Details

Polymer Adhesion, Friction, and Lubrication


Polymer Adhesion, Friction, and Lubrication


1. Aufl.

von: Hongbo Zeng

181,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 07.02.2013
ISBN/EAN: 9781118505137
Sprache: englisch
Anzahl Seiten: 722

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Specifically dedicated to polymer and biopolymer systems, <i>Polymer Adhesion, Friction, and Lubrication</i> guides readers to the scratch, wear, and lubrication properties of polymers and the engineering applications, from biomedical research to automotive engineering. Author Hongbo Zeng details different experimental and theoretical methods used to probe static and dynamic properties of polymer materials and biomacromolecular systems. Topics include the use of atomic force microscopy (AFM) to analyze nanotribology, polymer thin films and brushes, nanoparticles, rubber and tire technology, synovial joint lubrication, adhesion in paper products, bioMEMS, and electrorheological fluids.
<p>Preface xv</p> <p>Contributors xix</p> <p><b>1 Fundamentals of Surface Adhesion, Friction, and Lubrication 1</b><br /> <i>Ali Faghihnejad and Hongbo Zeng</i></p> <p>1.1 Introduction 1</p> <p>1.2 Basic Concepts 2</p> <p>1.2.1 Intermolecular and Surface Forces 2</p> <p>1.2.2 Surface Energy 7</p> <p>1.3 Adhesion and Contact Mechanics 12</p> <p>1.3.1 Hertz Model 13</p> <p>1.3.2 Johnson–Kendall–Roberts Model 14</p> <p>1.3.3 Derjaguin–Muller–Toporov Model 15</p> <p>1.3.4 Maugis Model 16</p> <p>1.3.5 Indentation 16</p> <p>1.3.6 Effect of Environmental Conditions on Adhesion 18</p> <p>1.3.7 Adhesion of Rough Surfaces 19</p> <p>1.3.8 Adhesion Hysteresis 20</p> <p>1.4 Friction 20</p> <p>1.4.1 Amontons’ Laws of Friction 20</p> <p>1.4.2 The Basic Models of Friction 21</p> <p>1.4.3 Stick-Slip Friction 26</p> <p>1.4.4 Directionality of Friction 29</p> <p>1.5 Rolling Friction 29</p> <p>1.6 Lubrication 31</p> <p>1.7 Wear 35</p> <p>1.8 Real Contact Area 37</p> <p>1.9 Modern Tools in Tribology 39</p> <p>1.9.1 X-Ray Photoelectron Spectroscopy 39</p> <p>1.9.2 Scanning Electron Microscopy 39</p> <p>1.9.3 Infrared Spectroscopy 40</p> <p>1.9.4 Optical Tweezers or Optical Trapping 40</p> <p>1.9.5 Atomic Force Microscope (AFM) 41</p> <p>1.9.6 Surface Forces Apparatus (SFA) 45</p> <p>1.10 Computer Simulations in Tribology 47</p> <p>Acknowledgment 49</p> <p>References 49</p> <p><b>2 Adhesion and Tribological Characteristics of Ion-Containing Polymer Brushes Prepared by Controlled Radical Polymerization 59</b><br /> <i>Motoyasu Kobayashi, Tatsuya Ishikawa, and Atsushi Takahara</i></p> <p>2.1 Introduction 59</p> <p>2.2 Controlled Synthesis of Ion-Containing Polymer Brushes 60</p> <p>2.3 Wettability of Polyelectrolyte Brushes 63</p> <p>2.4 Adhesion and Detachment between Polyelectrolyte Brushes 66</p> <p>2.5 Water Lubrication and Frictional Properties of Polyelectrolyte Brushes 70</p> <p>2.6 Conclusions 76</p> <p>References 76</p> <p><b>3 Lubrication and Wear Protection of Natural (Bio)Systems 83</b><br /> <i>George W. Greene, Dong Woog Lee, Jing Yu, Saurabh Das, Xavier Banquy, and Jacob N. Israelachvili</i></p> <p>3.1 Introduction 83</p> <p>3.1.1 What Makes Biolubrication Unique? 