Details

Oligonucleotide-Based Drugs and Therapeutics


Oligonucleotide-Based Drugs and Therapeutics

Preclinical and Clinical Considerations for Development
1. Aufl.

von: Nicolay Ferrari, Rosanne Seguin

193,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 06.06.2018
ISBN/EAN: 9781119070290
Sprache: englisch
Anzahl Seiten: 576

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>A comprehensive review of contemporary antisense oligonucleotides drugs and therapeutic principles, methods, applications, and research</b> </p> <p>Oligonucleotide-based drugs, in particular antisense oligonucleotides, are part of a growing number of pharmaceutical and biotech programs progressing to treat a wide range of indications including cancer, cardiovascular, neurodegenerative, neuromuscular, and respiratory diseases, as well as other severe and rare diseases. Reviewing fundamentals and offering guidelines for drug discovery and development, this book is a practical guide covering all key aspects of this increasingly popular area of pharmacology and biotech and pharma research, from the basic science behind antisense oligonucleotides chemistry, toxicology, manufacturing, to safety assessments, the design of therapeutic protocols, to clinical experience.</p> <p>Antisense oligonucleotides are single strands of DNA or RNA that are complementary to a chosen sequence. While the idea of antisense oligonucleotides to target single genes dates back to the 1970's, most advances have taken place in recent years. The increasing number of antisense oligonucleotide programs in clinical development is a testament to the progress and understanding of pharmacologic, pharmacokinetic, and toxicologic properties as well as improvement in the delivery of oligonucleotides. This valuable book reviews the fundamentals of oligonucleotides, with a focus on antisense oligonucleotide drugs, and reports on the latest research underway worldwide.</p> <p>•    Helps readers understand antisense molecules and their targets, biochemistry, and toxicity mechanisms, roles in disease, and applications for safety and therapeutics</p> <p>•    Examines the principles, practices, and tools for scientists in both pre-clinical and clinical settings and how to apply them to antisense oligonucleotides</p> <p>•    Provides guidelines for scientists in drug design and discovery to help improve efficiency, assessment, and the success of drug candidates</p> <p>•    Includes interdisciplinary perspectives, from academia, industry, regulatory and from the fields of pharmacology, toxicology, biology, and medicinal chemistry</p> <p><i>Oligonucleotide-Based Drugs and Therapeutics</i> belongs on the reference shelves of chemists, pharmaceutical scientists, chemical biologists, toxicologists and other scientists working in the pharmaceutical and biotechnology industries. It will also be a valuable resource for regulatory specialists and safety assessment professionals and an important reference for academic researchers and post-graduates interested in therapeutics, antisense therapy, and oligonucleotides.</p>
