Details

Phytonutritional Improvement of Crops


Phytonutritional Improvement of Crops


1. Aufl.

von: Noureddine Benkeblia

170,99 €

Verlag: Wiley-Blackwell
Format: EPUB
Veröffentl.: 25.07.2017
ISBN/EAN: 9781119079989
Sprache: englisch
Anzahl Seiten: 544

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>An in-depth treatment of cutting-edge work being done internationally to develop new techniques in crop nutritional quality improvement</b></p> <p><i>Phytonutritional</i><i> Improvement of Crops</i> explores recent advances in biotechnological methods for the nutritional enrichment of food crops. Featuring contributions from an international group of experts in the field, it provides cutting-edge information on techniques of immense importance to academic, professional and commercial operations.</p> <p>World population is now estimated to be 7.5 billion people, with an annual growth rate of nearly 1.5%. Clearly, the need to enhance not only the quantity of food produced but its quality has never been greater, especially among less developed nations. Genetic manipulation offers the best prospect for achieving that goal. As many fruit crops provide proven health benefits, research efforts need to be focused on improving the nutritional qualities of fruits and vegetables through increased synthesis of lycopene and beta carotene, anthocyanins and some phenolics known to be strong antioxidants. Despite tremendous growth in the area occurring over the past several decades, the work has only just begun. This book represents an effort to address the urgent need to promote those efforts and to mobilise the tools of biotechnical and genetic engineering of the major food crops. Topics covered include:</p> <ul> <li>New applications of RNA-interference and virus induced gene silencing (VIGS) for nutritional genomics in crop plants</li> <li>Biotechnological techniques for enhancing carotenoid in crops and their implications for both human health and sustainable development</li> <li>Progress being made in the enrichment and metabolic profiling of diverse carotenoids in a range of fruit crops, including tomatoes, sweet potatoes and tropical fruits</li> <li>Biotechnologies for boosting the phytonutritional values of key crops, including grapes and sweet potatoes</li> <li>Recent progress in the development of transgenic rice engineered to massively accumulate flavonoids in-seed</li> </ul> <p><i>Phytonutritional</i><i> Improvement of Crops</i> is an important text/reference that belongs in all universities and research establishments where agriculture, horticulture, biological sciences, and food science and technology are studied, taught and applied. </p>
<p>List of Contributors xv</p> <p>Foreword xxi</p> <p><b>1 Important Plant-Based Phytonutrients 1</b><br /><i>Avik Basu, Saikat Kumar Basu, Ratnabali Sengupta, Muhammad Asif, Xianping Li, Yanshan Li, Arvind Hirani, Peiman Zandi, Muhammad Sajad, Francisco Solorio?-Sánchez, Ambrose Obongo Mbuya, William Cetzal-Ix, Sonam Tashi, Tshitila Jongthap,Danapati Dhungyel and Mukhtar Ahmad</i></p> <p>List of Abbreviations 1</p> <p>1.1 Introduction 2</p> <p>1.2 Nutraceuticals and Functional Foods in Human Health 3</p> <p>1.3 Plants with Potential for Use as Nutraceutical Source and Functional Food Component 49</p> <p>1.4 Nutraceutical Values of Fenugreek 49</p> <p>1.4.1 Fenugreek Possesses the Following Medicinal Properties 50</p> <p>1.5 Coloured Potatoes as Functional Food 51</p> <p>1.6 Red Wine as Functional Food 54</p> <p>1.7 Tea as Functional Food 54</p> <p>1.8 Cereals as Nutraceuticals 55</p> <p>1.9 Nutraceutical Properties of Wheat Bran and Germ 58</p> <p>1.9.1 Wheat Bran 58</p> <p>1.9.2 Wheat Germ 59</p> <p>1.10 Barley and Oat as Nutraceuticals 59</p> <p>1.11 Value-Added Products 59</p> <p>1.12 Conclusion 61</p> <p>Acknowledgements 61</p> <p>References 61</p> <p><b>2 Biotechnological Interventions for Improvement of Plant Nutritional Value: From Mechanisms to Applications 83 </b><br /><i>Rajan Katoch, Sunil Kumar Singh and Neelam Thakur</i></p> <p>2.1 Introduction 83</p> <p>2.2 Improvement of Food Nutrition 84</p> <p>2.3 Improvement of Nutritional Value Through Crop Improvement 85</p> <p>2.4 Identification of Genes With the Potential to Improve the Nutritional Quality 86</p> <p>2.5 Genetic Engineering for the Introduction of Nutritionally Potential Genes 90</p> <p>2.6 Nutritional Improvement Through Recent Biotechnological Advances 92</p> <p>2.7 Production of Health Care Products 94</p> <p>2.7.1 The Development of Oral Vaccines in Plant System 95</p> <p>2.7.2 Advantages of Plant System in the Development of Oral Vaccines 96</p> <p>2.7.3 Edible Vaccine against Hepatitis B Virus 98</p> <p>2.8 Major Biotechnological Advances in Nutritional Improvement of Plants 99</p> <p>2.9 Conclusion 100</p> <p>References 100</p> <p><b>3 Nutrient Biofortification of Staple Food Crops: Technologies, Products and Prospects 113</b><br /><i>Chavali Kameswara Rao and Seetharam Annadana</i></p> <p>3.1 Introduction 113</p> <p>3.2 The Concepts of Nutrition and Malnutrition 114</p> <p>3.2.1 Nutrition, Macronutrients, Micronutrients and Balanced Diets 114</p> <p>3.2.2 Hunger, Nutritional Security, Undernutrition and Malnutrition 116</p> <p>3.2.3 The Metabolic Syndrome 116</p> <p>3.3 Strategies to Enhance Nutrient Intake and Nutrient Content of Plant Foods 118</p> <p>3.3.1 Interventions to Enhance Nutrient Intake 118</p> <p>3.3.2 Technologies for Biofortification 119</p> <p>3.3.3 Common Genetic Engineering Technologies 120</p> <p>3.3.4 Alternative Genetic Engineering Technologies 122</p> <p>3.3.5 Recent Genetic Engineering Technologies 123</p> <p>3.3.6 Moral and Ethical Arguments Against Genetic Engineering Technologies 124</p> <p>3.4 Quantitative and Qualitative Modification of Dietary Carbohydrates 125</p> <p>3.4.1 The Carbohydrates 125</p> <p>3.4.2 Modifying Levels of Components of Starch 128</p> <p>3.4.3 Engineering Levels of Fructans 129</p> <p>3.4.4 Quantitative and Qualitative Enhancement Dietary Fibre 130</p> <p>3.5 Quantitative and Qualitative Enhancement of Proteins and Amino Acids 131</p> <p>3.5.1 The Proteins and Amino Acids 131</p> <p>3.5.2 Enhancement of Total Protein 132</p> <p>3.5.3 Enhancement of Levels of Lysine 132</p> <p>3.5.4 Enhancement of Levels of Methionine 133</p> <p>3.5.5 Simultaneous Enhancement of levels Several Amino Acids 133</p> <p>3.5.6 Artificial Storage Protein 133</p> <p>3.5.7 Alternate Interventions 134</p> <p>3.5.8 Non?]Proteinogenic Amino Acids 135</p> <p>3.6 Quantitative and Qualitative Enhancement of Fatty Acids in Oil Seed Crops 136</p> <p>3.6.1 Lipids, Fats and Oils 136</p> <p>3.6.2 Cholesterol 136</p> <p>3.6.3 Characterisation of Fatty Acids, Dietary Fats and Oils 136</p> <p>3.6.4 Quantitative and Qualitative Improvement of Oil Seed Crops 137</p> <p>3.6.5 The New Shift in Fat Paradigm and Its Implications 140</p> <p>3.7 Enhancement of Levels of Vitamins 141</p> <p>3.7.1 The Vitamins 141</p> <p>3.7.2 Retinoids (Vitamin A) 142</p> <p>3.7.3 Folate (Vitamin B9) 145</p> <p>3.7.4 Ascorbic Acid (Vitamin C) 146</p> <p>3.7.5 Tocopherols (Vitamin E) 147</p> <p>3.7.6 Multi?]vitamin Corn 148</p> <p>3.8 Enhancement of Levels of Mineral Elements 148</p> <p>3.8.1 Role of Mineral Elements in Human Health 148</p> <p>3.8.2 Iron (Fe) 150</p> <p>3.8.3 Zinc (Zn) 152</p> <p>3.8.4 Calcium (Ca) 154</p> <p>3.8.5 Selenium (Se) 155</p> <p>3.8.6 Iodine (I) 156</p> <p>3.8.7 Fluoride (Fl) 157</p> <p>3.9 Enhancement of Antioxidants 157</p> <p>3.9.1 The Antioxidants 157</p> <p>3.9.2 Lycopene 158</p> <p>3.9.3 Flavonoids 159</p> <p>3.9.4 Carotenoids 159</p> <p>3.9.5 Other Antioxidants 160</p> <p>3.9.6 Thermal Stability of Antioxidants 160</p> <p>3.10 Mitigation of Levels of Antinutritional Factors 160</p> <p>3.10.1 The Antinutritional Factors 160</p> <p>3.10.2 Phytate 160</p> <p>3.10.3 Inhibitors of Digestive Enzymes 162</p> <p>3.10.4 Reducing Levels of Allergens 162</p> <p>3.10.5 Other Significant Antinutritional Factors 163</p> <p>3.11 Conclusions and Recommendations 163</p> <p>Acknowledgement 167</p> <p>References 167</p> <p><b>4 Applications of RNA-Interference and Virus-Induced Gene Silencing (VIGS) for Nutritional Genomics in Crop Plants 185<br /></b><i>Subodh Kumar Sinha and Basavaprabhu L. Patil</i></p> <p>4.1 Introduction 185</p> <p>4.2 RNA Interference 186</p> <p>4.2.1 RNAi in Modification of Primary Metabolism 186</p> <p>4.2.2 RNAi for Modification of Secondary Metabolism 188</p> <p>4.3 Virus-Induced Gene Silencing (VIGS) for Biofortification 192</p> <p>4.4 Conclusions 195</p> <p>References 196</p> <p><b>5 Strategies for Enhancing Phytonutrient Content in Plant-Based Foods 203<br /></b><i>Carla S. Santos, Noureddine Benkeblia and Marta W. Vasconcelos</i></p> <p>5.1 Introduction 203</p> <p>5.2 What are Phytonutrients? 204</p> <p>5.3 Which Plant-Based Foods are the Best Known Sources of Phytonutrients? 205</p> <p>5.4 How Can We Enhance Phytonutrients? 207</p> <p>5.4.1 Conventional Breeding 207</p> <p>5.4.2 Molecular Breeding 208</p> <p>5.4.3 Metabolic Engineering and Genetic Modification 208</p> <p>5.5 Phenotyping for Phytonutrients at Different Levels 210</p> <p>5.5.1 Low Throughput Techniques 210</p> <p>5.5.2 High?]Throughput Techniques 213</p> <p>5.6 The Future Ahead/Concluding Remarks 216</p> <p>Acknowledgements 217</p> <p>References 217</p> <p><b>6 The Use of Genetic Engineering to Improve the Nutritional Profile of Traditional Plant Foods 233<br /></b><i>Marta R.M. Lima, Carla S. Santos and Marta W. Vasconcelos</i></p> <p>6.1 Introduction 233</p> <p>6.1.1 Nutrients in Plant Foods 233</p> <p>6.1.2 Consequences of Malnutrition 235</p> <p>6.1.3 Strategies to Overcome Malnutrition 235</p> <p>6.2 What Are Genetically Engineered Crops? 236</p> <p>6.2.1 Plant Genetic Transformation Technologies 236</p> <p>6.2.2 Traditional Foods with Enhanced Nutritional Profiles: Case Studies 238</p> <p>6.3 GM Plant Foods Under Approval for Commercial Utilisation 245</p> <p>6.4 Socioeconomic Impact and Safety of GM Foods 247</p> <p>Acknowledgements 248</p> <p>References 248</p> <p><b>7 Carotenoids: Biotechnological Improvements for Human Health and Sustainable Development 259<br /></b><i>George G. Khachatourians</i></p> <p>7.1 Introduction 259</p> <p>7.2 Occurrence 260</p> <p>7.3 Discovery and Early History 260</p> <p>7.4 Carotenoids Use in Human Foods and Biotechnology 262</p> <p>7.5 Use of Carotenoids in Animal Feed 264</p> <p>7.6 Global Market Situation and Sustainability 264</p> <p>7.7 Carotenoid Biosynthesis and Function in Plants 266</p> <p>7.8 Conclusion and Perspectives 268</p> <p>References 268</p> <p><b>8 Progress in Enrichment and Metabolic Profiling of Diverse Carotenoids in Tropical Fruits: Importance of Hyphenated Techniques 271<br /></b><i>Bangalore Prabhashankar Arathi, Poorigali Raghavendra?]Rao Sowmya, Kariyappa Vijay, Vallikannan Baskaran and Rangaswamy Lakshminarayana</i></p> <p>8.1 Introduction 271</p> <p>8.2 Trends in Biosynthesis of Carotenoids and their Profiling in Plants and Tropical Fruits 274</p> <p>8.3 Biotechnological Approaches to Enrich Carotenoids in Tropical Fruits 281</p> <p>8.3.1 Conventional Approaches to Enrich Carotenoids in Tropical Fruits 283</p> <p>8.3.2 Pre?] and Post?]Harvest Technology to Improve Carotenoids Contents in Tropical Fruits 283</p> <p>8.4 Bioaccessibility and Bioavailability of Carotenoids From Fruits and Their Products 285</p> <p>8.5 Techniques to Characterise Carotenoids from Fruits 291</p> <p>8.6 Conclusion 294</p> <p>Acknowledgements 294</p> <p>References 295</p> <p><b>9 Improvement of Carotenoid Accumulation in Tomato Fruit 309<br /></b><i>Lihong Liu, Zhiyong Shao, Min Zhang, Tianyu Liu, Haoran Liu, Shuo Li, Yuanyuan Liu and Qiaomei Wang</i></p> <p>List of Abbreviations 309</p> <p>9.1 Introduction 310</p> <p>9.2 Metabolism of Carotenoid in Tomato 312</p> <p>9.2.1 Biosynthesis of Carotenoid 312</p> <p>9.2.2 Catabolism of Carotenoid 315</p> <p>9.3 The Biosynthetic Capacities of the Plastid 316</p> <p>9.4 Hormonal Regulatory Network of Carotenoid Metabolism 317</p> <p>9.4.1 Ethylene 317</p> <p>9.4.2 Jasmonates 318</p> <p>9.4.3 Brassinosteroids 319</p> <p>9.4.4 Abscisic acid 319</p> <p>9.4.5 Gibberellin 320</p> <p>9.4.6 Auxin 320</p> <p>9.5 Environmental Regulation of Carotenoid Metabolism 320</p> <p>9.5.1 Light 320</p> <p>9.5.2 Temperature 322</p> <p>9.5.3 Carbon Dioxide (CO2) 322</p> <p>9.5.4 Post?]Harvest Regulation 322</p> <p>9.6 Bioavailability of Carotenoid 322</p> <p>9.7 Food Omics 324</p> <p>Acknowledgements 324</p> <p>References 327</p> <p><b>10 Modern Biotechnologies and Phytonutritional Improvement of Grape and Wine 339<br /></b><i>Atanas Atanassov, Teodora Dzhambazova, Ivanka Kamenova, Ivan Tsvetkov, Vasil Georgiev, Ivayla Dincheva, Ilian Badjakov, Dasha Mihaylova, Miroslava Kakalova, Atanas Pavlov and Plamen Mollov</i></p> <p>10.1 Grape Genomics 339</p> <p>10.1.1 Identifying Genes Behind the Main Secondary Metabolites 340</p> <p>10.1.2 Identifying Disease Resistance Genes in Vitis sp.—a New Level of Grapevine Breeding 341</p> <p>10.2 Marker Assisted Selection (MAS) and Genomic Selection (GS) of Grapevine 342</p> <p>10.3 Engineered Resistance to Viruses 343</p> <p>10.4 Diagnosis of Grapevine Viruses 350</p> <p>10.4.1 Biological Assays 350</p> <p>10.4.2 Serological Assays 350</p> <p>10.4.3 Molecular Assays 351</p> <p>10.5 Phytonutritional Compounds with Biological Activity in Grape and Wine and Their Target Analyses 353</p> <p>10.5.1 Biologically Active Substances Found in Grape and Wine 353</p> <p>10.5.2 LC?]MS and GC?]MS Based Analysis and Metabolomics 358</p> <p>10.5.3 NMR–Based Metabolomic Analysis of Grape and Wine 360</p> <p>10.6 Wine Quality 361</p> <p>10.6.1 What is the Particular Meaning We Imply to the Term ‘Quality of Wine’? 361</p> <p>10.6.2 How is the Wine Quality Created? 362</p> <p>10.7 Grapevine Genetic Resources?] Prospects in Management and Sustainable Use 367</p> <p>10.7.1 European Policy, Regulation and Coordination Initiatives 367</p> <p>10.7.2 Vitis Grapevine Genebanks, Collections and Databases 368</p> <p>10.7.3 European Scientific Achievements 369</p> <p>References 370</p> <p><b>11 Phytonutrient Improvements of Sweetpotato 391</b></p> <p>Noureddine Benkeblia 391</p> <p>11.1 Introduction 391</p> <p>11.2 Nutritional Qualities of Sweetpotato 393</p> <p>11.3 Phytonutrient Improvements of Sweetpotato 396</p> <p>10.3.1 Sweetpotato Improvement for β?]Carotene 396</p> <p>10.3.2 Sweetpotato Improvement for Anthocyanins and Phenolics 397</p> <p>10.3.3 Other Nutrient Improvements 399</p> <p>11.4 Conclusion and Future Perspectives 399</p> <p>Acknowledgements 400</p> <p>References 400</p> <p><b>12 Improvement of Glucosinolate in Cruciferous Crops 407<br /></b><i>Huiying Miao, Bo Sun, Yanting Zhao, Hongmei Qian, Congxi Cai, Jiaqi Chang, Mingdan Deng, Xin Zhang and Qiaomei Wang </i></p> <p>List of Abbreviations 407</p> <p>12.1 Introduction 408</p> <p>12.2 Glucosinolate Breakdown 408</p> <p>12.2.1 Glucosinolate Breakdown Upon Tissue Damage 409</p> <p>12.2.2 Glucosinolate Breakdown in Living Plant Cell 410</p> <p>12.2.3 Glucosinolate Hydrolysis in Mammalian 411</p> <p>12.3 Biological Functions of Glucosinolates and Their Hydrolysis Products 411</p> <p>12.3.1 Anticarcinogenic Mechanism 411</p> <p>12.3.2 Other Chemopeventive Effects 413</p> <p>12.3.3 Adverse Effects 413</p> <p>12.4 Glucosinolate Biosynthesis 414</p> <p>12.4.1 Side-Chain Elongation 414</p> <p>12.4.2 Formation of Core Glucosinolate Structure 414</p> <p>12.4.3 Secondary Modifications 416</p> <p>12.4.4 Regulators of Glucosinolate Biosynthetic Pathway 416</p> <p>12.5 Metabolic Engineering of Glucosinolates in Brassica Crops 418</p> <p>12.6 Glucosinolate Accumulation under Pre-Harvest and Post-Harvest Handlings 421</p> <p>12.6.1 Effects of Light on Glucosinolate Accumulation 422</p> <p>12.6.2 Chemical Regulation of Glucosinolate Accumulation 423</p> <p>12.6.3 Glucosinolate Changes upon Post-Harvest Handlings 427</p> <p>12.7 Conclusions and Future Prospects 432</p> <p>Acknowledgements 433</p> <p>References 433</p> <p><b>13 Development of the Transgenic Rice Accumulating Flavonoids in Seed by Metabolic Engineering 451<br /></b><i>Yuko Ogo and Fumio Takaiwa</i></p> <p>13.1 Introduction 451</p> <p>13.2 Production of Flavonoids in Rice Seed by Ectopic Expression of the Biosynthetic Enzymes 454</p> <p>13.3 Production of Flavonoids in Rice Seed by Ectopic Expression of the Transcription Factors 458</p> <p>13.4 Characterisation of Flavonoids in Transgenic Rice Seed by LC–MS-based Metabolomics 460</p> <p>13.5 Future Prospects 461</p> <p>References 463</p> <p><b>14 Nutrient Management for High Efficiency Sweetpotato Production 471<br /></b><i>Yong?]Chun Zhang, Ji?]Dong Wang, Yan?]Xi Shi and Dai?]Fu Ma</i></p> <p>14.1 Patterns of Growth and Development and Nutrient Absorption in Sweetpotato 471</p> <p>14.1.1 Area under Sweetpotato 471</p> <p>14.1.2 Growth Characteristics 471</p> <p>14.1.3 Nutrient Requirements 472</p> <p>14.1.4 Factors Affecting Nutrient Absorption 472</p> <p>14.2 Screening of High Efficient of Potassium Uptake and Utilised Genotypes 474</p> <p>14.2.1 Potassium Deficiency 474</p> <p>14.2.2 Potassium Use Efficiency and Utilisation Efficiency 476</p> <p>14.2.3 Screening of High Uptake Efficiency Genotypes 476</p> <p>14.2.4 Screening of High Use Efficiency Genotypes 478</p> <p>14.3 Effect of Fertilisers 480</p> <p>14.3.1 Effect of Nitrogen Application 480</p> <p>14.3.2 Effect of Phosphorus Application 482</p> <p>14.3.3 Effect of Potassium Application 482</p> <p>14.3.4 Effect of Nitrogen, Phosphorus, and Potassium Application on Yield 483</p> <p>14.4 Balanced Fertiliser Management in Sweetpotato at Sishui, Shandong: A Case Study 483</p> <p>14.4.1 General Description of Area 483</p> <p>14.4.2 Major Steps Towards Balanced Application of Fertilisers 485</p> <p>14.4.3 Establishment and Application of an Expert Consultation System 491</p> <p>14.5 Application of Fertilisers Through Drip Irrigation (‘Fertigation’) 493</p> <p>14.5.1 Effect of Supplying Fertilisers Through Drip Irrigation on Sweetpotato 494</p> <p>14.5.2 Input/output Ratio in Application of Fertilisers Through Drip Irrigation 495</p> <p>Acknowledgements 495</p> <p>References 495</p> <p>Index 499</p>
<p> <strong>Noureddine Benkeblia, PhD</strong> is Professor of Crop Science in the Department of Life Sciences, the University of the West Indies, Jamaica. He is involved in food science research focusing on food-plant biochemistry and physiology, and he is recognised internationally for his work on pre- and postharvest metabolism in crops. Prof. N. Benkeblia is the recipient of many awards, among them the UWI-Award for the "Most Outstanding Research," 2011 and 2013.
<p><b> An in-depth treatment of cutting-edge work being done internationally to develop new techniques in crop nutritional quality improvement</b></p> <p><i>Phytonutritional Improvement of Crops</i> explores recent advances in biotechnological methods for the nutritional enrichment of food crops. Featuring contributions from an international group of experts in the field, it provides cutting-edge information on techniques of immense importance to academic, professional and commercial operations.</p> <p>World population is now estimated to be 7.5 billion people, with an annual growth rate of nearly 1.5%. Clearly, the need to enhance not only the quantity of food produced but its quality has never been greater, especially among less developed nations. Genetic manipulation offers the best prospect for achieving that goal. As many fruit crops provide proven health benefits, research efforts need to be focused on improving the nutritional qualities of fruits and vegetables through increased synthesis of lycopene and beta carotene, anthocyanins and some phenolics known to be strong antioxidants. Despite tremendous growth in the area over the past several decades, the work has only just begun. This book represents an effort to address the urgent need to promote those efforts and to mobilise the tools of biotechnical and genetic engineering of the major food crops. Topics covered include:</p> <ul> <li>New applications of RNA-interference and virus induced gene silencing (VIGS) for nutritional genomics in crop plants</li> <li>Biotechnological techniques for enhancing carotenoid in crops and their implications for both human health and sustainable development</li> <li>Progress being made in the enrichment and metabolic profiling of diverse carotenoids in a range of fruit crops, including tomatoes, sweet potatoes and tropical fruits</li> <li>Biotechnologies for boosting the phytonutritional values of key crops, including grapes and sweet potatoes</li> <li>Recent progress in the development of transgenic rice engineered to massively accumulate flavonoids in-seed</li> </ul> <p><i>Phytonutritional Improvement of Crops</i> is an important text/reference that belongs in all universities and research establishments where agriculture, horticulture, biological sciences, and food science and technology are studied, taught and applied.</p>

Diese Produkte könnten Sie auch interessieren:

Cheese For Dummies
Cheese For Dummies
von: Culture Magazine, Laurel Miller, Thalassa Skinner, Ming Tsai
PDF ebook
14,99 €
Dense Phase Carbon Dioxide
Dense Phase Carbon Dioxide
von: Murat O. Balaban, Giovanna Ferrentino
EPUB ebook
193,99 €
Aquaculture Production Systems
Aquaculture Production Systems
von: James H. Tidwell
PDF ebook
98,99 €