Details

Polymer and Biopolymer Brushes


Polymer and Biopolymer Brushes

for Materials Science and Biotechnology
1. Aufl.

von: Omar Azzaroni, Igal Szleifer

347,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 01.12.2017
ISBN/EAN: 9781119455073
Sprache: englisch
Anzahl Seiten: 864

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>Serves as a guide for seasoned researchers and students alike, who wish to learn about the cross-fertilization between biology and materials that is driving this emerging area of science</b><b> </b></p> <p>This book covers the most relevant topics in basic research and those having potential technological applications for the field of biopolymer brushes. This area has experienced remarkable increase in development of practical applications in nanotechnology and biotechnology over the past decade. In view of the rapidly growing activity and interest in the field, this book covers the introductory features of polymer brushes and presents a unifying and stimulating overview of the theoretical aspects and emerging applications. It immerses readers in the historical perspective and the frontiers of research where our knowledge is increasing steadily—providing them with a feeling of the enormous potential, the multiple applications, and the many up-and-coming trends behind the development of macromolecular interfaces based on the use of polymer brushes.</p> <p><i>Polymer and Biopolymer Brushes: Fundamentals and Applications in Materials</i> offers chapters on: Functionalization of Surfaces Using Polymer Brushes; Polymer Brushes by ATRP and Surface-Mediated RAFT Polymerization for Biological Functions; Electro-Induced Copper Catalyzed Surface Modification with Monolayer and Polymer Brush; Polymer Brushes on Flat and Curved Substrates; Biomimetic Anchors for Antifouling Polymer Brush Coating; Glycopolymer Brushes Presenting Sugars in Their Natural Form; Smart Surfaces Modified with Phenylboronic Acid-Containing Polymer Brushes; DNA Brushes; Polymer Brushes as Interfacial Materials for Soft Metal Conductors and Electronics; and more.</p> <ul> <li>Presents a comprehensive theory/simulation section that will be valuable for all readers</li> <li>Includes chapters not only on the biological applications of polymer brushes but also on biological systems that resemble polymer brushes on flat surfaces</li> <li>Addresses applications in coatings, friction, sensors, microelectromechanical systems, and biomaterials</li> <li>Devotes particular attention to the functional aspects of hybrid nanomaterials employing polymer brushes as functional units</li> </ul> <p><i>Polymer and Biopolymer Brushes: Fundamentals and Applications in Materials</i> is aimed at both graduate students and researchers new to this subject as well as scientists already engaged in the study and development of polymer brushes. </p>
<p>Volume 1</p> <p>Preface xxi</p> <p>List of Contributors xxiii</p> <p><b>1 Functionalization of Surfaces Using Polymer Brushes: An Overview of Techniques, Strategies, and</b> <b>Approaches 1<br /></b><i>Juan M. Giussi,M. Lorena Cortez,Waldemar A. Marmisoll´e, and Omar Azzaroni</i></p> <p>1.1 Introduction: Fundamental Notions and Concepts 1</p> <p>1.2 Preparation of Polymer Brushes on Solid Substrates 4</p> <p>1.3 Preparation of Polymer Brushes by the “Grafting-To” Method 5</p> <p>1.4 Polymer Brushes by the “Grafting-From” Method 9</p> <p>1.4.1 Surface-Initiated Atom Transfer Radical Polymerization 9</p> <p>1.4.2 Surface-Initiated Reversible-Addition Fragmentation Chain Transfer Polymerization 10</p> <p>1.4.3 Surface-Initiated Nitroxide-Mediated Polymerization 13</p> <p>1.4.4 Surface-Initiated Photoiniferter-Mediated Polymerization 13</p> <p>1.4.5 Surface-Initiated Living Ring-Opening Polymerization 15</p> <p>1.4.6 Surface-Initiated