<p>List of Contributors xvii</p> <p>Preface xxi</p> <p>Acknowledgments xxii</p> <p><b>1 Mechanisms of Oligonucleotide Actions 1</b></p> <p><i>Annemieke Aartsma‐Rus, Aimee L. Jackson, and Arthur A. Levin</i></p> <p>1.1 Introduction</p> <p>1.2 Antisense Oligonucleotide Therapeutics 2</p> <p>1.2.1 Antisense Activity Mediated by RNase H 2</p> <p>1.2.2 The RNase H Mechanism 2</p> <p>1.2.3 Chemical Modifications to Enhance RNase H‐mediated Antisense Activity 3</p> <p>1.3 Oligonucleotides that Sterically Block Translation 5</p> <p>1.4 Oligonucleotides that Act Through the RNAi Pathway 5</p> <p>1.4.1 The RISC Pathway 5</p> <p>1.4.2 Mechanisms of RISC‐mediated Gene Silencing 8</p> <p>1.5 Chemical Modification of siRNAs and miRNAs 10</p> <p>1.5.1 Delivery of Therapeutic siRNAs or miRNAs 12</p> <p>1.6 Clinical Use of Oligonucleotides that Act through the RNAi Pathway 14</p> <p>1.7 Oligonucleotides that Modulate Splicing 17</p> <p>1.7.1 Pre‐mRNA Splicing and Disease 17</p> <p>1.7.2 Mechanisms of Oligonucleotide‐mediated Splicing Modulation 17</p> <p>1.7.3 Chemical Modifications that Enhance Activity of Oligonucleotidebased Splicing Modulators 21</p> <p>1.7.4 Clinical Applications of Splicing Modulators 22</p> <p>1.8 Conclusions 22</p> <p>References 22</p> <p><b>2 The Medicinal Chemistry of Antisense Oligonucleotides 39</b></p> <p><i>Jonathan K. Watts</i></p> <p>2.1 Introduction:The Antisense Approach and the Need for Chemical Modification 39</p> <p>2.1.1 How Does Medicinal Chemistry Apply to Oligonucleotides? 40</p> <p>2.1.2 Chemistry and Toxicity 41</p> <p>2.2 Why Chemically Modify an Oligonucleotide? 42</p> <p>2.2.1 Medicinal Chemistry Can Increase Nuclease Stability 42</p> <p>2.2.2 Medicinal Chemistry Can Tune Binding Affinity and Specificity 43</p> <p>2.2.3 Medicinal Chemistry Can Change Interactions with Cellular Factors 44</p> <p>2.2.4 Medicinal Chemistry Can Modulate Immunostimulation 45</p> <p>2.2.5 Medicinal Chemistry Can Improve RNase H Cleavage Specificity 46</p> <p>2.2.6 Medicinal Chemistry Can Improve Cellular Uptake and Subcellular Trafficking 47</p> <p>2.3 Chemical Modifications of Current Importance by Structural Class 48</p> <p>2.3.1 Sugar Modifications 48</p> <p>2.3.1.1 2′‐Modified Ribose Sugars 48</p> <p>2.3.1.2 2′‐Modified Arabinose Sugars 50</p> <p>2.3.1.3 2′,4′‐Difluorinated Nucleosides 50</p> <p>2.3.1.4 Constrained Nucleotides 50</p> <p>2.3.1.5 Sugars with Expanded Ring Size 53</p> <p>2.3.2 Phosphate Modifications 54</p> <p>2.3.2.1 Phosphorothioate 54</p> <p>2.3.2.2 Other Charged Phosphate Analogues 58</p> <p>2.3.2.3 Neutral Mimics of the Phosphate Linkage 58</p> <p>2.3.2.4 Metabolically Stable 5′‐Phosphate Analogues 60</p> <p>2.3.3 Total Replacement of the Sugar‐Phosphate Backbone 61</p> <p>2.3.4 Nucleobase Modifications 62</p> <p>2.3.4.1 Sulfur‐Modified Nucleobases 63</p> <p>2.3.4.2 5‐Modified Pyrimidines 63</p> <p>2.3.4.3 Nucleobases with Expanded Hydrogen Bonding Networks 65</p> <p>2.3.5 Assembly of Oligonucleotides into Multimeric Structures 66</p> <p>2.4 Conclusion 67</p> <p>References 69</p> <p><b>3 Cellular Pharmacology of Antisense Oligonucleotides 91</b></p> <p><i>Xin Ming</i></p> <p>3.1 Introduction91</p> <p>3.2 Molecular Mechanisms of Antisense Oligonucleotides 92</p> <p>3.2.1 Classic Antisense Oligonucleotides 92</p> <p>3.2.2 siRNA 94</p> <p>3.2.3 Splice Switching Oligonucleotides 94</p> <p>3.2.4 microRNA Antagomirs 95</p> <p>3.2.5 lncRNAs Antagomirs 95</p> <p>3.3 Cellular Pharmacology of Antisense Oligonucleotides 96</p> <p>3.3.1 Endocytosis of Free Oligonucleotides 98</p> <p>3.3.2 Endocytosis of Oligonucleotide Conjugates 98</p> <p>3.3.3 Uptake and Trafficking of Oligonucleotides Incorporated into Nanocarriers 100</p> <p>3.4 Conclusion 101</p> <p>References 101</p> <p><b>4 Pharmacokinetics and Pharmacodynamics of Antisense Oligonucleotides 107</b></p> <p><i>Helen Lightfoot, Anneliese Schneider, and Jonathan Hall</i></p> <p>4.1 Introduction 107</p> <p>4.2 Pharmacokinetic Properties of Antisense Oligonucleotides 108</p> <p>4.2.1 Protein Binding 109</p> <p>4.2.2 Dose Dependency of ASO Pharmacokinetics 110</p> <p>4.2.3 Absorption 110</p> <p>4.2.4 Distribution 111</p> <p>4.2.5 Metabolism and Excretion 112</p> <p>4.3 Pharmacodynamic Properties of Antisense Oligonucleotides 113</p> <p>4.3.1 ASO Target Selection and Validation 114</p> <p>4.3.2 Mechanisms of Action 117</p> <p>4.3.3 Biomarkers and PD Endpoints 118</p> <p>4.4 PD and PK Results and Strategies of ASOs in Clinical Development 119</p> <p>4.4.1 Genetic Diseases 122</p> <p>4.4.1.1 Mipomersen, Apolipoprotein B‐100, and Hypercholesterolemia 122</p> <p>4.4.1.2 Drisapersen, Dystrophin, and Duchenne Muscular Dystrophy (DMD) 123</p> <p>4.4.2 Infectious Diseases 125</p> <p>4.4.2.1 Miravirsen, miR‐122, and Hepatitis C Virus (HCV) 125</p> <p>4.4.3 Cancer 126</p> <p>4.4.3.1 Custirsen, Clusterin, and Cancer 126</p> <p>4.4.3.2 LY2181308 (ISIS‐23722), Survivin, and Cancer 127</p> <p>4.5 Summary and Conclusions 128</p> <p>References 130</p> <p><b>5 Tissue Distribution, Metabolism, and Clearance 137</b></p> <p><i>Mehrdad Dirin and Johannes Winkler</i></p> <p>5.1 Introduction137</p> <p>5.2 Tissue Distribution 138</p> <p>5.2.1 Dermal Delivery 138</p> <p>5.2.2 Ocular Delivery 139</p> <p>5.2.3 Oral Administration 139</p> <p>5.2.4 Intrathecal Delivery 141</p> <p>5.2.5 Intravesical Administration 142</p> <p>5.2.6 Pulmonary Administration 142</p> <p>5.2.7 Distribution to Muscular Tissue 143</p> <p>5.2.8 Intravenous Administration 144</p> <p>5.3 Cellular Uptake 146</p> <p>5.4 Metabolism and Clearance 148</p> <p>5.4.1 Phosphorothioates Including 2′‐Modifications 148</p> <p>5.4.2 Phosphorodiamidate Morpholino Oligonucleotides 149</p> <p>5.5 Conclusion 150</p> <p>References 151</p> <p><b>6 Hybridization‐Independent Effects: Principles and Specific Considerations for Oligonucleotide Drugs 161</b></p> <p><i>Nicolay Ferrari</i></p> <p>6.1 Background 161</p> <p>6.2 Mechanisms of Hybridization‐independent Toxicities 162</p> <p>6.2.1 Effects Related to Oligonucleotide Sequence 162</p> <p>6.2.1.1 Unmethylated CpG Motifs 162</p> <p>6.2.1.2 Poly‐G Sequences 163</p> <p>6.2.1.3 DNA Triplex‐forming Oligonucleotides 164</p> <p>6.2.1.4 Other Motifs 164</p> <p>6.2.2 Effects Related to Oligonucleotide Chemistry 164</p> <p>6.2.2.1 Phosphorothioate Oligonucleotides 165</p> <p>6.2.2.2 Effects of Other Chemical Modifications 171</p> <p>6.3 Hybridization‐independent Effects Following Local Delivery of Oligonucleotides 171</p> <p>6.3.1 Pulmonary Toxicity of Inhaled Oligonucleotides 171</p> <p>6.3.1.1 