Details

Plant Biotechnology and Genetics


Plant Biotechnology and Genetics

Principles, Techniques, and Applications
2. Aufl.

von: C. Neal Stewart

91,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 29.02.2016
ISBN/EAN: 9781118819883
Sprache: englisch
Anzahl Seiten: 432

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>Focused on basics and processes, this textbook teaches plant biology and agriculture applications with summary and discussion questions in each chapter.</p> <ul> <li>Updates each chapter to reflect advances / changes since the first edition, for example: new biotechnology tools and advances, genomics and systems biology, intellectual property issues on DNA and patents, discussion of synthetic biology tools</li> <li>Features autobiographical essays from eminent scientists, providing insight into plant biotechnology and careers</li> <li>Has a companion website with color images from the book and PowerPoint slides</li> <li>Links with author's own website that contains teaching slides and graphics for professors and students: http://bit.ly/2CI3mjp</li> </ul>
<p>Foreword xvi</p> <p>Contributors xviii</p> <p>Preface xx</p> <p><b>1. The Impact of Biotechnology on Plant Agriculture 1<br /> </b><i>Graham Brookes</i></p> <p>1.0 Chapter Summary and Objectives 1</p> <p>1.0.1 Summary 1</p> <p>1.0.2 Discussion Questions 1</p> <p>1.1 Introduction 1</p> <p>1.2 Cultivation of Biotechnology (GM) Crops 2</p> <p>1.3 Why Farmers Use Biotech Crops 4</p> <p>1.4 GM’s Effects on Crop Production and Farming 7</p> <p>1.5 How the Adoption of Plant Biotechnology has Impacted the Environment 8</p> <p>1.5.1 Environmental Impacts from Changes in Insecticide and Herbicide Use 8</p> <p>1.5.2 Impact on GHG Emissions 11</p> <p>1.6 Conclusions 13</p> <p>Life Box 1.1 Norman E. Borlaug 14</p> <p>Life Box 1.2 Mary-Dell Chilton 15</p> <p>Life Box 1.3 Robert T. Fraley 17</p> <p>References 19</p> <p><b>2. Mendelian Genetics and Plant Reproduction 20<br /> </b><i>Matthew D. Halfhill and Suzanne I. Warwick</i></p> <p>2.0 Chapter Summary and Objectives 20</p> <p>2.0.1 Summary 20</p> <p>2.0.2 Discussion Questions 20</p> <p>2.1 Overview of Genetics 20</p> <p>2.2 Mendelian Genetics 23</p> <p>2.2.1 Law of Segregation 26</p> <p>2.2.2 Law of Independent Assortment 26</p> <p>2.3 Mitosis and Meiosis 27</p> <p>2.3.1 Mitosis 29</p> <p>2.3.2 Meiosis 29</p> <p>2.3.3 Recombination 30</p> <p>2.3.4 Cytogenetic Analysis 31</p> <p>2.3.5 Mendelian Genetics and Biotechnology Summary 32</p> <p>2.4 Plant Reproductive Biology 32</p> <p>2.4.1 History of Research in Plant Reproduction 32</p> <p>2.4.2 Mating Systems 32</p> <p>2.4.3 Hybridization and Polyploidy 36</p> <p>2.4.4 Mating Systems and Biotechnology Summary 38</p> <p>2.5 Conclusion 38</p> <p>Life Box 2.1 Richard A. Dixon 39</p> <p>Life Box 2.2 Michael L. Arnold 40</p> <p>References 42</p> <p><b>3. Plant Breeding 43<br /> </b><i>Nicholas A. Tinker and Elroy R. Cober</i></p> <p>3.0 Chapter Summary and Objectives 43</p> <p>3.0.1 Summary 43</p> <p>3.0.2 Discussion Questions 43</p> <p>3.1 Introduction 44</p> <p>3.2 Central Concepts in Plant Breeding 45</p> <p>3.2.1 Simple vs. Complex Inheritance 45</p> <p>3.2.2 Phenotype vs. Genotype 46</p> <p>3.2.3 Mating Systems, Varieties, Landraces, and Pure Lines 47</p> <p>3.2.4 Other Topics in Population and Quantitative Genetics 49</p> <p>3.2.5 The Value of a Plant Variety Depends on Many Traits 51</p> <p>3.2.6 A Plant Variety Must Be Environmentally Adapted 51</p> <p>3.2.7 Plant Breeding is a Numbers Game 52</p> <p>3.2.8 Plant Breeding is an Iterative and Collaborative Process 52</p> <p>3.2.9 Diversity, Adaptation, and Ideotypes 53</p> <p>3.2.10 Other Considerations 56</p> <p>3.3 Objectives in Plant Breeding 56</p> <p>3.4 Methods of Plant Breeding 57</p> <p>3.4.1 Methods of Hybridization 58</p> <p>3.4.2 Self‐Pollinated Species 58</p> <p>3.4.3 Outcrossing Species 63</p> <p>3.4.4 Clonally Propagated Species 67</p> <p>3.5 Breeding Enhancements 68</p> <p>3.5.1 Doubled Haploidy 68</p> <p>3.5.2 Marker‐Assisted Selection 68</p> <p>3.5.3 Mutation Breeding 70</p> <p>3.5.4 Apomixis 71</p> <p>3.6 Conclusions 71</p> <p>Life Box 3.1 Gurdev Singh Khush 72</p> <p>Life Box 3.2 P. Stephen Baenziger 74</p> <p>Life Box 3.3 Steven D. Tanksley 75</p> <p>References 77</p> <p><b>4. Plant Development and Physiology 78<br /> </b><i>Glenda E. Gillaspy</i></p> <p>4.0 Chapter Summary and Objectives 78</p> <p>4.0.1 Summary 78</p> <p>4.0.2 Discussion Questions 78</p> <p>4.1 Plant Anatomy and Morphology 79</p> <p>4.2 Embryogenesis and Seed Germination 80</p> <p>4.2.1 Gametogenesis 80</p> <p>4.2.2 Fertilization 82</p> <p>4.2.3 Fruit Development 83</p> <p>4.2.4 Embryogenesis 83</p> <p>4.2.5 Seed Germination 85</p> <p>4.2.6 Photomorphogenesis 85</p> <p>4.3 Meristems 86</p> <p>4.3.1 Shoot Apical Meristem 86</p> <p>4.3.2 Root Apical Meristem and Root Development 88</p> <p>4.4 Leaf Development 89</p> <p>4.4.1 Leaf Structure 89</p> <p>4.4.2 Leaf Development Patterns 91</p> <p>4.5 Flower Development 92</p> <p>4.5.1 Floral Evocation 92</p> <p>4.5.2 Floral Organ Identity and the ABC Model 93</p> <p>4.6 Hormone Physiology and Signal Transduction 94</p> <p>4.6.1 Seven Plant Hormones and Their Actions 94</p> <p>4.6.2 Plant Hormone Signal Transduction 96</p> <p>4.7 Conclusions 100</p> <p>Life Box 4.1 Deborah Delmer 100</p> <p>Life Box 4.2 Natasha Raikhel 102</p> <p>Life Box 4.3 Brenda S.J. Winkel 103</p> <p>References 105</p> <p><b>5. Tissue Culture: The Manipulation of Plant Development 107<br /> </b><i>Vinitha Cardoza</i></p> <p>5.0 Chapter Summary and Objectives 107</p> <p>5.0.1 Summary 107</p> <p>5.0.2 Discussion Questions 107</p> <p>5.1 Introduction 107</p> <p>5.2 History of Tissue Culture 108</p> <p>5.3 Media and Culture Conditions 109</p> <p>5.3.1 Basal Media 109</p> <p>5.3.2 Growth Regulators 110</p> <p>5.4 Sterile Technique 111</p> <p>5.4.1 Clean Equipment 111</p> <p>5.4.2 Surface Sterilization of Explants 112</p> <p>5.5 Culture Conditions and Vessels 113</p> <p>5.6 Culture Types and Their Uses 113</p> <p>5.6.1 Callus and Somatic Embryo Culture 113</p> <p>5.6.2 Cell Suspension Cultures 117</p> <p>5.6.3 Anther/Microspore Culture 119</p> <p>5.6.4 Protoplast Culture 119</p> <p>5.6.5 Somatic Hybridization 120</p> <p>5.6.6 Embryo Culture 120</p> <p>5.6.7 Meristem Culture 121</p> <p>5.7 Regeneration Methods of Plants in Culture 121</p> <p>5.7.1 Organogenesis 121</p> <p>5.7.2 Somatic Embryogenesis 123</p> <p>5.7.3 Synthetic Seeds 123</p> <p>5.8 Rooting of Shoots 123</p> <p>5.9 Acclimation 124</p> <p>5.10 Problems that can Occur in Tissue Culture 124</p> <p>5.10.1 Culture Contamination 124</p> <p>5.10.2 Hyperhydricity 124</p> <p>5.10.3 Browning of Explants 124</p> <p>5.11 Conclusions 125</p> <p>Acknowledgments 125</p> <p>Life Box 5.1 Glenn Burton Collins 125</p> <p>Life Box 5.2 Martha S. Wright 127</p> <p>Life Box 5.3 Vinitha Cardoza 128</p> <p>References 129</p> <p><b>6. Molecular Genetics of Gene Expression 133<br /> </b><i>Maria Gallo and Alison K. Flynn</i></p> <p>6.0 Chapter Summary and Objectives 133</p> <p>6.0.1 Summary 133</p> <p>6.0.2 Discussion Questions 133</p> <p>6.1 The Gene 133</p> <p>6.1.1 DNA Coding for a Protein via the Gene 133</p> <p>6.1.2 DNA as a Polynucleotide 134</p> <p>6.2 DNA Packaging into Eukaryotic Chromosomes 134</p> <p>6.3 Transcription 135</p> <p>6.3.1 Transcription of DNA to Produce Messenger Ribonucleic Acid 135</p> <p>6.3.2 Transcription Factors 140</p> <p>6.3.3 Coordinated Regulation of Gene Expression 140</p> <p>6.3.4 Chromatin as an Important Regulator of Transcription 141</p> <p>6.3.5 Regulation of Gene Expression by DNA Methylation 142</p> <p>6.3.6 RNA‐Directed Gene Silencing by Small RNAs 143</p> <p>6.3.7 Processing to Produce Mature mRNA 143</p> <p>6.4 Translation 144</p> <p>6.4.1 Initiation of Translation 147</p> <p>6.4.2 Elongation Phase of Translation 147</p> <p>6.4.3 Translation Termination 147</p> <p>6.5 Protein Postranslational Modification 147</p> <p>Life Box 6.1 Maarten Chrispeels 150</p> <p>Life Box 6.2 David W. Ow 152</p> <p>References 154</p> <p><b>7. Plant Systems Biology 155<br /> </b><i>Wusheng Liu and C. Neal Stewart, Jr.</i></p> <p>7.0 Chapter Summary and Objectives 155</p> <p>7.0.1 Summary 155</p> <p>7.0.2 Discussion Questions 155</p> <p>7.1 Introduction 155</p> <p>7.2 Defining Plant Systems Biology 157</p> <p>7.3 Properties of Plant Systems 158</p> <p>7.4 A Framework of Plant Systems Biology 159</p> <p>7.4.1 Comprehensive Quantitative Data Sets 160</p> <p>7.4.2 Network Analysis 161</p> <p>7.4.3 Dynamic Modeling 161</p> <p>7.4.4 Exploring Systems and Models Toward Refinement 161</p> <p>7.5 Disciplines and Enabling Tools of Plant Systems Biology 162</p> <p>7.5.1 Plant Genomics 162</p> <p>7.5.2 Plant Transcriptomics 166</p> <p>7.5.3 Plant Proteomics 168</p> <p>7.5.4 Plant Metabolomics 170</p> <p>7.5.5 Bioinformatics 172</p> <p>7.6 Conclusions 176</p> <p>Life Box 7.1 C. Robin Buell 177</p> <p>Life Box 7.2 Zhenbiao Yang 178</p> <p>References 179</p> <p><b>8. Recombinant DNA, Vector Design, and Construction 181<br /> </b><i>Mark D. Curtis and David G.J. Mann</i></p> <p>8.0 Chapter Summary and Objectives 181</p> <p>8.0.1 Summary 181</p> <p>8.0.2 Discussion Questions 181</p> <p>8.1 DNA Modification 181</p> <p>8.2 DNA Vectors 186</p> <p>8.2.1 DNA Vectors for Plant Transformation 188</p> <p>8.2.2 Components for Efficient Gene Expression in Plants 190</p> <p>8.3 Greater Demands Lead to Innovation 192</p> <p>8.3.1 “Modern” Cloning Strategies 192</p> <p>8.4 Vector Design 197</p> <p>8.4.1 Vectors for High‐Throughput Functional Analysis 197</p> <p>8.4.2 Vectors for Gene Down‐Regulation Using RNA Interference (RNAi) 199</p> <p>8.4.3 Expression Vectors 199</p> <p>8.4.4 Vectors for Promoter Analysis 200</p> <p>8.4.5 Vectors Derived from Plant Sequences 201</p> <p>8.4.6 Vectors for Multigenic Traits 203</p> <p>8.5 Targeted Transgene Insertions 204</p> <p>8.6 Prospects 205</p> <p>Life Box 8.1 Wayne Parrott 206</p> <p>Life Box 8.2 David Mann 207</p> <p>References 208</p> <p><b>9. Genes and Traits of Interest 211<br /> </b><i>Kenneth L. Korth</i></p> <p>9.0 Chapter Summary and Objectives 211</p> <p>9.0.1 Summary 211</p> <p>9.0.2 Discussion Questions 211</p> <p>9.1 Introduction 212</p> <p>9.2 Identifying Genes of Interest via Genomics and other Omics Technologies 212</p> <p>9.3 Traits for Improved Crop Production Using Transgenics 214</p> <p>9.3.1 Herbicide Resistance 215</p> <p>9.3.2 Insect Resistance 218</p> <p>9.3.3 Pathogen Resistance 220</p> <p>9.3.4 Traits for Improved Products and Food Quality 222</p> <p>9.4 Conclusion 227</p> <p>Life Box 9.1 Dennis Gonsalves 227</p> <p>Life Box 9.2 Ingo Potrykus 229</p> <p>References 231</p> <p><b>10. Promoters and Marker Genes 233<br /> </b><i>Wusheng Liu, Brian Miki and C. Neal Stewart, Jr.</i></p> <p>10.0 Chapter Summary and Objectives 233</p> <p>10.0.1 Summary 233</p> <p>10.0.2 Discussion Questions 233</p> <p>10.1 Introduction 234</p> <p>10.2 Promoters 234</p> <p>10.2.1 Constitutive Promoters 235</p> <p>10.2.2 Tissue‐Specific Promoters 236</p> <p>10.2.3 Inducible Promoters 237</p> <p>10.2.4 Synthetic Promoters 239</p> <p>10.3 Marker Genes 239</p> <p>10.3.1 Selectable Marker Genes 242</p> <p>10.3.2 Reporter Genes 246</p> <p>10.4 Marker‐Free Strategies 250</p> <p>10.5 Conclusions 254</p> <p>Life Box 10.1 Fredy Altpeter 255</p> <p>Life Box 10.2 Taniya Dhillon 257</p> <p>References 259</p> <p><b>11. Transgenic Plant Production 262<br /> </b><i>John J. Finer</i></p> <p>11.0 Chapter Summary and Objectives 262</p> <p>11.0.1 Summary 262</p> <p>11.0.2 Discussion Questions 262</p> <p>11.1 Overview of Plant Transformation 263</p> <p>11.1.1 Introduction 263</p> <p>11.1.2 Basic Components for Successful Gene Transfer to Plant Cells 263</p> <p>11.2 Agrobacterium Tumefaciens 265</p> <p>11.2.1 History of Agrobacterium Research 266</p> <p>11.2.2 Use of the T‐DNA Transfer Process for Transformation 268</p> <p>11.2.3 Optimizing Delivery and Broadening the Taxonomical Range of Targets 269</p> <p>11.2.4 Strain and Cultivar Compatibility 270</p> <p>11.2.5 Agroinfiltration 271</p> <p>11.2.6 Arabidopsis Floral Dip (Clough and Bent 1998) 271</p> <p>11.3 Particle Bombardment 272</p> <p>11.3.1 History of Particle Bombardment 272</p> <p>11.3.2 The Fate of the Introduced DNA into Plant Cells 274</p> <p>11.3.3 The Power and Problems of Direct DNA Introduction 275</p> <p>11.3.4 Improvements in the Control of Transgene Expression 276</p> <p>11.4 Other Methods of Transformation 276</p> <p>11.4.1 The Need for Additional Technologies 276</p> <p>11.4.2 Protoplasts 277</p> <p>11.4.3 Whole Tissue Electroporation 278</p> <p>11.4.4 Silicon Carbide Whiskers 278</p> <p>11.4.5 Viral Vectors 278</p> <p>11.4.6 Laser Micropuncture 279</p> <p>11.4.7 Nanofiber Arrays 279</p> <p>11.5 The Rush to Publish 280</p> <p>11.5.1 Controversial Reports of Plant Transformation 280</p> <p>11.5.2 Criteria to Consider in Judging Novel Plant Transformation Methods 284</p> <p>11.6 A Look to the Future 286</p> <p>Life Box 11.1 Ted Klein 286</p> <p>Life Box 11.2 John Finer 287</p> <p>Life Box 11.3 Kan Wang 289</p> <p>References 291</p> <p><b>12. Analysis of Transgenic Plants 293<br /> </b><i>C. Neal Stewart, Jr.</i></p> <p>12.0 Chapter Summary and Objectives 293</p> <p>12.0.1 Summary 293</p> <p>12.0.2 Discussion Questions 293</p> <p>12.1 Essential Elements of Transgenic Plant Analysis 293</p> <p>12.2 Assays for Transgenicity, Insert Copy Number, and Segregation 295</p> <p>12.2.1 Polymerase Chain Reaction 295</p> <p>12.2.2 Quantitative PCR 295</p> <p>12.2.3 Southern (DNA) Blot Analysis 296</p> <p>12.2.4 Segregation Analysis of Progeny 300</p> <p>12.3 Transgene Expression 301</p> <p>12.3.1 Transcript Abundance 301</p> <p>12.3.2 Protein Abundance 302</p> <p>12.4 Knockdown or Knockout Analysis Rather than Overexpression Analysis 304</p> <p>12.5 The Relationship Between Molecular Analyses and Phenotype 305</p> <p>Life Box 12.1 Hong S. Moon 305</p> <p>Life Box 12.2 Neal Stewart 306</p> <p>Life Box 12.3 Nancy A. Reichert 308</p> <p>References 310</p> <p><b>13. Regulations and Biosafety 311<br /> </b><i>Alan McHughen</i></p> <p>13.0 Chapter Summary and Objectives 311</p> <p>13.0.1 Summary 311</p> <p>13.0.2 Discussion Questions 311</p> <p>13.1 Introduction 311</p> <p>13.2 History of Genetic Engineering and Its Regulation 313</p> <p>13.3 Regulation of GM Plants 315</p> <p>13.3.1 New Technologies 316</p> <p>13.3.2 US Regulatory Agencies and Regulations 317</p> <p>13.3.3 European Union 319</p> <p>13.3.4 Canada 321</p> <p>13.3.5 International Perspectives 321</p> <p>13.4 Regulatory Flaws and Invalid Assumptions 323</p> <p>13.4.1 Conventional Plant Breeding has Higher Safety than Biotechnology‐Derived GM 324</p> <p>13.4.2 GMOs Should Be Regulated Because They’re GMOs and Un‐natural 324</p> <p>13.4.3 Even though Product Risk is Important, It is Reasonable that Process (GMO) Should Trigger Regulation 324</p> <p>13.4.4 Since GM Technology is New, It Might Be Hazardous and Should Be Regulated 325</p> <p>13.4.5 If We Have a Valid Scientific Test, Then It Should Be Used in Regulations 326</p> <p>13.4.6 Better Safe than Sorry: Overregulation is Better than Underregulation 326</p> <p>13.5 Conclusion 327</p> <p>Life Box 13.1 Alan McHughen 328</p> <p>Life Box 13.2 Raymond D. Shillito 329</p> <p>References 331</p> <p><b>14. Field Testing of Transgenic Plants 333<br /> </b><i>Detlef Bartsch, Achim Gathmann, Christiane Saeglitz and Arti Sinha</i></p> <p>14.0 Chapter Summary and Objectives 333</p> <p>14.0.1 Summary 333</p> <p>14.0.2 Discussion Questions 333</p> <p>14.1 Introduction 334</p> <p>14.2 Environmental Risk Assessment Process 334</p> <p>14.2.1 Initial Evaluation (Era Step 1) 334</p> <p>14.2.2 Problem Formulation (ERA Step 2) 335</p> <p>14.2.3 Controlled Experiments and Gathering of Information (ERA Step 3) 335</p> <p>14.2.4 Risk Evaluation (ERA Step 4) 335</p> <p>14.2.5 Progression through a Tiered Risk Assessment 335</p> <p>14.3 An Example Risk Assessment: The Case of Bt Maize 336</p> <p>14.3.1 Effect of Bt Maize Pollen on Nontarget Caterpillars 337</p> <p>14.3.2 Statistical Analysis and Relevance for Predicting Potential Adverse Effects on Butterflies 339</p> <p>14.4 Proof of Safety Versus Proof of Hazard 340</p> <p>14.5 Modeling the Risk Effects on a Greater Scale 340</p> <p>14.6 Proof of Benefits: Agronomic Performance 341</p> <p>14.7 Conclusions 342</p> <p>Life Box 14.1 Tony Shelton 343</p> <p>Life Box 14.2 Detlef Bartsch 344</p> <p>References 346</p> <p><b>15. Intellectual Property in Agricultural Biotechnology: Strategies for Open Access 347<br /> </b><i>Monica Alandete‐Saez, Cecilia Chi‐Ham, Gregory Graff, Sara Boettiger and Alan B. Bennett</i></p> <p>15.0 Chapter Summary and Objectives 347</p> <p>15.0.1 Summary 347</p> <p>15.0.2 Discussion Questions 347</p> <p>15.1 Intellectual Property and Agricultural Biotechnology 348</p> <p>15.1.1 What is Intellectual Property? 349</p> <p>15.1.2 What is a Patent? 349</p> <p>15.2 The Relationship Between Intellectual Property and Agricultural Research 351</p> <p>15.3 Patenting Plant Biotechnology: Has an Anti‐Commons Developed? 352</p> <p>15.3.1 Transformation Methods 352</p> <p>15.3.2 Selectable Markers 353</p> <p>15.3.3 Promoters 354</p> <p>15.3.4 Subcellular Localization 354</p> <p>15.3.5 The Importance of Combining IP‐Protected Components in Transgenic Crops 355</p> <p>15.4 What is Freedom to Operate (FTO)? 355</p> <p>15.4.1 The Importance of FTO 355</p> <p>15.4.2 FTO Case Study: the Tomato E8 Promoter 356</p> <p>15.5 Strategies for Open Access 358</p> <p>15.6 Conclusions 359</p> <p>Life Box 15.1 Alan Bennett 360</p> <p>Life Box 15.2 Maud Hinchee 361</p> <p>References 363</p> <p><b>16. Why Transgenic Plants Are So Controversial 366<br /> </b><i>Jennifer Trumbo and Douglas Powell</i></p> <p>16.0 Chapter Summary and Objectives 366</p> <p>16.0.1 Summary 366</p> <p>16.0.2 Discussion Questions 366</p> <p>16.1 Introduction 367</p> <p>16.1.1 The Frankenstein Backdrop 367</p> <p>16.1.2 Agricultural Innovations and Questions 367</p> <p>16.2 Perceptions of Risk 368</p> <p>16.3 Responses of Fear 370</p> <p>16.4 Feeding Fear: Case Studies 372</p> <p>16.4.1 Pusztai’s Potatoes 372</p> <p>16.4.2 Monarch Butterfly Flap 373</p> <p>16.5 How Many Benefits are Enough? 373</p> <p>16.6 Continuing Debates 375</p> <p>16.6.1 Process vs. Product 375</p> <p>16.6.2 Health Concerns 375</p> <p>16.6.3 Environmental Concerns 376</p> <p>16.6.4 Consumer Choice 376</p> <p>16.7 Business and Control 376</p> <p>16.8 Conclusions 377</p> <p>Life Box 16.1 Tony Conner 378</p> <p>Life Box 16.2 Channapatna S. Prakash 379</p> <p>References 381</p> <p><b>17. The Future: Advanced Plant Biotechnology, Genome Editing, and Synthetic Biology 383<br /> </b><i>Wusheng Liu and C. Neal Stewart, Jr.</i></p> <p>17.0 Chapter Summary and Objectives 383</p> <p>17.0.1 Summary 383</p> <p>17.0.2 Discussion Questions 383</p> <p>17.1 Introduction: The Birth of Synthetic Biology 384</p> <p>17.2 Defining Synthetic Biology for Plants 385</p> <p>17.2.1 Design Cycles of Synthetic Biology 385</p> <p>17.2.2 Foundations of Synthetic Biology 387</p> <p>17.2.3 Components of Plant Synthetic Biology 388</p> <p>17.3 Enabling Tools for Plant Synthetic Biology 389</p> <p>17.3.1 Computer‐Aided Design 389</p> <p>17.3.2 Synthetic Promoters 389</p> <p>17.3.3 Precise Genome Editing 389</p> <p>17.4 Synthetic Biology Applications in Plants 393</p> <p>17.4.1 Synthetic Inducible Promoters 394</p> <p>17.4.2 A Device for Monitoring Auxin‐Induced Plant IAA Degradation in Yeast 395</p> <p>17.4.3 Circuits for Phytosensing of Explosives or Bacterial Pathogens in Transgenic Plants 395</p> <p>17.5 Conclusions 397</p> <p>Life Box 17.1 Joshua Yuan 397</p> <p>Life Box 17.2 Wusheng Liu 398</p> <p>References 399</p> <p>Index 402</p>
<b>C. Neal Stewart, PhD,</b> is Racheff Chair of Excellence in Plant Molecular Genetics and Professor, Department of Plant Sciences, University of Tennessee. In addition to the prior edition of <i>Plant Biotechnology</i>, he has written <i>Weedy and Invasive Plant Genomics</i>, <i>Plant Transformation Technologies</i>, and <i>Research Ethics for Scientists: A Companion for Students</i>, all published by Wiley.
<p><b>Praise for the 1st Edition</b></p> <p>"The editor [has] gathered the authors of this excellent book in order to 'inform and inspire'. Indeed, nearly every reader...can gain information on the practice of plant biotechnology and be inspired by the greatness of the scientists, inventors, and researchers whose important discoveries are highlighted."<b><br />—<i>The Quarterly Review of Biology</i>, June 2009</b></p> <p>Building on the success of its predecessor, <i>Plant Biotechnology and Genetics</i>, 2nd Edition explores contemporary techniques and applications of plant biotechnology to illustrate the tremendous potential for improving the food supply and changing our world. As an introductory text, its focus is on basic science and processes – guiding students from plant biology and genetics to breeding to principles and applications of plant biotechnology. Core chapters examine the critical issues of patents and intellectual property and the controversies and consumer concerns over transgenic plants. This revised edition updates each chapter to reflect advances and changes since the first published, including advanced biotechnology tools, genomics and systems biology, intellectual property issues affecting DNA and patents, and  plant synthetic biology.</p> <p>Each chapter has been written by one or more leading practitioners in the field and then carefully edited to ensure thoroughness and consistency. The chapters are organized so that each one progressively builds upon the previous chapters. Questions set forth in each chapter help students deepen their understanding and facilitate classroom discussions.</p> <p>Inspirational autobiographical essays, written by pioneers and eminent scientists in the field today, are interspersed throughout the text. Authors explain how they became involved in the field and offer a personal perspective on their contributions and the future of the field. A supplementary website offers full-color figures and PowerPoint slides that can be used in classroom presentations with other teaching aids available online.</p> <p>This text is recommended for junior- and senior-level courses in plant biotechnology or plant genetics and for courses devoted to special topics at both the undergraduate and graduate levels. It is also an ideal reference for practitioners.</p>

Diese Produkte könnten Sie auch interessieren:

Esau's Plant Anatomy
Esau's Plant Anatomy
von: Ray F. Evert, Susan E. Eichhorn
PDF ebook
187,99 €
The Fusarium Laboratory Manual
The Fusarium Laboratory Manual
von: John F. Leslie, Brett A. Summerell, Suzanne Bullock
PDF ebook
161,99 €
Plant Desiccation Tolerance
Plant Desiccation Tolerance
von: Matthew A. Jenks, Andrew J. Wood
PDF ebook
242,99 €