Ring-Opening Metathesis Polymerization 17</p> <p>1.4.7 Surface-Initiated Anionic Polymerization 18</p> <p>1.5 Conclusions 20</p> <p>Acknowledgments 21</p> <p>References 21</p> <p><b>2 Polymer Brushes by AtomTransfer Radical Polymerization 29<br /></b><i>Guojun Xie, Amir Khabibullin, Joanna Pietrasik, Jiajun Yan, and KrzysztofMatyjaszewski</i></p> <p>2.1 Structure of Brushes 29</p> <p>2.2 Synthesis of Polymer Brushes 31</p> <p>2.2.1 Grafting through 31</p> <p>2.2.2 Grafting to 32</p> <p>2.2.3 Grafting from 32</p> <p>2.3 ATRP Fundamentals 33</p> <p>2.4 Molecular Bottlebrushes by ATRP 38</p> <p>2.4.1 Introduction 38</p> <p>2.4.2 Star-Like Brushes 40</p> <p>2.4.3 Blockwise Brushes 42</p> <p>2.4.4 Brushes with Tunable Grafting Density 45</p> <p>2.4.5 Brushes with Block Copolymer Side Chains 46</p> <p>2.4.6 Functionalities and Properties of Brushes 50</p> <p>2.5 ATRP and Flat Surfaces 55</p> <p>2.5.1 Chemistry at Surface 55</p> <p>2.5.2 Grafting Density 55</p> <p>2.5.3 Architecture 56</p> <p>2.5.4 Applications 57</p> <p>2.6 ATRP and Nanoparticles 58</p> <p>2.6.1 Chemistry 58</p> <p>2.6.2 Architecture 59</p> <p>2.6.3 Applications 61</p> <p>2.7 ATRP and Concave Surfaces 63</p> <p>2.8 ATRP and Templates 63</p> <p>2.8.1 Templates from Networks 63</p> <p>2.8.2 Templates from Brushes 64</p> <p>2.9 Templates from Stars 65</p> <p>2.10 Bio-Related Polymer Brushes 66</p> <p>2.11 Stimuli-Responsive Polymer Brushes 74</p> <p>2.11.1 Stimuli-Responsive Solutions 76</p> <p>2.11.2 Stimuli-Responsive Surfaces 78</p> <p>2.12 Conclusion 79</p> <p>Acknowledgments 80</p> <p>References 80</p> <p><b>3 Polymer Brushes by Surface-Mediated RAFT Polymerization for Biological Functions 97<br /></b><i>Tuncer Caykara</i></p> <p>3.1 Introduction 97</p> <p>3.2 Polymer Brushes via the Surface-Initiated RAFT Polymerization Process 99</p> <p>3.3 Polymer Brushes via the Interface-Mediated RAFT Polymerization Process 101</p> <p>3.3.1 pH-Responsive Brushes 102</p> <p>3.3.2 Temperature-Responsive Brushes 106</p> <p>3.3.3 Polymer Brushes on Gold Surface 110</p> <p>3.3.4 Polymer Brushes on Nanoparticles 114</p> <p>3.3.5 Micropatterned Polymer Brushes 115</p> <p>3.4 Summary 117</p> <p>References 119</p> <p><b>4 Electro-Induced Copper-Catalyzed Surface Modification with Monolayer and Polymer Brush 123<br /></b><i>Bin Li and Feng Zhou</i></p> <p>4.1 Introduction 123</p> <p>4.2 “Electro-Click” Chemistry 124</p> <p>4.3 Electrochemically Induced Surface-Initiated Atom Transfer Radical Polymerization 129</p> <p>4.4 Possible Combination of eATRP and “e-Click” Chemistry on Surface 136</p> <p>4.5 Surface Functionality 136</p> <p>4.6 Summary 137</p> <p>Acknowledgments 138</p> <p>References 138</p> <p><b>5 Polymer Brushes on Flat and Curved Substrates:What Can be Learned fromMolecular Dynamics</b> <b>Simulations 141<br /></b><i>K. Binder, S.A. Egorov, and A.Milchev</i></p> <p>5.1 Introduction 141</p> <p>5.2 Molecular Dynamics Methods: A Short “Primer” 144</p> <p>5.3 The Standard Bead Spring Model for Polymer Chains 148</p> <p>5.4 Cylindrical and Spherical Polymer Brushes 150</p> <p>5.5 Interaction of Brushes with Free Chains 152</p> <p>5.6 Summary 153</p> <p>Acknowledgments 156</p> <p>References 157</p> <p><b>6 Modeling of Chemical Equilibria in Polymer and Polyelectrolyte Brushes 161<br /></b><i>Rikkert J. Nap,Mario Tagliazucchi, Estefania Gonzalez Solveyra, Chun-lai Ren, Mark J. Uline, and Igal</i> <i>Szleifer</i></p> <p>6.1 Introduction 161</p> <p>6.2 Theoretical Approach 163</p> <p>6.3 Applications of the Molecular Theory 177</p> <p>6.3.1 Acid–Base Equilibrium in Polyelectrolyte Brushes 178</p> <p>6.3.1.1 Effect of Salt Concentration and pH 178</p> <p>6.3.1.2 Effect of Polymer Density and Geometry 184</p> <p>6.3.2 Competition between Chemical Equilibria and Physical Interactions 186</p> <p>6.3.2.1 Brushes of Strong Polyelectrolytes 186</p> <p>6.3.2.2 Brushes ofWeak Polyelectrolytes: Self-Assembly in Charge-Regulating Systems 189</p> <p>6.3.2.3 Redox-Active Polyelectrolyte Brushes 193</p> <p>6.3.3 End-Tethered Single Stranded DNA in Aqueous Solutions 195</p> <p>6.3.4 Ligand–Receptor Binding and Protein Adsorption to Polymer Brushes 201</p> <p>6.3.5 Adsorption Equilibrium of Polymer Chains through Terminal Segments: Grafting-to Formation of Polymer Brushes 207</p> <p>6.4 Summary and Conclusion 212</p> <p>Acknowledgments 216</p> <p>References 216</p> <p><b>7 Brushes of Linear and Dendritically Branched Polyelectrolytes 223<br /></b><i>E. B. Zhulina, F. A. M. Leermakers, and O. V. Borisov</i></p> <p>7.1 Introduction 223</p> <p>7.2 Analytical SCF Theory of Brushes Formed by Linear and Branched Polyions 224</p> <p>7.2.1 Dendron Architecture and System Parameters 225</p> <p>7.2.2 Analytical SCF Formalism 226</p> <p>7.3 Planar Brush of PE Dendrons with an Arbitrary Architecture 229</p> <p>7.3.1 Asymptotic Dependences for Brush Thickness H 231</p> <p>7.4 Planar Brush of Star-Like Polyelectrolytes 232</p> <p>7.5 Threshold of Dendron Gaussian Elasticity 234</p> <p>7.6 Scaling-Type Diagrams of States for Brushes of Linear and Branched Polyions 235</p> <p>7.7 Numerical SF-SCF Model of Dendron Brush 236</p> <p>7.8 Conclusions 238</p> <p>References 239</p> <p><b>8 Vapor Swelling of Hydrophilic Polymer Brushes 243<br /></b><i>Casey J. Galvin and Jan Genzer</i></p> <p>8.1 Introduction 243</p> <p>8.2 Experimental 245</p> <p>8.2.1 General Methods 245</p> <p>8.2.2 Synthesis of Poly((2-dimethylamino)ethyl methacrylate) Brushes with a Gradient in Grafting Density 245</p> <p>8.2.3 Synthesis of Poly(2-(diethylamino)ethyl methacrylate) Brushes 245</p> <p>8.2.4 Chemical Modification of Poly((2-dimethylamino)ethyl methacrylate) Brushes 246</p> <p>8.2.5 Bulk Synthesis of PDMAEMA 246</p> <p>8.2.6 Preparation of Spuncast PDMAEMA Films 246</p> <p>8.2.7 Chemical Modification of Spuncast PDMAEMA Film 247</p> <p>8.2.8 Spectroscopic EllipsometryMeasurements under Controlled Humidity Conditions 247</p> <p>8.2.9 Spectroscopic EllipsometryMeasurements of Alcohol Exposure 247</p> <p>8.2.10 Fitting Spectroscopic Ellipsometry Data 248</p> <p>8.2.11 Infrared Variable Angle Spectroscopic Ellipsometry 248</p> <p>8.3 Results and Discussion 248</p> <p>8.3.1 Comparing Polymer Brush and Spuncast Polymer Film Swelling 250</p> <p>8.3.2 Influence of Side Chain Chemistry on Polymer Brush Vapor Swelling 252</p> <p>8.3.3 Influence of Solvent Vapor Chemistry on Polymer Brush Vapor Swelling 256</p> <p>8.3.4 Influence of Grafting Density on Polymer Brush Vapor Swelling 259</p> <p>8.4 Conclusion 262</p> <p>8.A.1 Appendix 263</p> <p>8.A.1.1 Mole Fraction Calculation 263</p> <p>8.A.1.2 Water Cluster Number Calculation 264</p> <p>Acknowledgments 265</p> <p>References 265</p> <p><b>9 Temperature Dependence of the Swelling and Surface Wettability of Dense Polymer Brushes 267<br /></b><i>Pengyu Zhuang, Ali Dirani, Karine Glinel, and AlainM. Jonas</i></p> <p>9.1 Introduction 267</p> <p>9.2 The Swelling Coefficient of a Polymer Brush Mirrors Its Volume Hydrophilicity 269</p> <p>9.3 The Cosine of the Contact Angle ofWater on aWater-Equilibrated Polymer Brush Defines Its Surface Hydrophilicity 270</p> <p>9.4 Case Study: Temperature-Dependent Surface hydrophilicity of Dense PNIPAM Brushes 272</p> <p>9.5 Case Study: Temperature-Dependent Swelling and Volume Hydrophilicity of Dense PNIPAMBrushes 274</p> <p>9.6 Thermoresponsive Poly(oligo(ethylene oxide)methacrylate) Copolymer Brushes: Versatile Functional Alternatives to PNIPAM 277</p> <p>9.7 Surface and Volume Hydrophilicity of Nonthermoresponsive Poly(oligo(ethylene oxide)methacrylate) Copolymer Brushes 279</p> <p>9.8 Conclusions 282</p> <p>Acknowledgments 283</p> <p>References 283</p> <p><b>10 Functional Biointerfaces Tailored by “Grafting-To”Brushes 287<br /></b><i>Eva Bittrich, Manfred Stamm, and Petra Uhlmann</i></p> <p>10.1 Introduction 287</p> <p>10.2 Part I: Polymer Brush Architectures 288</p> <p>10.2.1 Design of Physicochemical Interfaces by Polymer Brushes 288</p> <p>10.2.1.1 Stimuli-Responsive Homopolymer Brushes 288</p> <p>10.2.1.2 Combination of Responses Using Mixed Polymer Brushes 290</p> <p>10.2.1.3 Stimuli-Responsive Gradient Brushes 293</p> <p>10.2.2 Modification of Polymer Brushes by Click Chemistry 293</p> <p>10.2.2.1 Definition of Click Chemistry 293</p> <p>10.2.2.2 Modification of End Groups of Grafted PNIPAAm Chains 295</p> <p>10.2.3 Hybrid Brush Nanostructures 297</p> <p>10.2.3.1 Nanoparticles Immobilized at Polymer Brushes 298</p> <p>10.2.3.2 Sculptured Thin Films Grafted with Polymer Brushes 300</p> <p>10.3 Part II: Actuating Biomolecule Interactions with Surfaces 303</p> <p>10.3.1 Adsorption of Proteins to Polymer Brush Surfaces 303</p> <p>10.3.1.1 Calculation of the Adsorbed Amount of Protein from Ellipsometric Experiments 305</p> <p>10.3.1.2 Preventing Protein Adsorption 306</p> <p>10.3.1.3 Adsorption at Polyelectrolyte Brushes 310</p> <p>10.3.2 Polymer Brushes as Interfaces for Cell Adhesion and Interaction 313</p> <p>10.3.2.1 Cell Adhesion on Stimuli-Responsive Polymer Surfaces Based on PNIPAAm Brushes 315</p> <p>10.3.2.2 Growth Factors on Polymer Brushes 318</p> <p>10.4 Conclusion and Outlook 320</p> <p>Acknowledgments 321</p> <p>References 321</p> <p><b>11 Glycopolymer Brushes Presenting Sugars in Their Natural Form: Synthesis and Applications 333<br /></b><i>Kai Yu and Jayachandran N. Kizhakkedathu</i></p> <p>11.1 Introduction and Background 333</p> <p>11.2 Results and Discussion 334</p> <p>11.2.1 Synthesis of Glycopolymer Brushes 334</p> <p>11.2.1.1 Synthesis of N-Substituted Acrylamide Derivatives of Glycomonomers 334</p> <p>11.2.1.2 Synthesis and Characterization of Glycopolymer Brushes on Gold Chip and SiliconWafer 334</p> <p>11.2.1.3 Synthesis and Characterization of Glycopolymer Brushes on Polystyrene Particles 335</p> <p>11.2.1.4 Synthesis and Characterization of Glycopolymer Brushes with Variation in the Composition of Carbohydrate Residues on SPR Chip 338</p> <p>11.2.1.5 Preparation of Glycopolymer Brushes-Modified Particles with Different Grafting Density (Conformation) 338</p> <p>11.2.2 Applications of Glycopolymer Brushes 341</p> <p>11.2.2.1 Antithrombotic Surfaces Based on Glycopolymer Brushes 341</p> <p>11.2.2.2 Glycopolymer Brushes Based Carbohydrate Arrays to Modulate Multivalent Protein Binding on Surfaces 345</p> <p>11.2.2.3 Modulation of Innate Immune Response by the Conformation and Chemistry of Glycopolymer Brushes 351</p> <p>11.3 Conclusions 356</p> <p>Acknowledgments 357</p> <p>References 357</p> <p><b>12 Thermoresponsive Polymer Brushes for Thermally Modulated Cell Adhesion and Detachment 361<br /></b><i>Kenichi Nagase and Teruo Okano</i></p> <p>12.1 Introduction 361</p> <p>12.2 Thermoresponsive Polymer Hydrogel-Modified Surfaces for Cell Adhesion and Detachment 362</p> <p>12.3 Thermoresponsive Polymer Brushes Prepared Using ATRP 363</p> <p>12.4 Thermoresponsive Polymer Brushes Prepared by RAFT Polymerization 368</p> <p>12.5 Conclusions 372</p> <p>Acknowledgments 372</p> <p>References 372</p> <p>Volume 2</p> <p>Preface xxi</p> <p>List of Contributors xxiii</p> <p><b>13 Biomimetic Anchors for Antifouling Polymer Brush Coatings 377<br /></b><i>Dicky Pranantyo, Li Qun Xu, En-Tang Kang, Koon-Gee Neoh, and Serena Lay-Ming Teo</i></p> <p>13.1 Introduction to Biofouling Management 377</p> <p>13.2 Polymer Brushes for Surface Functionalization 378</p> <p>13.3 Biomimetic Anchors for Antifouling Polymer Brushes 379</p> <p>13.3.1 Mussel Adhesive-Inspired Dopamine Anchors 379</p> <p>13.3.1.1 Antifouling Polymer Brushes Prepared via the “Grafting-To” Approach on (poly)Dopamine Anchor 383</p> <p>13.3.1.2 Antifouling Polymer Brushes Prepared via the “Grafting-From” Approach on (poly)Dopamine Anchor 386</p> <p>13.3.1.3 Direct Grafting of Antifouling Polymer Brushes Containing Anchorable Dopamine-Derived Functionalities 389</p> <p>13.3.2 (Poly)phenolic Anchors for Antifouling Polymer Brushes 391</p> <p>13.3.3 Biomolecular Anchors for Antifouling Polymer Brushes 393</p> <p>13.4 Barnacle Cement as Anchor for Antifouling Polymer Brushes 397</p> <p>13.5 Conclusion and Outlooks 399</p> <p>References 400</p> <p><b>14 Protein Adsorption Process Based on Molecular Interactions at Well-Defined Polymer Brush Surfaces 405<br /></b><i>Sho Sakata, Yuuki Inoue, and Kazuhiko Ishihara</i></p> <p>14.1 Introduction 405</p> <p>14.2 Utility of Polymer Brush Layers as Highly Controllable Polymer Surfaces 406</p> <p>14.3 Performance of Polymer Brush Surfaces as Antifouling Biointerfaces 408</p> <p>14.4 Elucidation of Protein Adsorption Based on Molecular Interaction Forces 412</p> <p>14.5 Concluding Remarks 416</p> <p>References 417</p> <p><b>15 Are Lubricious Polymer Brushes Antifouling? Are Antifouling Polymer Brushes Lubricious? 421<br /></b><i>Edmondo M. Benetti and Nicholas D. Spencer</i></p> <p>15.1 Introduction 421</p> <p>15.2 Poly(ethylene glycol) Brushes 422</p> <p>15.3 Beyond Simple PEG Brushes 424</p> <p>15.4 Conclusion 429</p> <p>References 429</p> <p><b>16 Biofunctionalized Brush Surfaces for Biomolecular Sensing 433<br /></b><i>Shuaidi Zhang and Vladimir V. Tsukruk</i></p> <p>16.1 Introduction 433</p> <p>16.2 Biorecognition Units 435</p> <p>16.2.1 Antibodies 435</p> <p>16.2.2 Antibody Fragments 435</p> <p>16.2.3 Aptamers 437</p> <p>16.2.4 Peptide Aptamers 438</p> <p>16.2.5 Enzymes 438</p> <p>16.2.6 Peptide Nucleic Acid, Lectin, and Molecular Imprinted Polymers 439</p> <p>16.3 Immobilization Strategy 439</p> <p>16.3.1 Through Direct Covalent Linkage 440</p> <p>16.3.1.1 Thiolated Aptamers on Noble Metal 440</p> <p>16.3.1.2 General Activated Surface Chemistry 442</p> <p>16.3.1.3 Diels–Alder Cycloaddition 444</p> <p>16.3.1.4 Staudinger Ligation 444</p> <p>16.3.1.5 1,3-Dipolar Cycloaddition 446</p> <p>16.3.2 Through Affinity Tags 447</p> <p>16.3.2.1 Biotin–Avidin/Streptavidin Pairing 447</p> <p>16.3.2.2 NTA–Ni2+–Histidine Pairing 448</p> <p>16.3.2.3 Protein A/Protein G – Fc Pairing 449</p> <p>16.3.2.4 Oligonucleotide Hybridization 450</p> <p>16.4 Microstructure and Morphology of Biobrush Layers 451</p> <p>16.4.1 Grafting Density Control 451</p> <p>16.4.2 Conformation and Orientation of Recognition Units 453</p> <p>16.5 Transduction Schemes Based upon Grafted Biomolecules 462</p> <p>16.5.1 Electrochemical-Based Sensors 462</p> <p>16.5.2 Field Effect Transistor Based Sensors 463</p> <p>16.5.3 SPR-Based Sensors 465</p> <p>16.5.4 Photoluminescence-Based Sensors 466</p> <p>16.5.5 SERS Sensors 468</p> <p>16.5.6 Microcantilever Sensors 469</p> <p>16.6 Conclusions 471</p> <p>Acknowledgments 472</p> <p>References 472</p> <p><b>17 Phenylboronic Acid and Polymer Brushes: An Attractive Combination with Many Possibilities 479<br /></b><i>Solmaz Hajizadeh and Bo Mattiasson</i></p> <p>17.1 Introduction: Polymer Brushes and Synthesis 479</p> <p>17.2 Boronic Acid Brushes 481</p> <p>17.3 Affinity Separation 483</p> <p>17.4 Sensors 487</p> <p>17.5 Biomedical Applications 492</p> <p>17.6 Conclusions 494</p> <p>References 494</p> <p><b>18 Smart Surfaces Modified with Phenylboronic Acid Containing Polymer Brushes 497<br /></b><i>Hongliang Liu, ShutaoWang, and Lei Jiang</i></p> <p>18.1 Introduction 497</p> <p>18.2 Molecular Mechanism of PBA-Based Smart Surfaces 498</p> <p>18.3 pH-Responsive Surfaces Modified with PBA Polymer Brush and Their Applications 501</p> <p>18.4 Sugar-Responsive SurfacesModified with PBA Polymer Brush and Their Applications 503</p> <p>18.5 PBA Polymer Brush–Based pH/Sugar Dual-Responsive OR Logic Gates and Their Applications 504</p> <p>18.6 PBA Polymer Brush-Based pH/Sugar Dual-Responsive AND Logic Gates and Their Applications 506</p> <p>18.7 PBA-Based Smart Systems beyond Polymer Brush and Their Applications 509</p> <p>18.8 Conclusion and Perspective 511</p> <p>References 512</p> <p><b>19 Polymer Brushes andMicroorganisms 515<br /></b><i>Madeleine Ramstedt</i></p> <p>19.1 Introduction 515</p> <p>19.1.1 Societal Relevance for Surfaces Interacting with Microbes 515</p> <p>19.1.2 Microorganisms 516</p> <p>19.2 Brushes and Microbes 519</p> <p>19.2.1 Adhesive Surfaces 529</p> <p>19.2.2 Antifouling Surfaces 530</p> <p>19.2.2.1 PEG-Based Brushes 531</p> <p>19.2.2.2 Zwitterionic Brushes 533</p> <p>19.2.2.3 Brush Density 533</p> <p>19.2.2.4 Interactive Forces 535</p> <p>19.2.2.5 Mechanical Interactions 537</p> <p>19.2.3 Killing Surfaces 537</p> <p>19.2.3.1 Antimicrobial Peptides 540</p> <p>19.2.4 Brushes and Fungi 543</p> <p>19.2.5 Brushes and Algae 546</p> <p>19.3 Conclusions and Future Perspectives 549</p> <p>Acknowledgments 551</p> <p>References 552</p> <p><b>20 Design of Polymer Brushes for Cell Culture and Cellular Delivery 557<br /></b><i>Danyang Li and Julien E. Gautrot</i></p> <p>Abbreviations 557</p> <p>20.1 Introduction 559</p> <p>20.2 Protein-Resistant Polymer Brushes for Tissue Engineering and In Vitro Assays 561</p> <p>20.2.1 Design of Protein-Resistant Polymer Brushes 561</p> <p>20.2.2 Cell-Resistant Polymer Brushes 565</p> <p>20.2.3 Patterned Antifouling Brushes for the Development of Cell-Based Assays 567</p> <p>20.3 Designing Brush Chemistry to Control Cell Adhesion and Proliferation 570</p> <p>20.3.1 Polyelectrolyte Brushes for Cell Adhesion and Culture 570</p> <p>20.3.2 Control of Surface Hydrophilicity 573</p> <p>20.3.3 Surfaces with Controlled Stereochemistry 574</p> <p>20.3.4 Switchable Brushes Displaying Responsive Behavior for Cell Harvesting and Detachment 576</p> <p>20.4 Biofunctionalized Polymer Brushes to Regulate Cell Phenotype 581</p> <p>20.4.1 Protein Coupling to Polymer Brushes to Control Cell Adhesion 581</p> <p>20.4.2 Peptide-Functionalized Polymer Brushes to Regulate Cell Adhesion, Proliferation, Differentiation, and Migration 583</p> <p>20.5 Polymer Brushes for Drug and Gene Delivery Applications 586</p> <p>20.5.1 Polymer Brushes in Drug Delivery 586</p> <p>20.5.2 Polymer Brushes in Gene Delivery 590</p> <p>20.6 Summary 593</p> <p>Acknowledgments 593</p> <p>References 593</p> <p><b>21 DNA Brushes: Self-Assembly, Physicochemical Properties, and Applications 605<br /></b><i>Ursula Koniges, Sade Ruffin, and Rastislav Levicky</i></p> <p>21.1 Introduction 605</p> <p>21.2 Applications 605</p> <p>21.3 Preparation 607</p> <p>21.4 Physicochemical Properties of DNA Brushes 610</p> <p>21.5 Hybridization in DNA Brushes 613</p> <p>21.6 Other Bioprocesses in DNA Brushes 618</p> <p>21.7 Perspective 619</p> <p>Acknowledgments 620</p> <p>References 621</p> <p><b>22 DNA Brushes: Advances in Synthesis and Applications 627<br /></b><i>Renpeng Gu, Lei Tang, Isao Aritome, and Stefan Zauscher</i></p> <p>22.1 Introduction 627</p> <p>22.2 Synthesis of DNA Brushes 628</p> <p>22.2.1 Grafting-to Approaches 628</p> <p>22.2.1.1 Immobilization on Gold Thin Films 628</p> <p>22.2.1.2 Immobilization on Silicon-Based Substrates 632</p> <p>22.2.2 Grafting-from Approaches 634</p> <p>22.2.2.1 Surface-Initiated Enzymatic Polymerization 634</p> <p>22.2.2.2 Surface-Initiated Rolling Circle Amplification 634</p> <p>22.2.2.3 Surface-Initiated Hybridization Chain Reaction 634</p> <p>22.2.3 Synthesis of DNA Brushes on Curved Surfaces 637</p> <p>22.3 Properties and Applications of DNA Brushes 637</p> <p>22.3.1 The Effect of DNA-Modifying Enzymes on the DNA Brush Structure 637</p> <p>22.3.2 Stimulus-Responsive Conformational Changes of DNA Brushes 639</p> <p>22.3.3 DNA Brush for Cell-Free Surface Protein Expression 643</p> <p>22.3.4 DNA Brush-Modified Nanoparticles for Biomedical Applications 645</p> <p>22.4 Conclusion and Outlook 649</p> <p>References 649</p> <p><b>23 Membrane Materials Form Polymer Brush Nanoparticles 655<br /></b><i>Erica Green, Emily Fullwood, Julieann Selden, and Ilya Zharov</i></p> <p>23.1 Introduction 655</p> <p>23.2 Colloidal Membranes Pore-Filled with Polymer Brushes 657</p> <p>23.2.1 Preparation of Silica Colloidal Membranes 657</p> <p>23.2.2 PAAM Brush-Filled Silica Colloidal Membranes 658</p> <p>23.2.3 PDMAEMA Brush-Filled Silica Colloidal Membranes 659</p> <p>23.2.4 PNIPAAM brush-filled silica colloidal membranes 664</p> <p>23.2.5 Polyalanine Brush-Filled Silica Colloidal Membranes 666</p> <p>23.2.6 PMMA Brush-Filled SiO2@Au Colloidal Membranes 670</p> <p>23.2.7 Colloidal Membranes Filled with Polymers Brushes Carrying Chiral Groups 672</p> <p>23.2.8 pSPM and pSSA Brush-Filled Colloidal Nanopores 673</p> <p>23.3 Self-Assembled PBNPs Membranes 676</p> <p>23.3.1 PDMAEMA/PSPM Membranes 676</p> <p>23.3.2 PHEMA Membranes 678</p> <p>23.3.3 pSPM and pSSA Membranes 680</p> <p>23.4 Summary 683</p> <p>References 683</p> <p><b>24 Responsive Polymer Networks and Brushes for Active Plasmonics 687<br /></b><i>Nestor Gisbert Quilis, Nityanand Sharma, Stefan Fossati,Wolfgang Knoll, and Jakub Dostalek</i></p> <p>24.1 Introduction 687</p> <p>24.2 Tuning Spectrum of Surface Plasmon Modes 688</p> <p>24.3 Polymers Used for Actuating of Plasmonic Structures 692</p> <p>24.3.1 Temperature-Responsive Polymers 692</p> <p>24.3.2 Optical Stimulus 694</p> <p>24.3.3 Electrochemical Stimulus 695</p> <p>24.3.4 Chemical Stimulus 696</p> <p>24.4 Imprinted Thermoresponsive Hydrogel Nanopillars 697</p> <p>24.5 Thermoresponsive Hydrogel Nanogratings Fabricated by UV Laser Interference Lithography 699</p> <p>24.6 Electrochemically Responsive Hydrogel Microgratings Prepared by UV Photolithography 702</p> <p>24.7 Conclusions 705</p> <p>Acknowledgments 706</p> <p>References 706</p> <p><b>25 Polymer Brushes as Interfacial Materials for Soft Metal Conductors and Electronics 709<br /></b><i>Casey Yan and Zijian Zheng</i></p> <p>25.1 Introduction 709</p> <p>25.2 Mechanisms of Polymer-Assisted Metal Deposition 712</p> <p>25.3 Role of Polymer Brushes 716</p> <p>25.4 Selection Criterion of Polymer Brushes Enabling PAMD 716</p> <p>25.5 Strategies to Fabricate Patterned Metal Conductors 717</p> <p>25.6 PAMD on Different Substrates and Their Applications in Soft Electronics 720</p> <p>25.6.1 On Textiles 720</p> <p>25.6.2 On Plastic Thin films 721</p> <p>25.6.3 On Elastomers 724</p> <p>25.6.4 On Sponges 728</p> <p>25.7 Conclusion, Prospects, and Challenges 731</p> <p>References 732</p> <p><b>26 Nanoarchitectonic Design of Complex Materials Using Polymer Brushes as Structural and Functional Units 735<br /></b><i>M. Lorena Cortez, Gisela D´yaz,Waldemar A. Marmisoll´e, Juan M. Giussi, and Omar Azzaroni</i></p> <p>26.1 Introduction 735</p> <p>26.2 Nanoparticles at Spherical Polymer Brushes: Hierarchical Nanoarchitectonic Construction of Complex Functional Materials 736</p> <p>26.3 Nanotube and Nanowire Forests Bearing Polymer Brushes 737</p> <p>26.3.1 Polymer Brushes on Surfaces DisplayingMicrotopographical Hierarchical Arrays 738</p> <p>26.3.2 Environmentally Responsive Electrospun Nanofibers 740</p> <p>26.4 Fabrication of Free-Standing “Soft” Micro- and Nanoobjects Using Polymer Brushes 741</p> <p>26.5 Solid-State Polymer Electrolytes Based on Polymer Brush–Modified Colloidal Crystals 743</p> <p>26.6 Proton-Conducting Membranes with Enhanced Properties Using Polymer Brushes 745</p> <p>26.7 Hybrid Architectures Combining Mesoporous Materials and Responsive Polymer Brushes: Gated Molecular Transport Systems and Controlled Delivery Vehicles 747</p> <p>26.8 Ensembles of Metal NanoparticlesModified with Polymer Brushes 750</p> <p>26.9 Conclusions 754</p> <p>Acknowledgments 755</p> <p>References 755</p> <p>Index 759</p>
<p><b>OMAR AZZARONI, P<small>H</small>D,</b> is currently the head of the Soft Matter Laboratory of INIFTA. His research interests include new applications of polymer brushes, nanostructured hybrid interfaces, supra- and macromolecular materials science, and soft nanotechnology. <p><b>IGAL SZLEIFER, P<small>H</small>D,</b> is the Christina Enroth-Cugell Professor of Biomedical Engineering and Professor of Chemistry, Chemical and Biological Engineering and Medicine at Northwestern University. He is a fellow of the American Physical Society and of the American Institute of Medical and Biological Engineers.
<p><b>SERVES AS A GUIDE FOR SEASONED RESEARCHERS AND STUDENTS ALIKE, WHO WISH TO LEARN ABOUT THE CROSS-FERTILIZATION BETWEEN BIOLOGY AND MATERIALS THAT IS DRIVING THIS EMERGING AREA OF SCIENCE</b> <p>This book covers the most relevant topics in basic research and those having potential technological applications for the field of biopolymer brushes. This area has experienced remarkable increase in development of practical applications in nanotechnology and biotechnology over the past decade. In view of the rapidly growing activity and interest in the field, this book covers the introductory features of polymer brushes and presents a unifying and stimulating overview of the theoretical aspects and emerging applications. It immerses readers in the historical perspective and the frontiers of research where our knowledge is increasing steadily—providing them with a feeling of the enormous potential, the multiple applications, and the many up-and-coming trends behind the development of macromolecular interfaces based on the use of polymer brushes. <p><i>Polymer and Biopolymer Brushes: for Materials Science and Biotechnology</i> offers chapters on: Functionalization of Surfaces Using Polymer Brushes; Polymer Brushes by ATRP and Surface-Mediated RAFT Polymerization for Biological Functions; Electro-Induced Copper Catalyzed Surface Modification with Monolayer and Polymer Brush; Polymer Brushes on Flat and Curved Substrates; Biomimetic Anchors for Antifouling Polymer Brush Coating; Glycopolymer Brushes Presenting Sugars in Their Natural Form; Smart Surfaces Modified with Phenylboronic Acid-Containing Polymer Brushes; DNA Brushes; Polymer Brushes as Interfacial Materials for Soft Metal Conductors and Electronics; and more. <ul> <li>Presents a comprehensive theory/simulation section that will be valuable for all readers</li> <li>Includes chapters not only on the biological applications of polymer brushes but also on biological systems that resemble polymer brushes on flat surfaces</li> <li>Addresses applications in coatings, friction, sensors, microelectromechanical systems, and biomaterials</li> <li>Devotes particular attention to the functional aspects of hybrid nanomaterials employing polymer brushes as functional units</li> </ul> <p><i>Polymer and Biopolymer Brushes: for Materials Science and Biotechnology</i> is aimed at both graduate students and researchers new to this subject as well as scientists already engaged in the study and development of polymer brushes.

Diese Produkte könnten Sie auch interessieren:

Terpene
Terpene
von: Eberhard Breitmaier
PDF ebook
42,99 €
Reaktionen der organischen Chemie
Reaktionen der organischen Chemie
von: Helmut Krauch, Werner Kunz
PDF ebook
124,99 €
Sieben Moleküle
Sieben Moleküle
von: Jürgen-Hinrich Fuhrhop, Tianyu Wang
PDF ebook
25,99 €