Specific Considerations for Inhaled Oligonucleotides 173</p> <p>6.3.2 Approaches to Reduce Hybridization‐independent Class Effects of Inhaled Oligonucleotides 175</p> <p>6.3.2.1 Mixed Phosphorothioate/Phosphodiester Oligonucleotides 175</p> <p>6.4 Conclusion 180</p> <p>References 180</p> <p><b>7 Hybridization‐Dependent Effects: The Prediction, Evaluation,and Consequences of Unintended Target Hybridization 191</b></p> <p><i>Jeremy D. A. Kitson, Piotr J. Kamola, and Lauren Kane</i></p> <p>7.1 Introduction 191</p> <p>7.1.1 Scope of this Review: RNase H1‐dependent ASOs 192</p> <p>7.2 Specificity Studies with ASOs 192</p> <p>7.3 Implications of the Nuclear Site of Action of RNase H1 194</p> <p>7.3.1 Confirmation of Unintended Targets within Introns 195</p> <p>7.4 Mechanism of OTE 196</p> <p>7.5 Determining the Extent that Accessibility, Affinity and, Mismatch Tolerance Contribute to Off‐target Activity 198</p> <p>7.5.1 Accessibility 198</p> <p>7.5.2 Affinity 199</p> <p>7.5.3 The Interaction of RNase H1 with the RNA/ASO Duplex 200</p> <p>7.5.4 Mismatch Tolerance 202</p> <p>7.6 Consequences of Unintended Transcript Knockdown: <i>In Vivo</i> and <i>In Vitro</i> Toxicity 203</p> <p>7.7 Identification and Evaluation of Putative OTEs 207</p> <p>7.7.1 Computational Prediction of Unintended Targeting 207</p> <p>7.7.1.1 Database Creation 209</p> <p>7.7.1.2 Sequence Alignments 209</p> <p>7.7.1.3 Cross‐species Off‐target Homology 210</p> <p>7.7.1.4 Results Filtering and Annotation 211</p> <p>7.7.1.5 RNA Structure and Target Accessibility 211</p> <p>7.7.1.6 ASO–Target Duplex Thermodynamics 213</p> <p>7.7.1.7 Computational Framework for OTEs 214</p> <p>7.7.1.8 <i>In Vitro</i> Screening for OTEs 214</p> <p>7.7.1.9 Methods for Measuring Gene Expression 216</p> <p>7.8 Summary 216</p> <p>Acknowledgments 217</p> <p>References 218</p> <p><b>8 Class‐Related Proinflammatory Effects 227</b></p> <p><i>Rosanne Seguin</i></p> <p>8.1 Introduction 227</p> <p>8.2 Proinflammatory Effects of ASO for Consideration in Drug Development 228</p> <p>8.2.1 Activation of the Complement Cascade in Monkeys 228</p> <p>8.2.2 Cytokine Release 229</p> <p>8.2.3 Mononuclear Cellular Infiltrate 232</p> <p>8.2.4 Hematological Changes 236</p> <p>8.2.5 Immunogenicity 237</p> <p>8.3 Conclusions 238</p> <p>References 239</p> <p><b>9 Exaggerated Pharmacology 243</b></p> <p><i>Alain Guimond and Doug Kornbrust</i></p> <p>9.1 Introduction 243</p> <p>9.2 Regulatory Expectations 244</p> <p>9.3 Scope of EP Assessment 245</p> <p>9.3.1 Species Selection 245</p> <p>9.3.2 Determination of Pharmacologic Relevance 247</p> <p>9.4 EP Evaluation Strategies 248</p> <p>9.4.1 Concerns About the Use of Animal‐active Analogues 248</p> <p>9.4.2 Animal‐active Analogues in Reproductive and/or Carcinogenicity Studies 250</p> <p>9.4.3 Other Considerations for Use of Animal Analogues 250</p> <p>9.4.4 The Use of Inactive Analogues as Control Articles 250</p> <p>9.4.5 The Role of Formulations 251</p> <p>9.4.6 Aptamer Oligonucleotides 251</p> <p>9.4.7 Immunostimulatory Oligonucleotides 252</p> <p>9.4.8 MicroRNA 253</p> <p>9.5 Conclusions 254</p> <p>References 255</p> <p><b>10 Genotoxicity Tests for Novel Oligonucleotide‐Based Therapeutics 