROCESS 135</b></p> <p>9.1 Introduction / 136</p> <p>9.2 Process Studied / 136</p> <p>9.2.1 Reaction Kinetics / 136</p> <p>9.2.2 Phase Equilibrium / 137</p> <p>9.2.3 Flowsheet / 137</p> <p>9.3 Economic Optimization / 140</p> <p>9.3.1 Increasing Propylene Conversion / 140</p> <p>9.3.2 Effects of Design Optimization Variables / 141</p> <p>9.3.3 Economic Basis / 142</p> <p>9.3.4 Economic Optimization Results / 143</p> <p>9.4 Plantwide Control / 147</p> <p>9.5 Conclusion / 158</p> <p>References / 158</p> <p><b>10 DESIGN AND CONTROL OF THE ETHYL BENZENE PROCESS 159</b></p> <p>10.1 Introduction / 159</p> <p>10.2 Process Studied / 160</p> <p>10.2.1 Reaction Kinetics / 161</p> <p>10.2.2 Phase Equilibrium / 162</p> <p>10.2.3 Flowsheet / 163</p> <p>10.3 Design of Distillation Columns / 164</p> <p>10.3.1 Column Pressure Selection / 166</p> <p>10.3.2 Number of Column Trays / 169</p> <p>10.4 Economic Optimization of Entire Process / 169</p> <p>10.5 Plantwide Control / 172</p> <p>10.5.1 Distillation Column Control Structure / 172</p> <p>10.5.2 Plantwide Control Structure / 173</p> <p>10.5.3 Controller Tuning / 174</p> <p>10.5.4 Dynamic Performance / 174</p> <p>10.5.5 Modified Control Structure / 176</p> <p>10.6 Conclusion / 183</p> <p>References / 183</p> <p><b>11 DESIGN AND CONTROL OF A METHANOL REACTOR</b><b>/COLUMN PROCESS 185</b></p> <p>11.1 Introduction / 185</p> <p>11.2 Process Studied / 186</p> <p>11.2.1 Compression and Reactor Preheating / 186</p> <p>11.2.2 Reactor / 187</p> <p>11.2.3 Separator, Recycle, and Vent / 187</p> <p>11.2.4 Flash and Distillation / 188</p> <p>11.3 Reaction Kinetics / 188</p> <p>11.4 Overall and Per-Pass Conversion / 189</p> <p>11.5 Phase Equilibrium / 191</p> <p>11.6 Effects of Design Optimization Variables / 192</p> <p>11.6.1 Economic Basis / 192</p> <p>11.6.2 Effect of Pressure / 193</p> <p>11.6.3 Effect of Reactor Size / 195</p> <p>11.6.4 Effect of Vent/Recycle Split / 196</p> <p>11.6.5 Effect of Flash-Tank Pressure / 197</p> <p>11.6.6 Optimum Distillation Column Design / 198</p> <p>11.7 Plantwide Control / 201</p> <p>11.7.1 Control Structure / 201</p> <p>11.7.2 Column Control Structure Selection / 203</p> <p>11.7.3 High-Pressure Override Controller / 203</p> <p>11.7.4 Dynamic Performance Results / 204</p> <p>11.8 Conclusion / 209</p> <p>References / 210</p> <p><b>12 DESIGN AND CONTROL OF THE METHOXY-METHYL-HEPTANE PROCESS 211</b></p> <p>12.1 Introduction / 211</p> <p>12.2 Process Studied / 212</p> <p>12.2.1 Reactor / 212</p> <p>12.2.2 Column C1 / 213</p> <p>12.2.3 Column C2 / 213</p> <p>12.2.4 Column C3 / 213</p> <p>12.3 Reaction Kinetics / 213</p> <p>12.4 Phase Equilibrium / 215</p> <p>12.5 Design Optimization / 215</p> <p>12.5.1 Economic Basis / 216</p> <p>12.5.2 Reactor Size versus Recycle Trade-Off / 216</p> <p>12.6 Optimum Distillation Column Design / 220</p> <p>12.6.1 Column Pressures / 220</p> <p>12.6.2 Number of Stages / 220</p> <p>12.6.3 Column Profiles / 222</p> <p>12.7 Plantwide Control / 223</p> <p>12.7.1 Control Structure / 225</p> <p>12.7.2 Dynamic Performance Results / 227</p> <p>12.8 Conclusion / 230</p> <p>References / 231</p> <p><b>13 DESIGN AND CONTROL OF A METHYL ACETATE PROCESS USING CARBONYLATION OF DIMETHYL ETHER 233</b></p> <p>13.1 Introduction / 233</p> <p>13.2 Dehydration Section / 234</p> <p>13.2.1 Process Description of Dehydration Section / 234</p> <p>13.2.2 Dehydration Kinetics / 235</p> <p>13.2.3 Alternative Flowsheets / 236</p> <p>13.2.4 Optimization of Three Flowsheets / 240</p> <p>13.3 Carbonylation Section / 245</p> <p>13.3.1 Process Description / 246</p> <p>13.3.2 Carbonylation Kinetics / 247</p> <p>13.3.3 Effect of Parameters / 248</p> <p>13.3.4 Flowsheet Convergence / 250</p> <p>13.3.5 Optimization / 251</p> <p>13.4 Plantwide Control / 255</p> <p>13.4.1 Control Structure / 255</p> <p>13.4.2 Dynamic Performance / 261</p> <p>13.5 Conclusion / 262</p> <p>References / 262</p> <p><b>14 DESIGN AND CONTROL OF THE MONO-ISOPROPYL AMINE PROCESS 263</b></p> <p>14.1 Introduction / 263</p> <p>14.2 Process Studied / 264</p> <p>14.2.1 Reaction Kinetics / 264</p> <p>14.2.2 Phase Equilibrium / 265</p> <p>14.2.3 Flowsheet / 266</p> <p>14.3 Economic Optimization / 268</p> <p>14.3.1 Design Optimization Variables / 268</p> <p>14.3.2 Optimization Results / 269</p> <p>14.4 Plantwide Control / 270</p> <p>14.4.1 Dynamic Model Sizing / 271</p> <p>14.4.2 Distillation Column Control Structures / 272</p> <p>14.4.3 Plantwide Control Structure / 276</p> <p>14.5 Conclusion / 289</p> <p>References / 290</p> <p><b>15 DESIGN AND CONTROL OF THE STYRENE PROCESS 291</b></p> <p>15.1 Introduction / 292</p> <p>15.2 Kinetics and Phase Equilibrium / 293</p> <p>15.2.1 Reaction Kinetics / 293</p> <p>15.2.2 Phase Equilibrium / 294</p> <p>15.3 Vasudevan et al. Flowsheet / 295</p> <p>15.3.1 Reactors / 295</p> <p>15.3.2 Condenser and Decanter / 295</p> <p>15.3.3 Product Column C1 / 296</p> <p>15.3.4 Recycle Column C2 / 298</p> <p>15.4 Effects of Design Optimization Variables / 298</p> <p>15.4.1 Effect of Process Steam / 298</p> <p>15.4.2 Effect of Reactor Inlet Temperature / 301</p> <p>15.4.3 Effect of Reactor Size / 302</p> <p>15.4.4 Optimum Distillation Column Design / 303</p> <p>15.4.5 Number of Reactors / 304</p> <p>15.4.6 Reoptimization / 304</p> <p>15.4.7 Other Improvements / 305</p> <p>15.5 Proposed Design / 305</p> <p>15.6 Plantwide Control / 306</p> <p>15.6.1 Control Structure / 306</p> <p>15.6.2 Column Control Structure Selection / 310</p> <p>15.6.3 Dynamic Performance Results / 312</p> <p>15.7 Conclusion / 317</p> <p>References / 317</p> <p>NOMENCLATURE 319</p> <p>INDEX 321</p>
<p>"I highly recommend the important and all encompassing book <i>Principles and Case Studies of Simultaneous Design</i> by William L. Luyben, to any chemistry or engineering students, practicing chemical engineers, product designers in industry, and business leaders looking for a fresh approach to simultaneous design issues. This book will transform your company's industrial processes and product design into one of a leader in process design." (<i>Blog Business World</i>, 26 November 2011)</p>
<p><b>WILLIAM L. LUYBEN</b>, PhD, is a professor at Lehigh University, and the author/co-author of thirteen textbooks. He has published over 250 technical papers in the area of process control and design and has supervised thirty-five PhD dissertations He has nine years of industrial experience with Exxon and DuPont.</p>
<b>An in-depth look at the general principles of design—complete with a rich series of case studies</b> <p>Presenting general design principles in a concise format, <i>Principles and Case Studies of Simultaneous Design</i> guides readers in building an effective flowsheet and control structure when developing a chemical process. Aided by detailed economic design examples of typically complex industrial processes, this book encompasses all the methods and techniques essential to chemical process design in the creation of new facilities or the modifications of existing ones. In addition, it shows ways in which these methods can be applied to reactive distillation, reactor design, plant design, and various other chemical engineering processes. Principles and Case Studies of Simultaneous Design:</p> <ul> <li>Is presented in a well-illustrated, large-size format with detailed schematics</li> <li>Discusses conventional proportional—integral—derivative (PID) control structures to emphasize importance of maintaining product quality during disturbances</li> <li>Includes ten detailed case studies that illustrate the principles of process design</li> <li>Supplies case studies that contain rigorous steady-state economic evaluations and dynamic plant-wide control studies</li> <li>Provides completed detailed flowsheets with Aspen Plus files included, along with examples of dynamic simulations using Aspen Dynamics</li> </ul> <p><i>Principles and Case Studies of Simultaneous Design</i> offers students and engineers in the chemical, petroleum, and biochemical industries the essential principles of design and control in a manner that cuts directly to the core of the most important technical information. Written in style that is approachable and easy to comprehend, this invaluable reference is sure to become a treasured reference for any seasoned or aspiring engineer.</p>

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €