Details

Plant Breeding Reviews, Volume 41


Plant Breeding Reviews, Volume 41


Plant Breeding Reviews 1. Aufl.

von: Irwin Goldman

197,99 €

Verlag: Wiley-Blackwell
Format: EPUB
Veröffentl.: 17.01.2018
ISBN/EAN: 9781119414513
Sprache: englisch
Anzahl Seiten: 416

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><i>Plant Breeding Reviews</i> presents state-of-the-art reviews on plant genetics and the breeding of all types of crops by both traditional means and molecular methods. Many of the crops widely grown today stem from a very narrow genetic base; understanding and preserving crop genetic resources is vital to the security of food systems worldwide. The emphasis of the series is on methodology, a fundamental understanding of crop genetics, and applications to major crops.</p>
<p><b>1. Hari Deo Upadhyaya: Plant Breeder, Geneticist and Genetic Resources Specialist 1<br /></b><i>Sangam L Dwivedi</i></p> <p>Abbreviations 3</p> <p>I. Introduction 3</p> <p>II. Biographical Sketch 5</p> <p>III. Contributions 5</p> <p>A. Genetic Resources Management and Use 6</p> <p>1. Representative Subsets 6</p> <p>2. Climate?]resilient Germplasm 8</p> <p>3. Seed Nutrient?]dense Germplasm 8</p> <p>4. Bioenergy 9</p> <p>5. Germplasm Use in Breeding 9</p> <p>6. On?]farm Conservation and Use of Diversity 10</p> <p>7. Wild Relatives and Cultigen Genepool 10</p> <p>8. Gaps in Collections 12</p> <p>B. Molecular Biology and Biometrics 13</p> <p>1. Population Structure and Diversity 13</p> <p>2. Genome?]wide Association Mapping 13</p> <p>3. Candidate Genes Associated with Agronomically Useful Traits 15</p> <p>4. Ethnolinguistic Groups Shaped Sorghum Diversity in Africa 15</p> <p>5. Genome Sequencing 16</p> <p>C. Groundnut Breeding 16</p> <p>1. Early Maturity 16</p> <p>2. Drought Tolerance 18</p> <p>3. Aflatoxin Resistance 18</p> <p>4. Farmers Participatory Varietal Selection 19</p> <p>D. Chickpea Breeding 20</p> <p>IV. Upadhyaya, the Man 20</p> <p>A. Personality 20</p> <p>B. Educator and Leader 27</p> <p>C. International Collaborations 28</p> <p>D. Recognition 28</p> <p>1. Awards 28</p> <p>2. Honours 30</p> <p>3. Service 30</p> <p>V. Publications 30</p> <p>VI. Products 31</p> <p>A. Cultivars 31</p> <p>B. Registrations 31</p> <p>References cited and further reading 33</p> <p><b>2. Crop Improvement Using Genome Editing 55<br /></b><i>Nathaniel M Butler, Jiming Jiang and Robert M Stupar</i></p> <p>Abbreviations 56</p> <p>I. Introduction 57</p> <p>II. Conceptual Framework for Genome Editing 60</p> <p>A. Development of Sequence?]Specific Nucleases 60</p> <p>1. Early Nucleases 62</p> <p>2. Designer Nucleases 62</p> <p>3. RNA?]guided Nucleases 65</p> <p>B. DNA Repair Pathways 66</p> <p>1. Non?]homologous End?]joining 66</p> <p>2. Homologous Recombination 69</p> <p>C. Modes of Modifications 70</p> <p>1. NHEJ?]mediated Modifications 70</p> <p>2. HR?]mediated Modifications 71</p> <p>III. Plant Transformation Strategies 72</p> <p>A. Agrobacterium?]mediated Transformation 73</p> <p>B. Protoplasts and Biolistics 75</p> <p>C. Plant Viral Systems 76</p> <p>IV. Harnessing Breaks for Targeted Mutagenesis 77</p> <p>A. Detecting and Stabilizing Targeted Mutations 