257</b></p> <p><i>Cindy L. Berman, Scott A. Barros, Sheila M. Galloway, Peter Kasper, Frederick B. Oleson, Catherine C. Priestley, Kevin S. Sweder, Michael J. Schlosser, and Zhanna Sobol</i></p> <p>10.1 Introduction 257</p> <p>10.1.1 History of Regulatory Guidance on Genotoxicity Testing 259</p> <p>10.1.2 Relevance of the Standard Genotoxicity Test Battery to ONs 260</p> <p>10.2 Experience with ONs in the Standard Battery 262</p> <p>10.2.1 ON Chemical Classes Tested for Genotoxicity 264</p> <p>10.2.2 Conclusions Based on the Database 265</p> <p>10.3 OSWG Recommendation for Genotoxicity Testing of ONs 266</p> <p>10.3.1 Recommended Test Battery 266</p> <p>10.3.2 Requirement for Evidence for Uptake 270</p> <p>10.3.3 Need for Testing of ONs 271</p> <p>10.3.3.1 Nonconjugated ONs in Simple Aqueous Formulations 271</p> <p>10.3.3.2 ONs in Complex Formulations or Conjugates 272</p> <p>10.3.4 Recommended Test Conditions 273</p> <p>10.3.4.1 Top Concentration for <i>In Vitro</i> Tests 273</p> <p>10.3.4.2 Use of S‐9 in <i>In Vitro</i> Tests 273</p> <p>10.3.4.3 In Vivo Tests 274</p> <p>10.4 Triplex Formation 275</p> <p>10.4.1 Biochemical Requirements for Triplex Formation 275</p> <p>10.4.2 Assessment of New ONs for Triplex Formation 277</p> <p>10.5 Impurities 278</p> <p>10.5.1 ON‐Related Impurities 278</p> <p>10.5.2 Potentially Mutagenic Impurities 278</p> <p>10.6 Conclusions 279</p> <p>Acknowledgments 280</p> <p>References 280</p> <p><b>11 Reproductive and Developmental Toxicity Testing Strategies for Oligonucleotide‐Based Therapeutics 287</b></p> <p><i>Tacey E.K. White and Joy Cavagnaro</i></p> <p>11.1 Introduction 287</p> <p>11.2 General Design of Reproductive and Developmental Toxicity Studies 289</p> <p>11.3 Product Attributes of Oligonucleotide Drugs 291</p> <p>11.4 The Role of Intended Pharmacology in Reproductive and Developmental Effects 293</p> <p>11.5 Selection of Animal Species 294</p> <p>11.5.1 Design and Use of Animal‐active Analogues 294</p> <p>11.6 Justification of Dosing Regimen 296</p> <p>11.7 Exposure Assessment 297</p> <p>11.8 Subclass‐ specific Considerations 298</p> <p>11.8.1 Single‐stranded DNA Antisense Oligonucleotides 299</p> <p>11.8.2 CpG and Immunostimulatory (IS) Oligonucleotides 300</p> <p>11.8.3 microRNA Mimetics/Antagonists and siRNAs 301</p> <p>11.8.4 Aptamer Oligonucleotides 303</p> <p>11.9 Conclusions 304</p> <p>Acknowledgments 305</p> <p>References 305</p> <p><b>12 Specific Considerations for Preclinical Development of Inhaled Oligonucleotides 311</b></p> <p><i>Nicolay Ferrar </i></p> <p>12.1 Background 311</p> <p>12.2 Oligonucleotide Delivery Systems 312</p> <p>12.2.1 Inhalation Exposure Systems 312</p> <p>12.2.2 Intratracheal Aerosol Instillation 313</p> <p>12.3 Repeat‐dose Toxicity 314</p> <p>12.3.1 General Principles 314</p> <p>12.3.2 Recovery Phase 317</p> <p>12.4 Toxicokinetics 319</p> <p>12.5 Safety Pharmacology 322</p> <p>12.5.1 Respiratory System 323</p> <p>12.5.2 Cardiovascular and Central Nervous Systems 324</p> <p>12.6 Additional Testing 326</p> <p>12.6.1 Complement Activation 326</p> <p>12.6.2 Proinflammatory Effects 327</p> <p>12.7 Conclusion 328</p> <p>References 328</p> <p><b>13 Lessons Learned in Oncology Programs 331</b></p> <p><i>Cindy Jacobs, Monica Krieger, Patricia S. Stewart, Karen D. Wisont,and Scott Cormack</i></p> <p>13.1 Introduction 331</p> <p>13.2 Clinical Development of First‐generation ASOs 332</p> <p>13.2.1 Aprinocarsen 332</p> <p>13.2.2 Oblimersen 334</p> <p>13.2.3 Challenges Associated with First‐generation ASOs 335</p> <p>13.3 Clinical Development of Second‐generation ASOs 336</p> <p>13.3.1 Custirsen 337</p> <p>13.3.2 Lessons Learned from Custirsen Clinical Development 343</p> <p>13.3.3 Apatorsen 344</p> <p>13.3.4 Bladder Cancer 346</p> <p>13.3.5 Lung Cancer 346</p> <p>13.3.6 Pancreatic Cancer 347</p> <p>13.3.7 Prostate Cancer 347</p> <p>13.4 Regulatory Considerations 348</p> <p>13.5 Future Opportunities for ASOs as Therapeutic Agents for Cancer Treatment 349</p> <p>References 349</p> <p><b>14 Inhaled Antisense for Treatment of Respiratory Disease 355</b></p> <p><i>Gail M. Gauvreau, Beth E. Davis, and John Paul Oliveria</i></p> <p>14.1 Introduction 355</p> <p>14.2 Atopic Asthma 355</p> <p>14.2.1 Pharmacotherapy of Asthma 356</p> <p>14.2.2 Anti‐IL‐5 Monoclonal Antibodies 357</p> <p>14.2.3 Anti‐IL‐4/13 Monoclonal Antibodies 359</p> <p>14.3 Antisense Oligonucleotides in Animal Models 361</p> <p>14.3.1 CpG Immunostimulatory Sequences 361</p> <p>14.3.2 Antisense to Receptors on Eosinophils 366</p> <p>14.3.3 Antisense to IL‐4 and IL‐13 Receptors 368</p> <p>14.3.4 Summary of Antisense Oligonucleotides in Animal Models 368</p> <p>14.4 Clinical Data 369</p> <p>14.4.1 Allergen Challenge: A Model of Asthma Exacerbation 369</p> <p>14.4.2 Allergen Challenge for Evaluation of Efficacy 369</p> <p>14.4.3 1018 Immunostimulatory Sequence 370</p> <p>14.4.3.1 Study Design for 1018 ISS 370</p> <p>14.4.3.2 Results for 1018 ISS 371</p> <p>14.4.4 AIR645 372</p> <p>14.4.4.1 Study Design for AIR645 373</p> <p>14.4.4.2 Results for AIR645 373</p> <p>14.4.5 TPI ASM8 374</p> <p>14.4.5.1 Mechanism of TPI ASM8 374</p> <p>14.4.5.2 Study #1 for TPI ASM8 375</p> <p>14.4.5.3 Study #2 for TPI ASM8 377</p> <p>14.5 General</p> <p>Conclusion 378</p> <p>References 378</p> <p><b>15 Antisense Oligonucleotides for Treatment of Neurological Diseases 389</b></p> <p><i>Rosanne Seguin</i></p> <p>15.1 Introduction 389</p> <p>15.1.1 Delivery of ASO to Central Nervous System 389</p> <p>15.2 Potential ASO Therapies in Neurodegenerative Diseases 390</p> <p>15.2.1 Spinal Muscular Atrophy (SMA) 390</p> <p>15.2.2 Amyotrophic Lateral Sclerosis (ALS) 393</p> <p>15.2.3 Huntington’s Disease (HD) 396</p> <p>15.2.4 Muscular Sclerosis (MS) 399</p> <p>15.2.5 Alzheimer’s Disease (AD) 401</p> <p>15.3 Conclusion 403</p> <p>References 403</p> <p><b>16 Nucleic Acids as Adjuvants 411</b></p> <p><i>Kevin Brown, Montserrat Puig, Lydia Haile, Derek Ireland, John Martucci, and Daniela Verthelyi</i></p> <p>16.1 Introduction 411</p> <p>16.1.1 TLR as Nucleic Acid‐Sensing Pathogen Recognition Receptors (PRR) 412</p> <p>16.2 Categories of Nucleic Acid Adjuvants 413</p> <p>16.2.1 DNA‐Based Adjuvants and Vaccine Studies in Mice 417</p> <p>16.2.2 Classes of CpG ODN that Activate Human TLR9 421</p> <p>16.2.3 Preclinical Studies with Human CpG ODN 422</p> <p>16.2.4 Safety Issues Raised in Animal Models 424</p> <p>16.2.5 Clinical Trial Experience 425</p> <p>16.2.6 Safety Issues from Human Clinical Trials 427</p> <p>16.2.7 Novel Delivery Systems for CpG ODN as Adjuvants 427</p> <p>16.3 Conclusion 429</p> <p>Acknowledgments 429</p> <p>References 430</p> <p><b>17 Splice‐Switching Oligonucleotides 445</b></p> <p><i>Isabella Gazzoli and Annemieke Aartsma‐Rus</i></p> <p>17.1 Introduction of Splice Switching 445</p> <p>17.1.1 Correct Cryptic Splicing 446</p> <p>17.1.1.1 β‐Thalassemia 446</p> <p>17.1.1.2 Cystic Fibrosis 450</p> <p>17.1.2 Isoform Switching 451</p> <p>17.1.2.1 Anticancer 451</p> <p>17.1.2.2 Tauopathies 452</p> <p>17.1.3 Induce Exon Inclusion 452</p> <p>17.1.3.1 Tumorigenesis 452</p> <p>17.1.3.2 Spinal Muscular Atrophy (SMA) 453</p> <p>17.1.4 Reading Frame Correction 454</p> <p>17.1.4.1 Duchenne Muscular Dystrophy 454</p> <p>17.1.4.2 Dysferlinopathies 455</p> <p>17.1.5 Knockdown 456</p> <p>17.1.5.1 Atherosclerosis 456</p> <p>17.1.5.2 Myostatin‐Related Muscle Hypertrophy 457</p> <p>17.2 Preclinical and Clinical Development of Splice‐switching Oligos 457</p> <p>17.2.1 Introduction to Different Chemistries to be Used for Splice Switching 457</p> <p>17.2.2 AON Targets 459</p> <p>17.2.3 AON Development for DMD 460</p> <p>17.2.4 2′‐O‐Methyl Phosphorothioate AONs 461</p> <p>17.2.4.1 Animal Studies 461</p> <p>17.2.4.2 Human Studies 463</p> <p>17.2.5 Phosphorodiamidate Morpholino Oligos 466</p> <p>17.2.5.1 Animal Studies 466</p> <p>17.2.5.2 Human Studies 467</p> <p>17.2.6 Other Chemistries 468</p> <p>17.2.6.1 Peptide‐Conjugated PMOs 468</p> <p>17.2.7 Preclinical and Clinical Studies for Other Diseases 470</p> <p>17.2.7.1 Spinal Muscular Atrophy (SMA) 470</p> <p>17.2.8 Biomarkers 472</p> <p>17.3 Future Directions 474</p> <p>Conflictof Interest 475</p> <p>Acknowledgments 475</p> <p>References 475</p> <p><b>18 CMC Aspects for the Clinical Development of Spiegelmers 491</b></p> <p><i>Stefan Vonhoff</i></p> <p>18.1 Introduction 491</p> <p>18.2 Technology (Mirror‐imaged SELEX Process) Selected Pharmaceutical Properties 492</p> <p>18.3 Preclinical Efficacy Data for Spiegelmers 494</p> <p>18.4 Clinical Development 504</p> <p>18.4.1 Emapticap Pegol: NOX‐E36 504</p> <p>18.4.2 Olaptesed Pegol: NOX‐A12 506</p> <p>18.4.3 Lexaptepid Pegol: NOX‐H94 507</p> <p>18.5 CMC Aspects for the Development of Spiegelmers 508</p> <p>18.5.1 Discovery and Early Preclinical Stage 508</p> <p>18.5.2 Generic Manufacturing Process 509</p> <p>18.5.2.1 Solid‐phase Synthesis 510</p> <p>18.5.2.2 Deprotection 510</p> <p>18.5.2.3 Purification of the Intermediate Spiegelmer Prior to Pegylation 510</p> <p>18.5.2.4 Pegylation 510</p> <p>18.5.2.5 Purification of the Pegylated Spiegelmer 510</p> <p>18.5.3 CMC Aspects for the Selection of Development Candidates 511</p> <p>18.5.4 GMP Production of Spiegelmers 514</p> <p>18.5.4.1 Starting Materials 514</p> <p>18.5.4.2 Drug Substance 516</p> <p>18.5.4.3 Drug Product 516</p> <p>18.5.5 Analytical Methods for the Quality Control of Spiegelmers 517</p> <p>18.6 Future Prospects for Spiegelmer Therapeutics 521</p> <p>References 521</p> <p>Index 527</p>
<p><b>Nicolay Ferrari, PhD,</b> is the Executive Director of the Canadian Critical Care Trials Group, a Canadian investigator-lead research network, Quebec, Canada. A former Director of Research in Pharmacology at Topigen Pharmaceuticals, Inc, over twenty years of research experience, Dr. Ferrari is the co-inventor of six patents. <p><b>Rosanne Seguin,</b> <b>PhD,</b> is an Academic Associate at the Montreal Neurological Institute of McGill University, Montreal, Quebec, Canada. A former Director of Immunology and Development Support at Topigen Pharmaceuticals, Inc. Dr. Seguin has 20 years of research experience.
<p><b>A COMPREHENSIVE REVIEW OF CONTEMPORARY ANTISENSE OLIGONUCLEOTIDES DRUGS AND THERAPEUTIC PRINCIPLES, METHODS, APPLICATIONS, AND RESEARCH</b> <p>Oligonucleotide-based drugs, in particular antisense oligonucleotides, are part of a growing number of pharmaceutical and biotech programs progressing to treat a wide range of indications including cancer, cardiovascular, neurodegenerative, neuromuscular, and respiratory diseases, as well as other severe and rare diseases. Reviewing fundamentals and offering guidelines for drug discovery and development, this book is a practical guide covering all key aspects of this increasingly popular area of pharmacology and biotech and pharma research, from the basic science behind antisense oligonucleotides chemistry, toxicology, manufacturing, to safety assessments, the design of therapeutic protocols, to clinical experience. <p>Antisense oligonucleotides are single strands of DNA or RNA that are complementary to a chosen sequence. While the idea of antisense oligonucleotides to target single genes dates back to the 1970's, most advances have taken place in recent years. The increasing number of antisense oligonucleotide programs in clinical development is a testament to the progress and understanding of pharmacologic, pharmacokinetic, and toxicologic properties as well as improvement in the delivery of oligonucleotides. This valuable book reviews the fundamentals of oligonucleotides, with a focus on antisense oligonucleotide drugs, and reports on the latest research underway worldwide. <ul> <li>Helps readers understand antisense molecules and their targets, biochemistry, and toxicity mechanisms, roles in disease, and applications for safety and therapeutics</li> <li>Examines the principles, practices, and tools for scientists in both pre-clinical and clinical settings and how to apply them to antisense oligonucleotides</li> <li>Provides guidelines for scientists in drug design and discovery to help improve efficiency, assessment, and the success of drug candidates</li> <li>Includes interdisciplinary perspectives, from academia, industry, regulatory and from the fields of pharmacology, toxicology, biology, and medicinal chemistry</li> </ul> <p><i>Oligonucleotide-Based Drugs and Therapeutics</i> belongs on the reference shelves of chemists, pharmaceutical scientists, chemical biologists, toxicologists and other scientists working in the pharmaceutical and biotechnology industries. It will also be a valuable resource for regulatory specialists and safety assessment professionals and an important reference for academic researchers and post-graduates interested in therapeutics, antisense therapy, and oligonucleotides.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €