Details

Power Electronic Converters


Power Electronic Converters

Dynamics and Control in Conventional and Renewable Energy Applications
1. Aufl.

von: Teuvo Suntio, Tuomas Messo, Joonas Puukko

297,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 12.09.2017
ISBN/EAN: 9783527698516
Sprache: englisch
Anzahl Seiten: 720

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>Filling the need for a reference that explains the behavior of power electronic converters, this book provides information currently unavailable in similar texts on power electronics.</p> <p>Clearly organized into four parts, the first treats the dynamics and control of conventional converters, while the second part covers the dynamics and control of DC-DC converters in renewable energy applications, including an introduction to the sources as well as the design of current-fed converters applying duality-transformation methods. The third part treats the dynamics and control of three-phase rectifiers in voltage-sourced applications, and the final part looks at the dynamics and control of three-phase inverters in renewable-energy applications.</p> <p>With its future-oriented perspective and advanced, first-hand knowledge, this is a prime resource for researchers and practicing engineers needing a ready reference on the design and control of power electronic converters.</p>
<p>Preface xiii</p> <p>About the Authors xv</p> <p><b>Part One Introduction 1</b></p> <p><b>1 Introduction 3</b></p> <p>1.1 Introduction 3</p> <p>1.2 Implementation of Current-Fed Converters 6</p> <p>1.3 Dynamic Modeling of Power Electronic Converters 7</p> <p>1.4 Linear Equivalent Circuits 8</p> <p>1.5 Impedance-Based Stability Assessment 12</p> <p>1.6 Time Domain-Based Dynamic Analysis 14</p> <p>1.7 Renewable Energy System Principles 17</p> <p>1.8 Content Review 19</p> <p>References 20</p> <p><b>2 Dynamic Analysis and Control Design Preliminaries 27</b></p> <p>2.1 Introduction 27</p> <p>2.2 Generalized Dynamic Representations – DC–DC 27</p> <p>2.2.1 Introduction 27</p> <p>2.2.2 Generalized Dynamic Representations 29</p> <p>2.2.3 Generalized Closed-Loop Dynamics 30</p> <p>2.2.4 Generalized Cascaded Control Schemes 33</p> <p>2.2.5 Generalized Source and Load Interactions 38</p> <p>2.2.6 Generalized Impedance-Based Stability Assessment 40</p> <p>2.3 Generalized Dynamic Representations: DC–AC, AC–DC, and AC–AC 42</p> <p>2.3.1 Introduction 42</p> <p>2.3.2 Generalized Dynamic Representations 44</p> <p>2.3.3 Generalized Closed-Loop Dynamics 48</p> <p>2.3.4 Generalized Cascaded Control Schemes 50</p> <p>2.3.5 Generalized Source and Load Interactions 54</p> <p>2.3.6 Generalized Impedance-Based Stability Assessment 56</p> <p>2.4 Small-Signal Modeling 57</p> <p>2.4.1 Introduction 57</p> <p>2.4.2 Average Modeling and Linearization 60</p> <p>2.4.3 Modeling Coupled-Inductor Converters 64</p> <p>2.4.4 Modeling in Synchronous Reference Frame 66</p> <p>2.5 Control Design Preliminaries 77</p> <p>2.5.1 Introduction 77</p> <p>2.5.2 Transfer Functions 77</p> <p>2.5.3 Stability 84</p> <p>2.5.4 Transient Performance 95</p> <p>2.5.5 Feedback-Loop Design Constraints 100</p> <p>2.5.6 Controller Implementations 103</p> <p>2.5.7 Optocoupler Isolation 108</p> <p>2.5.8 Application of Digital Control 109</p> <p>2.6 Resonant LC-Type Circuits 110</p> <p>2.6.1 Introduction 110</p> <p>2.6.2 Single-Section LC Filter 112</p> <p>2.6.3 LCL Filter 113</p> <p>2.6.4 CLCL Filter 115</p> <p>References 117</p> <p><b>Part Two Voltage-Fed DC</b><b>–</b><b>DC Converters 123</b></p> <p><b>3 Dynamic Modeling of Direct-on-Time Control 125</b></p> <p>3.1 Introduction 125</p> <p>3.2 Direct-on-Time Control 127</p> <p>3.3 Generalized Modeling Technique 129</p> <p>3.3.1 Buck Converter 131</p> <p>3.3.2 Boost Converter 134</p> <p>3.3.3 Buck–Boost Converter 136</p> <p>3.3.4 Superbuck Converter 140</p> <p>3.4 Fixed-Frequency Operation in CCM 142</p> <p>3.4.1 Buck Converter 143</p> <p>3.4.2 Boost Converter 146</p> <p>3.4.3 Buck–Boost Converter 149</p> <p>3.4.4 Superbuck Converter 153</p> <p>3.4.5 Coupled-Inductor Superbuck Converter 157</p> <p>3.5 Fixed-Frequency Operation in DCM 163</p> <p>3.5.1 Buck Converter 164</p> <p>3.5.2 Boost Converter 167</p> <p>3.5.3 Buck–Boost Converter 170</p> <p>3.6 Source and Load Interactions 173</p> <p>3.6.1 Source Interactions 173</p> <p>3.6.2 Input Voltage Feedforward 174</p> <p>3.6.3 Load Interactions 176</p> <p>3.6.4 Output-Current Feedforward 177</p> <p>3.7 Impedance-Based Stability Issues 179</p> <p>3.8 Dynamic Review 181</p> <p>References 186</p> <p><b>4 Dynamic Modeling of Current-Mode Control 189</b></p> <p>4.1 Introduction 189</p> <p>4.2 Peak Current Mode Control 190</p> <p>4.2.1 PCM Control Principles 190</p> <p>4.2.2 Development of Duty-Ratio Constraints in CCM 192</p> <p>4.2.3 Development of Duty-Ratio Constraints in DCM 195</p> <p>4.2.4 Origin and Consequences of Mode Limits in CCM and DCM 196</p> <p>4.2.5 Duty-Ratio Constraints in CCM 201</p> <p>4.2.5.1 Buck Converter 201</p> <p>4.2.5.2 Boost Converter 201</p> <p>4.2.5.3 Buck–Boost Converter 202</p> <p>4.2.5.4 Superbuck Converter 204</p> <p>4.2.5.5 Coupled-Inductor Superbuck Converter 205</p> <p>4.2.6 Duty-Ratio Constraints in DCM 205</p> <p>4.2.6.1 Buck Converter 205</p> <p>4.2.6.2 Boost Converter 206</p> <p>4.2.6.3 Buck–Boost Converter 206</p> <p>4.2.7 General PCM Transfer Functions in CCM 207</p> <p>4.2.8 PCM State Spaces and Transfer Functions in CCM 209</p> <p>4.2.8.1 Buck Converter 209</p> <p>4.2.8.2 Boost Converter 211</p> <p>4.2.8.3 Buck–Boost Converter 213</p> <p>4.2.8.4 Superbuck Converter 215</p> <p>4.2.8.5 Coupled-Inductor Superbuck Converter 219</p> <p>4.2.9 PCM State Spaces in DCM 222</p> <p>4.2.9.1 Buck Converter 222</p> <p>4.2.9.2 Boost Converter 222</p> <p>4.2.9.3 Buck–Boost Converter 223</p> <p>4.3 Average Current-Mode Control 224</p> <p>4.3.1 Introduction 224</p> <p>4.3.2 ACM Control Principle 225</p> <p>4.3.3 Modeling with Full Ripple Inductor Current Feedback 226</p> <p>4.4 Variable-Frequency Control 230</p> <p>4.4.1 Introduction 230</p> <p>4.4.2 Self-Oscillation Modeling – DOT and PCM Control 231</p> <p>4.5 Source and Load Interactions 239</p> <p>4.5.1 Output Current Feedforward 240</p> <p>4.6 Impedance-Based Stability Issues 243</p> <p>4.7 Dynamic Review 244</p> <p>4.8 Critical Discussions on PCM Models and Their Validation 249</p> <p>4.8.1 Ridley’s Models 249</p> <p>4.8.2 The Book PCM Model in CCM 252</p> <p>4.8.3 Evaluation of PCM-Controlled Buck in CCM 253</p> <p>4.8.4 Evaluation of PCM-Controlled Boost in CCM 258</p> <p>4.8.5 Concluding Remarks 259</p> <p>References 260</p> <p><b>5 Dynamic Modeling of Current-Output Converters 265</b></p> <p>5.1 Introduction 265</p> <p>5.2 Dynamic Modeling 267</p> <p>5.3 Source and Load Interactions 269</p> <p>5.3.1 Source Interactions 269</p> <p>5.3.2 Load Interactions 270</p> <p>5.4 Impedance-Based Stability Issues 271</p> <p>5.5 Dynamic Review 272</p> <p>References 275</p> <p><b>6 Control Design Issues in Voltage-Fed DC</b><b>–</b><b>DC Converters 277</b></p> <p>6.1 Introduction 277</p> <p>6.2 Developing Switching and Average Models 279</p> <p>6.2.1 Switching Models 279</p> <p>6.2.2 Averaged Models 287</p> <p>6.3 Factors Affecting Transient Response 291</p> <p>6.3.1 Output Voltage Undershoot 292</p> <p>6.3.2 Settling Time 294</p> <p>6.4 Remote Sensing 304</p> <p>6.4.1 Introduction 304</p> <p>6.4.2 Remote Sensing Dynamic Effect Analysis Method 304</p> <p>6.4.3 Remote Sensing Impedance Block Examples 306</p> <p>6.4.4 Experimental Evidence 307</p> <p>6.5 Simple Control Design Method 310</p> <p>6.5.1 DDR-Controlled Buck Converter 312</p> <p>6.5.2 PCM-Controlled Buck Converter 315</p> <p>6.5.3 DDR-Controlled Boost Converter 321</p> <p>6.5.4 PCM-Controlled Boost Converter 325</p> <p>6.6 PCM-Controlled Superbuck Converter: Experimental Examples 330</p> <p>6.6.1 Introduction 330</p> <p>6.6.2 Discrete-Inductor Superbuck 331</p> <p>6.6.3 Coupled-Inductor Superbuck 332</p> <p>6.7 Concluding Remarks 334</p> <p>References 334</p> <p><b>Part Three Current-Fed Converters 339</b></p> <p><b>7 Introduction to Current-Fed Converters 341</b></p> <p>7.1 Introduction 341</p> <p>7.2 Duality Transformation Basics 341</p> <p>7.3 Duality-Transformed Converters 345</p> <p>7.4 Input Capacitor-Based Converters 351</p> <p>References 352</p> <p><b>8 Dynamic Modeling of DDR-Controlled CF Converters 355</b></p> <p>8.1 Introduction 355</p> <p>8.2 Dynamic Models 356</p> <p>8.2.1 Duality Transformed Converters 358</p> <p>8.2.1.1 Buck Converter 358</p> <p>8.2.1.2 Boost Converter 365</p> <p>8.2.1.3 Noninverting Buck–Boost Converter 368</p> <p>8.2.1.4 CF Superbuck Converter 372</p> <p>8.2.2 Input Capacitor-Based Converters 376</p> <p>8.2.2.1 Buck Power-Stage Converter 377</p> <p>8.2.2.2 Boost Power-Stage Converter 383</p> <p>8.2.2.3 Noninverting Buck–Boost Power-Stage Converter 387</p> <p>8.3 Source and Load Interactions 390</p> <p>8.3.1 CF-CO Converters 390</p> <p>8.3.1.1 Source Interactions 390</p> <p>8.3.1.2 Load Interactions 391</p> <p>8.3.2 CF-VO Converters 392</p> <p>8.3.2.1 Source Interactions 392</p> <p>8.3.2.2 Load Interactions 393</p> <p>8.4 Impedance-Based Stability Assessment 394</p> <p>8.5 Output-Voltage Feedforward 394</p> <p>8.6 Dynamic Review 397</p> <p>References 400</p> <p><b>9 Dynamic Modeling of PCM/PVM-Controlled CF Converters 403</b></p> <p>9.1 Introduction 403</p> <p>9.2 Duty-Ratio Constraints and Dynamic Models under PCM Control 404</p> <p>9.2.1 Buck Power-Stage Converter 405</p> <p>9.2.2 Boost Power-Stage Converter 410</p> <p>9.3 Duty-Ratio Constraints and Dynamic Models under PVM Control 413</p> <p>9.3.1 CF Buck Converter 414</p> <p>9.3.2 CF Superbuck Converter 418</p> <p>9.4 Concluding Remarks 420</p> <p>References 420</p> <p><b>10 Introduction to Photovoltaic Generator 423</b></p> <p>10.1 Introduction 423</p> <p>10.2 Solar Cell Properties 424</p> <p>10.3 PV Generator 429</p> <p>10.4 MPP Tracking Methods 432</p> <p>10.5 MPP Tracking Design Issues 436</p> <p>10.5.1 Introduction 436</p> <p>10.5.2 General Dynamics of PV Power 437</p> <p>10.5.3 PV Interfacing Converter Operating at Open Loop 439</p> <p>10.5.4 PV Interfacing Converter Operating at Closed Loop 447</p> <p>10.5.4.1 Reduced-Order Models: Intuitive Model Reduction 452</p> <p>10.5.4.2 Reduced-Order Models: Control-Engineering-Based Method 454</p> <p>10.5.4.3 Reduced-Order Model Verification 455</p> <p>10.6 Concluding Remarks 461</p> <p>References 461</p> <p><b>11 Photovoltaic Generator Interfacing Issues 465</b></p> <p>11.1 Introduction 465</p> <p>11.2 Centralized PV System Architecture 465</p> <p>11.3 Distributed PV System Architectures 465</p> <p>11.4 PV Generator-Induced Effects on Interfacing-Converter Dynamics 470</p> <p>11.4.1 Introduction 470</p> <p>11.4.2 PV Generator Effects on Converter Dynamics 474</p> <p>11.4.2.1 Buck Power-Stage Converter 476</p> <p>11.4.2.2 Boost Power-Stage Converter 477</p> <p>11.4.2.3 CF Superbuck Converter 480</p> <p>11.5 Stability Issues in PV Generator Interfacing 482</p> <p>11.5.1 Buck Power-Stage Converter 483</p> <p>11.5.2 CF Superbuck Converter 485</p> <p>11.5.3 Concluding Remarks 488</p> <p>11.6 Control Design Issues 488</p> <p>References 488</p> <p><b>Part Four Three-Phase Grid-Connected Converters 491</b></p> <p><b>12 Dynamic Modeling of Three-Phase Inverters 493</b></p> <p>12.1 Introduction 493</p> <p>12.2 Dynamic Model of Voltage-Fed Inverter 494</p> <p>12.2.1 Average Model of Voltage-Fed Inverter 494</p> <p>12.2.2 Linearized State-Space and Open-Loop Dynamics 499</p> <p>12.2.3 Control Block Diagrams of Voltage-Fed Inverter 503</p> <p>12.2.4 Verification of Open-Loop Model 503</p> <p>12.3 Dynamic Model of Current-Fed Inverter 507</p> <p>12.3.1 Average Model of Current-Fed Inverter 507</p> <p>12.3.2 Linearized Model and Open-Loop Dynamics 510</p> <p>12.3.3 Control Block Diagrams of Current-Fed Inverter 512</p> <p>12.3.4 Verification of Open-Loop Model 512</p> <p>12.4 Source-Affected Dynamics of Current-Fed Inverter 515</p> <p>12.4.1 Source Effect: Photovoltaic Generator 517</p> <p>12.4.2 Source Effect: Experimental Validation 520</p> <p>12.5 Dynamic Model of Current-Fed Inverter with LCL-Filter 524</p> <p>12.5.1 Average Model of Current-Fed Inverter with LCL-Filter 525</p> <p>12.5.2 Linearized State-Space and Open-Loop Dynamics 527</p> <p>12.6 Summary 528</p> <p>Appendix 12.A 528</p> <p>References 530</p> <p><b>13 Control Design of Grid-Connected Three-Phase Inverters 533</b></p> <p>13.1 Introduction 533</p> <p>13.2 Synchronous Reference Frame Phase-Locked-Loop 533</p> <p>13.2.1 Linearized Model of SRF-PLL 536</p> <p>13.2.2 Control Design of SRF-PLL 538</p> <p>13.2.3 Damping Ratio and Undamped Natural Frequency 541</p> <p>13.2.4 Control Design Example and Experimental Verification 541</p> <p>13.2.5 The Effect of Unbalanced Grid Voltages 544</p> <p>13.3 AC Current Control 547</p> <p>13.3.1 Current Control in the dq-Domain 548</p> <p>13.3.2 Current Control in Voltage-Fed Inverters 548</p> <p>13.4 Decoupling Gains 559</p> <p>13.5 Grid Voltage Feedforward 562</p> <p>13.6 Cascaded Control Scheme in Current-Fed Inverters 563</p> <p>13.6.1 Control Block Diagrams 564</p> <p>13.6.2 Control Design of Cascaded Loops 566</p> <p>13.6.3 Instability Caused by RHP-Pole 570</p> <p>13.6.4 Stability Assessment Using the Nyquist Stability Criterion 574</p> <p>13.6.5 Design Example: Three-Phase Photovoltaic Inverter 574</p> <p>13.7 Case Study: Instability Due to RHP-Pole 581</p> <p>13.8 Summary 583</p> <p>References 583</p> <p><b>14 Reduced-Order Closed-Loop Modeling of Inverters 587</b></p> <p>14.1 Introduction 587</p> <p>14.2 Reduced-Order Model of Voltage-Fed Inverter 587</p> <p>14.2.1 Closed-Loop Model with AC Current Control 588</p> <p>14.2.2 Closed-Loop Model with SRF-PLL 591</p> <p>14.2.3 Closed-Loop Input Admittance 595</p> <p>14.2.4 Output Impedance with Grid Voltage Feedforward 596</p> <p>14.2.5 Impedance Characteristics of Voltage-Fed Inverters 602</p> <p>14.3 Reduced-Order Model of Current-Fed Inverter with L-Type Filter 602</p> <p>14.3.1 Closed-Loop Model with Cascaded Control Scheme 602</p> <p>14.3.2 Effect of Input Voltage Control Bandwidth 605</p> <p>14.3.3 Effect of AC Current Control Bandwidth 606</p> <p>14.3.4 Experimental Verification: Measured Impedance d-Component 608</p> <p>14.3.5 Effect of SRF-PLL 609</p> <p>14.3.6 Effect of Grid Voltage Feedforward on Impedance d-Component 610</p> <p>14.3.7 Effect of Grid Voltage Feedforward on Impedance q-Component 615</p> <p>14.4 Closed-Loop Model of Current-Fed Inverter with LC-Type Filter 619</p> <p>14.4.1 Experimental Verification of Impedance Model 625</p> <p>14.4.2 Impedance Characteristics of Inverter with LC-Filter and Feedforward 630</p> <p>14.5 Summary 630</p> <p>References 630</p> <p><b>15 Multivariable Closed-Loop Modeling of Inverters 633</b></p> <p>15.1 Introduction 633</p> <p>15.2 Full-Order Model of Current-Fed Inverter with L-Type Filter 633</p> <p>15.2.1 Verification of Dynamic Model 643</p> <p>15.3 Experimental Verification of Admittance Model 646</p> <p>15.4 Full-Order Model of Current-Fed Inverter with LCL-Type Filter 648</p> <p>15.4.1 Verification of Closed-Loop Model 653</p> <p>15.4.2 Measured Output Impedance of PV Inverter 656</p> <p>15.5 Summary 659</p> <p>References 660</p> <p><b>16 Impedance-Based Stability Assessment 663</b></p> <p>16.1 Introduction 663</p> <p>16.2 Modeling of Three-Phase Load Impedance in the dq-Domain 664</p> <p>16.3 Impedance-Based Stability Criterion 667</p> <p>16.4 Case Studies 669</p> <p>16.4.1 Instability Due to High-Bandwidth PLL in Weak Grid 669</p> <p>16.4.2 Instability Due to Control Delay in Feedforward Path 674</p> <p>16.5 Summary 678</p> <p>References 678</p> <p><b>17 Dynamic Modeling of Three-Phase Active Rectifiers 681</b></p> <p>17.1 Introduction 681</p> <p>17.2 Open-Loop Dynamics 681</p> <p>17.3 Verification of Open-Loop Model 688</p> <p>17.4 Experimental Results 691</p> <p>17.5 Summary 695</p> <p>References 695</p> <p>Index 697</p> <p> </p> <p> </p>
<p><b>Teuvo Suntio</b> is Professor in Power Electronics at Tampere University of Technology, Finland. He has been also Adjunct Professor in Control Engineering at the Aalto University (TKK) in 2001-2011, and in Power Electronics at the University of Oulu since 2004. He has also served 20 years in power electronics industry as a design engineer and an R&D manager prior to starting the academic career in 1998. He has authored or co-authored over 200 international conference and journal articles, supervised close to 100 MSc students as well as 18 PhD students during the nineteen years in academy.</p> <p><b>Tuomas Messo</b> is Assistant Professor in Power Electronics at Tampere University of Technology, Finland. His current research aims to identify the source of harmonic resonance problems reported in grid-connected power electronic systems through dynamic modeling and mitigating the problems by shaping the inverter impedance. His teaching activities include basic power electronic courses and advanced courses, which concentrate on DC-DC converter design and dynamic analysis of three-phase DC-AC converters.</p> <p><b>Joonas Puukko</b> is with ABB Oy High Power Drives in Helsinki, Finland. Previously he was with ABB Oy Solar Inverters and ABB Inc. United States Corporate Research. He obtained his PhD from Tampere University of Technology, Finland, for a work on dynamics of grid-connected three-phase converters. He has expertise in hardware and control system design in various power electronics applications ranging from few tens of watts to hundreds of kilowatts.</p>

Diese Produkte könnten Sie auch interessieren:

Regenerative Energietrager
Regenerative Energietrager
von: Martin Wietschel, Wolf Fichtner, Otto Rentz
PDF ebook
33,99 €
Fundamentals of Power System Economics
Fundamentals of Power System Economics
von: Daniel S. Kirschen, Goran Strbac
PDF ebook
104,99 €
Fuel Cells, Engines and Hydrogen
Fuel Cells, Engines and Hydrogen
von: Frederick J. Barclay
PDF ebook
110,99 €