78</p> <p>B. Targeted Mutagenesis in Polyploids 81</p> <p>V. Precision Gene Editing via HomologousRecombination 82</p> <p>VI. Genome Editing at the Genome Level 85</p> <p>A. Large Deletions 85</p> <p>B. Chromosomal Rearrangements 86</p> <p>C. Epigenetic Remodelling and Base Editing 87</p> <p>VII. Future Perspectives 88</p> <p>A. Nuclease Decisions and Considerations 89</p> <p>B. Crop Challenges and Advantages 90</p> <p>C. Regulation of Nuclease Technology 91</p> <p>Acknowledgements 92</p> <p>Literature Cited 92</p> <p><b>3. Development and Commercialization of CMS Pigeonpea Hybrids 103<br /></b><i>KB Saxena, D Sharma, and MI Vales</i></p> <p>Abbreviations 105</p> <p>I. Introduction 106</p> <p>II. Reproductive Cycle and Morphology of Pigeonpea 108</p> <p>A. Induction of Flowering 108</p> <p>B. Maturity Range 109</p> <p>C. Flower Structure 110</p> <p>D. Flowering Pattern 111</p> <p>E. Pollination and Fertilization 111</p> <p>F. Natural Cross?]pollination 112</p> <p>1. Cross?]pollinating Agents 112</p> <p>2. Extent of Out?]crossing 114</p> <p>III. Crop Production 115</p> <p>A. General Agronomy 115</p> <p>B. Major Production Constraints 115</p> <p>1. Diseases 115</p> <p>2. Insect Pests 117</p> <p>3. Waterlogging 117</p> <p>IV. Extent and Nature of Heterosis in Pigeonpea 118</p> <p>V. Genetic Male Sterility?]based Hybrid Technology 119</p> <p>A. Genetic Male Sterility Systems 119</p> <p>B. Heterosis in GMS?]based Hybrids 121</p> <p>C. Release of the First GMS?]based</p> <p>Pigeonpea Hybrid 121</p> <p>D. Hybrid Seed Production Technology 122</p> <p>E. Assessment of GMS?]based Hybrid Technology 123</p> <p>VI. Temperature?]sensitive Male Sterility 124</p> <p>VII. Cytoplasmic?]nuclear Male Sterility?]based Hybrid Technology 125</p> <p>A. Early Efforts to Produce CMS System 126</p> <p>B. Breakthrough in Breeding Stable CMS Systems 126</p> <p>C. Diversification of Cytoplasm 127</p> <p>1. A1 CMS System from Cajanus sericeus (Benth. ex Bak.) van der Maesen 128</p> <p>2. A2 CMS System from Cajanus scarabaeoides (L.) Thou 128</p> <p>3. A3 CMS System from Cajanus volubilis (Blanco) Blanco. 128</p> <p>4. A4 CMS System from Cajanus cajanifolius (Haines) Maesen 129</p> <p>5. A5 CMS System from Cajanus cajan (L.) Millsp 129</p> <p>6. A6 CMS System from Cajanus lineatus (W & A) van der Maesen 130</p> <p>7. A7 CMS from Cajanus platycarpus (Benth.) van der Maesen 130</p> <p>8. A8 CMS System from Cajanus reticulatus (Aiton) F. Muell 130</p> <p>9. A9 CMS System from Cajanus cajan (L.) Millsp 131</p> <p>D. Effect of Pigeonpea Cytoplasm on Yield 131</p> <p>E. Fertility Restoration of A4 CMS System 132</p> <p>VIII. Breeding New Hybrid Parents 133</p> <p>A. Fixing Priorities 133</p> <p>B. Selection of Hybrid Parents from Germplasm and Breeding Populations 134</p> <p>C. Isolation of Fertility?]Restoring Inbred Lines from Heterotic Hybrids 136</p> <p>D. Breeding Dwarf Parental Lines 137</p> <p>E. Breeding Determinate/Non?]determinate Parental Lines 137</p> <p>F. Disease?]resistant Parental Lines 138</p> <p>G. Use of a Naked?]Eye Polymorphic Marker in Hybrid Breeding 139</p> <p>H. Formation of Heterotic Groups 140</p> <p>I. Inbreeding Depression 141</p> <p>IX. Application of Genomics in Breeding Hybrids 142 A. Understanding the Molecular Genetics Basis of the A4 CMS System 143</p> <p>B. Tagging Fertility?]restoring Genes 143</p> <p>C. Assessment of Genetic Purity 144</p> <p>D. Potential Role in Breeding Two?]line Hybrids 145</p> <p>X. Commercialization of Hybrid Pigeonpea Technology 146</p> <p>A. Standard Heterosis 146</p> <p>1. Early?]maturing Hybrids 146</p> <p>2. Medium?] and Late?]maturing Hybrids 147</p> <p>B. Release of the World’s First Commercial Legume Hybrid 149</p> <p>C. Hybrid Seed Production Technology 152</p> <p>D. Economics of Hybrid Seed Production 153</p> <p>XI. Outlook 154</p> <p>Acknowledgements 157</p> <p>Literature Cited 157</p> <p><b>4. The Evolution of Potato Breeding 169<br /></b><i>Shelley H Jansky and David M Spooner</i></p> <p>Abbreviations 170</p> <p>I. Introduction 170</p> <p>II. Classification of Cultivated Potato 171</p> <p>III. Origin of the Cultivated Potato 173</p> <p>IV. Dynamics of Potato Landrace Evolution 176</p> <p>V. Origin of the European Potato 178</p> <p>VI. Nineteenth Century Potato Breeding 179</p> <p>VII. Early Twentieth Century Potato Breeding 184</p> <p>VIII. Conventional Potato Breeding 189</p> <p>IX. Late Twentieth Century Potato Breeding 191</p> <p>X. Twenty?]first Century Potato Breeding 196</p> <p>A. Is Tetraploidy Necessary for High Tuber Yield in Potato? 196</p> <p>B. What are the Advantages of Moving to the Diploid Level and Developing Inbred Lines? 198</p> <p>C. Is It Possible to Develop Diploid Inbred Lines in Potato? 200</p> <p>XI. Conclusions 202</p> <p>Literature Cited 203</p> <p><b>5. Flavour Evaluation for Plant Breeders 215<br /></b><i>JC Dawson and GK Healy</i></p> <p>Abbreviations 217</p> <p>I. Introduction 217</p> <p>A. Scope of the Chapter 218</p> <p>B. Justification for Rapid Sensory Methods 219</p> <p>C. History 220</p> <p>II. Types of Rapid Sensory Analysis Methods 221</p> <p>A. Performance Relative to Conventional Methods 222</p> <p>B. Methods of Rapid Sensory Evaluation 224</p> <p>1. Evaluation of Individual Product Attributes 224</p> <p>Method 1: Intensity Scales 224</p> <p>Method 2: Flash Profiling 225</p> <p>Medhod 3: Check All That Apply (CATA) 226</p> <p>2. Evaluation of Global Differences 227</p> <p>Method 4: Sorting 227</p> <p>Method 5: Projective Mapping 228</p> <p>3. Evaluation in Comparison to a Reference 230</p> <p>Method 6: Paired Comparisons 230</p> <p>Method 7: Polarized Sensory Positioning 231</p> <p>Method 8: Open?]ended Evaluations 232</p> <p>4. Use of Professional Experts in Evaluation 232</p> <p>C. Numbers of Assessors and Numbers of Samples for Trained, Untrained and Expert Panels 235</p> <p>III. Data Analysis for Rapid Sensory Methods 236</p> <p>A. Principal Component Analysis 237</p> <p>B. Multi?]dimensional Scaling 237</p> <p>C. Multiple Correspondence Analysis 238</p> <p>D. Generalized Procrustes Analysis 239</p> <p>E. Multiple Factor Analysis 239</p> <p>IV. Example of Using Sensory Analysis for Breeding 241</p> <p>A. Background, Goals and Partners 241</p> <p>1. Participant Recruitment and Priority Setting 241</p> <p>2. Cultivar Trials 243</p> <p>B. Flavour Evaluation Methods Used 243</p> <p>1. Evolution of Flavour Evaluation Methods 243</p> <p>2. Intensity Scaling Methods Used with Crew Members 244</p> <p>3. Chef Projective Mapping Evaluation 245</p> <p>C. Statistical Methodology 246</p> <p>1. ANOVA with Intensity Scaling Methods 246</p> <p>2. Principal Component Analysis of Field Crew Flavour Evaluation Means 246</p> <p>3. Multiple Factor Analysis of Chef Projective Mapping Data 247</p> <p>D. Results 247</p> <p>1. Field Crew Flavour Evaluation with Intensity Scaling 247</p> <p>2. Chef Flavour Evaluations 250</p> <p>3. Participant Feedback and Next Steps 253</p> <p>V. Outlook 254</p> <p>Acknowledgements 256</p> <p>Literature Cited 256</p> <p><b>6. The Genetic Improvement of Black Walnut for Timber Production 263<br /></b><i>James R McKenna and Mark V Coggeshall</i></p> <p>Abbreviations 264</p> <p>I. Introduction 265</p> <p>II. Biology of Black Walnut 268</p> <p>A. Leafing Date 268</p> <p>B. Flowering 268</p> <p>1. Female Flowers 269</p> <p>2. Male Flowers 270</p> <p>C. Pollen Collection 270</p> <p>D. Artificial Pollination 271</p> <p>III. Breeding 272</p> <p>A. Breeding Strategies 272</p> <p>B. Selection 272</p> <p>C. Age?]to?]Age Correlations 273</p> <p>D. Improvement 274</p> <p>E. Analysis 274</p> <p>IV. Evaluation of Heritable Traits 274</p> <p>A. Geographic Variation 274</p> <p>B. Growth 275</p> <p>C. Timber Quality 275</p> <p>D. Wood Quality 276</p> <p>V. Host Plant Resistance to Pathogens and Insect Pests 277</p> <p>A. Insect Resistance 277</p> <p>B. Anthracnose 277</p> <p>C. Thousand Cankers Disease 278</p> <p>D. Bunch Disease – Witches Broom 278</p> <p>VI. Propagation 279</p> <p>A. Seed Propagation 279</p> <p>B. Grafting 280</p> <p>C. Rooting 281</p> <p>VII. Plot Management 281</p> <p>A. Progeny Tests 281</p> <p>B. Clone Banks 282</p> <p>C. Seed Orchards 283</p> <p>VIII. Future Directions 283</p> <p>Literature Cited 283</p> <p><b>7. A Life in Horticulture and Plant Breeding: The Extraordinary Contributions of Jules Janick 291<br /></b><i>Irwin L Goldman and Rodomiro Ortiz</i></p> <p>Abbreviations 292</p> <p>I. Introduction 292</p> <p>II. Honors and Commendations 297</p> <p>III. Students and Teaching 297</p> <p>IV. Editorial Work 299</p> <p>V. Books and Proceedings 303</p> <p>VI. Research 306</p> <p>A. Patents 307</p> <p>B. Book Chapters, Reviews and Introductions 307</p> <p>C. Journal Publications 310</p> <p>D. Popular and Extension Articles 320</p> <p>E. Book Reviews 329</p> <p>F. Encyclopaedia Articles 331</p> <p>VII. Public Addresses, Invited Seminars and Speeches 332</p> <p>VIII. Service Contributions 355</p> <p>IX. Epilogue 358</p> <p>Literature Cited 360</p> <p>Index</p> <p> </p>
<p><b>Irwin L. Goldman</b>, Professor and Chair, Department of Horticulture, University of Wisconsin-Madison, USA.</p>

Diese Produkte könnten Sie auch interessieren:

Esau's Plant Anatomy
Esau's Plant Anatomy
von: Ray F. Evert, Susan E. Eichhorn
PDF ebook
187,99 €
The Fusarium Laboratory Manual
The Fusarium Laboratory Manual
von: John F. Leslie, Brett A. Summerell, Suzanne Bullock
PDF ebook
161,99 €
Plant Desiccation Tolerance
Plant Desiccation Tolerance
von: Matthew A. Jenks, Andrew J. Wood
PDF ebook
242,99 €