84</p> <p>3.1.2 Theory of Friction 85</p> <p>3.2 Boundary Lubrication 89</p> <p>3.2.1 Dry/Contact Lubrication 90</p> <p>3.2.2 Thin Film Boundary Lubrication 91</p> <p>3.2.3 Hydration Layers 92</p> <p>3.2.4 Intermediate Boundary Lubrication 93</p> <p>3.2.5 Thick Film Boundary Lubrication 95</p> <p>3.2.6 Hyaluronic Acid (HA) Interfacial Layer 96</p> <p>3.3 Fluid Film Lubrication 97</p> <p>3.3.1 Elastohydrodynamic Lubrication in Biological Systems 98</p> <p>3.3.2 Weeping Lubrication 104</p> <p>3.4 Multimodal Lubrication 105</p> <p>3.4.1 Mixed Lubrication and the “Stribeck Curve” 106</p> <p>3.4.2 Adaptive Lubrication 108</p> <p>3.4.3 Mechanically Controlled Adaptive Lubrication 109</p> <p>3.5 Wear 112</p> <p>3.5.1 How Are Friction and Wear Related? 112</p> <p>3.5.2 Characterization, Measurement, and Evaluation of Wear 113</p> <p>3.5.3 Biological Strategies for Controlling Wear 119</p> <p>3.5.4 Wear of Soft, Compliant Biological Materials 120</p> <p>3.5.5 Controlling Wear in Hard Biological Materials: Self-Sharpening Mechanism in Rodent Teeth 122</p> <p>3.6 Biomimetic and Engineering Approaches of Biolubrication 123</p> <p>3.6.1 Hydrogel Coatings as Artifi cial Cartilage Materials 123</p> <p>3.6.2 Mimicking Synovial Fluid Lubricating Properties: Polyelectrolytes Lubrication 124</p> <p>3.6.3 Superlubrication by Aggrecan Mimics: End-Grafted Polymers and the Brush Paradigm 125</p> <p>3.6.4 Perspectives and Future Research Avenues 126</p> <p>Acknowledgment 127</p> <p>References 127</p> <p><b>4 Polymer Brushes and Surface Forces 135</b><br /> <i>Jacob Klein, Wuge H. Briscoe, Meng Chen, Erika Eiser, Nir Kampf, Uri Raviv, Rafael Tadmor, and Larissa Tsarkova</i></p> <p>4.1 Introduction 135</p> <p>4.2 Some Generic Properties of Polymer Brushes 136</p> <p>4.3 Sliding of High-Tg Polymer Brushes: The Semidilute to Vitrifi ed Transition 138</p> <p>4.4 Sliding Mechanism and Relaxation of Sheared Brushes 140</p> <p>4.5 Compression, Shear, and Relaxation of Melt Brushes 146</p> <p>4.6 Shear Swelling of Polymer Brushes 150</p> <p>4.7 Telechelic Brushes 155</p> <p>4.8 Polyelectrolyte Brushes in Aqueous Media 158</p> <p>4.8.1 Charged Brushes: The Symmetric Case 159</p> <p>4.8.2 Charged Brushes: The Asymmetric Case 162</p> <p>4.9 Zwitterionic Polymer Brushes 163</p> <p>4.10 Summary 166</p> <p>Acknowledgments 167</p> <p>Appendix: Self-Regulation and Velocity Dependence of Brush–Brush Friction 167</p> <p>References 169</p> <p><b>5 Adhesion, Wetting, and Superhydrophobicity of Polymeric Surfaces 177</b><br /> <i>Mehdi Mortazavi and Michael Nosonovsky</i></p> <p>5.1 Introduction 177</p> <p>5.2 Adhesion between Polymeric Surfaces 178</p> <p>5.2.1 Van der Waals Forces 179</p> <p>5.2.2 Capillary Forces 181</p> <p>5.2.3 Electrostatic Double-Layer Forces 182</p> <p>5.2.4 Solvation Forces 183</p> <p>5.2.5 Mechanical Contact Force 183</p> <p>5.3 Wetting of Polymers 185</p> <p>5.3.1 Definition of Contact Angle: Young’s Equation 185</p> <p>5.3.2 Rough Surfaces: Wenzel’s Model 186</p> <p>5.3.3 Heterogeneous Surfaces: Cassie–Baxter Model 187</p> <p>5.4 Fabrication of Superhydrophobic Polymeric Materials 189</p> <p>5.4.1 Replication of Natural Surfaces 189</p> <p>5.4.2 Molding or Template-Assisted Techniques 192</p> <p>5.4.3 Roughening by Introduction of Nanoparticles 197</p> <p>5.4.4 Surface Modification by Low Surface Energy Materials 202</p> <p>5.4.5 Electrospinning 205</p> <p>5.4.6 Solution Method 207</p> <p>5.4.7 Plasma, Electron, and Laser Treatment 210</p> <p>5.5 Surface Characterization 213</p> <p>5.5.1 Surface Chemistry 213</p> <p>5.5.2 Wetting Property 213</p> <p>5.5.3 Microscopy Techniques 215</p> <p>5.6 Conclusions 218</p> <p>Acknowledgments 218</p> <p>References 218</p> <p><b>6 Marine Bioadhesion on Polymer Surfaces and Strategies for Its Prevention 227</b><br /> <i>Sitaraman Krishnan</i></p> <p>6.1 Introduction 227</p> <p>6.2 Protein Adsorption on Solid Surfaces 230</p> <p>6.2.1 Protein-Repellant Surfaces 230</p> <p>6.3 Polymer Coatings Resistant to Marine Biofouling 242</p> <p>6.3.1 Hydrophobic Marine Fouling-Release Coatings: The Role of Surface Energy and Modulus 243</p> <p>6.3.2 Hydrophilic Coatings 255</p> <p>6.3.3 Amphiphilic Coatings 257</p> <p>6.3.4 Self-Polishing Coatings 262</p> <p>6.3.5 Coatings with Topographically Patterned Surfaces 262</p> <p>6.3.6 Antifouling Surfaces with Surface-Immobilized Enzymes and Bioactive Fouling-Deterrent Molecules 265</p> <p>6.4 Conclusion 266</p> <p>Acknowledgments 266</p> <p>References 267</p> <p><b>7 Molecular Engineering of Peptides for Cellular Adhesion Control 283</b><br /> <i>Won Hyuk Suh, Badriprasad Ananthanarayanan, and Matthew Tirrell</i></p> <p>7.1 Introduction: Cells, Biomacromolecules, and Lipidated Peptides 283</p> <p>7.2 Biomaterials 285</p> <p>7.3 Chemistry Tools 287</p> <p>7.3.1 Bioconjugate Chemistry 287</p> <p>7.3.2 Solid-Phase Peptide Synthesis 288</p> <p>7.4 Self-Assembly of Lipidated Peptides: Peptide Amphiphiles Engineering 289</p> <p>7.4.1 Double-Tailed Peptide Amphiphile 289</p> <p>7.4.2 Single-Tailed (Monoalkylated) Peptide Amphiphiles 290</p> <p>7.5 Biomimetic Peptide Amphiphile Surface Engineering Case Studies 290</p> <p>7.5.1 Melanoma Cell Adhesion on a Lipid Bilayer Incorporating RGD 292</p> <p>7.5.2 Adhesion of α5β1 Receptors to Biomimetic Substrates 292</p> <p>7.5.3 Human Umbilical Vein Endothelial Cell Adhesion 293</p> <p>7.5.4 Cell Adhesion on a Polymerized Monolayer 295</p> <p>7.5.5 Cell Adhesion and Growth on Patterned Lipid Bilayers 296</p> <p>7.5.6 Cell Adhesion on Metallic Surfaces 297</p> <p>7.5.7 Bone Marrow Mononuclear Cell Adhesion 298</p> <p>7.5.8 Nanofi brous Peptide Amphiphile Gels for Endothelial Cell Adhesion 299</p> <p>7.6 Neural Stem Cells on Surfaces: A Deeper Look at Cell Adhesion Control 299</p> <p>7.6.1 The Stem Cell Microenvironment 299</p> <p>7.6.2 Neural Stem Cells on Lipid Bilayers 299</p> <p>7.6.3 Vesicle Fusion and Bilayer Characterization 300</p> <p>7.6.4 Initial NSC Adhesion on Peptide Surfaces 300</p> <p>7.6.5 NSC Proliferation on Peptide Surfaces 301</p> <p>7.6.6 NSC Differentiation on Peptide Surfaces 302</p> <p>7.7 Overview of Molecular Engineering Designs for Cellular Adhesion 303</p> <p>7.7.1 Self-Assembled Peptide Surfaces 303</p> <p>7.7.2 Cell Adhesion Molecule RGD Surface Density Control: An Example 303</p> <p>7.7.3 Cell Adhesion Molecule Accessibility (Exposure) Control 307</p> <p>7.8 Conclusion 307</p> <p>Acknowledgments 308</p> <p>References 308</p> <p><b>8 A Microcosm of Wet Adhesion: Dissecting Protein Interactions in Mussel Attachment Plaques 319</b><br /> <i>Dong Soo Hwang, Wei Wei, Nadine R. Rodriguez-Martinez, Eric Danner, and J. Herbert Waite</i></p> <p>8.1 Introduction 319</p> <p>8.2 Mussel Adhesion 320</p> <p>8.2.1 Marine Surfaces 320</p> <p>8.2.2 Byssal Attachment 320</p> <p>8.2.3 Direct Observation of Plaque Attachment 323</p> <p>8.3 Surface Forces Apparatus 323</p> <p>8.3.1 Making the SFA Relevant to Biological Environments 325</p> <p>8.4 Assessing Protein Contributions by SFA 327</p> <p>8.4.1 Asymmetric/Symmetric Confi gurations 327</p> <p>8.4.2 Protein–Surface Interactions 330</p> <p>8.4.3 Protein–Protein Interactions 335</p> <p>8.5 Conclusions 343</p> <p>8.5.1 Insights about Protein Interactions 343</p> <p>8.5.2 Effects of DOPA Reactivity on Adhesion 344</p> <p>8.5.3 Mussel Foot Controls the Microenvironment around DOPA 345</p> <p>8.5.4 Other Factors Infl uencing Adhesion 345</p> <p>Acknowledgments 346</p> <p>References 346</p> <p><b>9 Gecko-Inspired Polymer Adhesives 351</b><br /> <i>Yiðit Mengüç and Metin Sitti</i></p> <p>9.1 Introduction 351</p> <p>9.1.1 A Note on Terminology 352</p> <p>9.2 Biological Inspirations 354</p> <p>9.2.1 Key Discoveries in Gecko Adhesion 354</p> <p>9.2.2 Structured Adhesion in Other Animals 355</p> <p>9.2.3 Summary of Observed Principles of Micro-Structured Adhesives 357</p> <p>9.3 Mechanical Principles of Structured Adhesive Surfaces 359</p> <p>9.3.1 Adhesion 359</p> <p>9.3.2 Friction 365</p> <p>9.4 Gecko-Inspired Adhesives and Their Fabrication 367</p> <p>9.4.1 Macro- and Microscale Fibers 367</p> <p>9.4.2 Nanoscale Fibers 371</p> <p>9.4.3 Hierarchical Fibers 372</p> <p>9.5 Applications of Bioinspired Adhesives 374</p> <p>9.5.1 Robotics 374</p> <p>9.5.2 Safety and Medical Devices 377</p> <p>9.6 Future Directions: Unsolved Challenges and Possible Applications 378</p> <p>References 379</p> <p><b>10 Adhesion and Friction Mechanisms of Polymer Surfaces and Thin Films 391</b><br /> <i>Hongbo Zeng</i></p> <p>10.1 Introduction 391</p> <p>10.2 Adhesion and Contact Mechanics 392</p> <p>10.2.1 Surface Energies 392</p> <p>10.2.2 Advances in Contact and Adhesion Mechanics 393</p> <p>10.3 Adhesion of Glassy Polymers and Elastomers 398</p> <p>10.3.1 Adhesion Interface: Chain Pull-Out 399</p> <p>10.3.2 Glassy Polymers: Transition from Chain Pull-Out, Chain Scission to Crazing 403</p> <p>10.3.3 Adhesion Promoters for Polymer Systems 407</p> <p>10.4 Experimental Advances in Adhesion and Friction between Polymer Surfaces and Thin Films 408</p> <p>10.5 Adhesion and Fracture Mechanism of Polymer Thin Films: from Liquid to Solid-Like Behaviors 416</p> <p>10.6 Adhesion and Friction between Rough Polymer Surfaces 423</p> <p>10.7 Friction between Immiscible Polymer Melts 425</p> <p>10.8 Hydrophobic Interactions between Polymer Surfaces 426</p> <p>10.9 Perspectives and Future Research Avenues 431</p> <p>Acknowledgment 432</p> <p>References 432</p> <p><b>11 Recent Advances in Rubber Friction in the Context of Tire Traction 443</b><br /> <i>Xiao-Dong Pan</i></p> <p>11.1 Introduction 443</p> <p>11.2 Background on Rubber Friction and Tire Traction 445</p> <p>11.2.1 Characterization of Surface Roughness and Contact Mechanics 453</p> <p>11.3 Recent Innovations on Tire Tread Compounds 457</p> <p>11.4 Rubber Friction under Stationary Sliding on Rough Surfaces 461</p> <p>11.4.1 Theory of Rubber Friction on Rough Surfaces by Klüppel and Heinrich 462</p> <p>11.4.2 Persson’s Model on Rubber Friction 471</p> <p>11.4.3 The Model by Heinrich and Klüppel versus the Model by Persson: Some Comparisons 474</p> <p>11.5 Rubber Friction under Nonstationary Conditions 475</p> <p>11.6 Interfacial Effects on Rubber Friction 478</p> <p>11.6.1 Rubber Surface Treatment 482</p> <p>11.6.2 Molecular Scale Probing of Contact/Sliding Interface 482</p> <p>11.7 Rubber Friction Involving Textured Surfaces 484</p> <p>11.8 Field Measurements within a Frictional Contact 486</p> <p>11.9 Other Studies on or Related to Rubber Friction 488</p> <p>11.10 Concluding Remarks 490</p> <p>References 491</p> <p><b>12 Polymers, Adhesion, and Paper Materials 501</b><br /> <i>Boxin Zhao, Dhamodaran Arunbabu, and Brendan McDonald</i></p> <p>12.1 Introduction 501</p> <p>12.2 Polymer Nature of Paper 502</p> <p>12.2.1 Paper as a Network of Fibers 502</p> <p>12.2.2 Wood Fibers and Its Natural Polymeric Constituents 503</p> <p>12.2.3 Cellulose Fibers 508</p> <p>12.3 Functional Polymers and Sizing Agents Used in Papermaking 509</p> <p>12.3.1 Major Functions of Polymer Additives 509</p> <p>12.3.2 Common Functional Polymers 514</p> <p>12.3.3 Sizing Agents 519</p> <p>12.4 Polymer Adhesion and the Formation of Paper 520</p> <p>12.4.1 Intermolecular Forces or Molecular Adhesion Processes 521</p> <p>12.4.2 Capillary Forces 524</p> <p>12.4.3 Work of Adhesion and Johnson–Kendall–Roberts Contact Mechanics 524</p> <p>12.4.4 The Formation of Interfi ber Bonds 526</p> <p>12.4.5 Linkage between Molecular Adhesion to Paper Strength 530</p> <p>12.5 Polymer Adhesion Measurement 533</p> <p>12.5.1 Shear Adhesion Testing 533</p> <p>12.5.2 Peeling Adhesion Testing 535</p> <p>12.5.3 JKR-Type Contact Adhesion Testing 536</p> <p>12.5.4 AFM Colloidal Probe Testing 537</p> <p>12.6 Summary and Perspectives 538</p> <p>References 539</p> <p><b>13 Carbohydrates and Their Roles in Biological Recognition Processes 545</b><br /> <i>Keshwaree Babooram and Ravin Narain</i></p> <p>13.1 Introduction 545</p> <p>13.2 Recent Advances in the Field of Carbohydrate Chemistry 546</p> <p>13.2.1 Glycopolymers 546</p> <p>13.2.2 Carbohydrate Microarrays 550</p> <p>13.2.3 Carbohydrate-Based Vaccines 552</p> <p>13.3 Molecular Interactions of Carbohydrates in Cell Recognition 557</p> <p>13.4 Techniques Used in the Identifi cation of Carbohydrate Interactions in Cell Recognition 558</p> <p>13.4.1 Atomic Force Microscopy (AFM) 558</p> <p>13.4.2 Cantilever Microarray Biosensors 563</p> <p>13.5 Conclusions and Future Trends 564</p> <p>References 566</p> <p><b>14 The Impact of Bacterial Surface Polymers on Bacterial Adhesion 575</b><br /> <i>Yang Liu</i></p> <p>14.1 Bacterial Adhesion 575</p> <p>14.1.1 Signifi cance of Bacterial Adhesion 575</p> <p>14.1.2 Mechanisms of Bacterial Adhesion 576</p> <p>14.2 The Impact of Bacterial Surface Polymers on Bacterial Adhesion 577</p> <p>14.2.1 Bacterial Surface Polymers 577</p> <p>14.2.2 Impact of Bacterial Surface Polymers on Adhesion 579</p> <p>14.3 Methods and Models for Understanding Interaction Mechanisms of Bacterial Adhesion 582</p> <p>14.3.1 Techniques for Studying Bacterial Surface Polymers 582</p> <p>14.3.2 Models to Explain Bacterial Adhesion Mechanisms 590</p> <p>References 600</p> <p><b>15 Adhesion, Friction, and Lubrication of Polymeric Nanoparticles and Their Applications 617</b><br /> <i>Bassem Kheireddin, Ming Zhang, and Mustafa Akbulut</i></p> <p>15.1 Introduction 617</p> <p>15.2 Applications of Polymeric Nanoparticles 617</p> <p>15.2.1 Biomedical Applications of PNPs 618</p> <p>15.2.2 Energy Storage 621</p> <p>15.2.3 Skin Care 622</p> <p>15.2.4 Sensors 623</p> <p>15.2.5 Electronic Devices 624</p> <p>15.3 Methods of Preparation of Polymeric Nanoparticles (PNPs) 625</p> <p>15.3.1 Dispersion of Preformed Polymers 625</p> <p>15.3.2 Polymerization of Monomers 633</p> <p>15.4 Adhesion of PNP 636</p> <p>15.4.1 Hertz Theory 637</p> <p>15.4.2 JKR Theory 637</p> <p>15.4.3 DMT Theory 638</p> <p>15.4.4 Studies on Adhesion of PNPs 638</p> <p>15.5 Adsorption of Polymeric Nanoparticles 641</p> <p>15.5.1 Adsorption onto Polymeric Nanoparticles 641</p> <p>15.5.2 Adsorption of Polymeric Nanoparticles on Large Surfaces 642</p> <p>15.5.3 Adsorption Isotherms 643</p> <p>15.5.4 Adsorption Kinetics of Polymeric Nanoparticles onto Substrates 644</p> <p>15.6 Friction of PNP 647</p> <p>15.7 Summary 648</p> <p>References 649</p> <p><b>16 Electrorheological and Magnetorheological Materials and Mechanical Properties 659</b><br /> <i>Yu Tian, Yonggang Meng, and Shizhu Wen</i></p> <p>16.1 Electrorheological and Magnetorheological History 659</p> <p>16.2 ER/MR Phenomenon 661</p> <p>16.3 ER/MR Materials 662</p> <p>16.4 ER/MR Effect Models 664</p> <p>16.5 Properties of ER/MR Fluids under Shearing, Tension, and Squeezing 667</p> <p>16.5.1 Shear Properties of ER/MR Fluids 667</p> <p>16.5.2 Tensile Behavior of ER/MR Fluids 669</p> <p>16.5.3 Compression of ER/MR Fluids 672</p> <p>16.6 Transient Response to Field Strength, Shear Rate, and Geometry 676</p> <p>16.7 Shear Thickening in ER/MR Fluids at Low Shear Rates 681</p> <p>16.8 Applications 683</p> <p>References 684</p> <p>Index 691</p>
<p><b>HONGBO ZENG, PHD,</b> is an Associate Professor in the Department of Chemical and Materials Engineering at the University of Alberta. Dr. Zeng leads a research group that investigates various areas of surface and colloid science, and nanotechnology, with a special focus on the intermolecular and surface forces in polymer materials, complex fluids, biological systems, oils, and minerals. In addition, he works on the development of advanced functional materials that provide novel engineering and biomedical applications.</p>
<p><b>Sets the stage for the development of new advanced polymeric materials and applications</b></p> <p>Building a deeper understanding of the surface properties, functionality, contact, and interactions of polymers has become critical for the development of new advanced polymer materials and novel applications. In order to support new research, this book presents our current understanding of adhesion, friction, and lubrication in polymeric and biomacromolecular systems at molecular, nano, and micro scales. Moreover, the authors demonstrate how a better understanding of the adhesion, scratch, wear, and lubrication properties of polymers can lead to new applications in diverse areas such as biomedical research and automotive engineering.</p> <p><i>Polymer Adhesion, Friction, and Lubrication</i> sets forth a variety of experimental and theoretical methods such as the use of atomic force microscopy and surface forces apparatus to analyze nanotribology. The book's sixteen chapters also explore topics such as:</p> <ul> <li>Polymer thin films and brushes</li> <li>Nanoparticles</li> <li>Rubber and tire technology</li> <li>Synovial joint lubrication</li> <li>Adhesion in paper products</li> <li>Electrorheological fluids</li> </ul> <p>All of the book's chapters have been contributed by leading international experts and pioneers in the field. Their contributions reflect not only the latest published findings, but also their own firsthand experience studying the adhesion, friction, and lubrication properties of polymers and then leveraging this knowledge to develop new applications. Readers will find references at the end of each chapter in order to explore individual topics in greater depth.</p> <p><i>Polymer Adhesion, Friction, and Lubrication</i> is recommended for students and professionals in polymer science and engineering, materials science, colloid and interface science, nanotechnology, bioengineering, and chemical engineering.</p>

Diese Produkte könnten Sie auch interessieren:

Terpene
Terpene
von: Eberhard Breitmaier
PDF ebook
42,99 €
Reaktionen der organischen Chemie
Reaktionen der organischen Chemie
von: Helmut Krauch, Werner Kunz
PDF ebook
124,99 €
Sieben Moleküle
Sieben Moleküle
von: Jürgen-Hinrich Fuhrhop, Tianyu Wang
PDF ebook
25,99 €