Details

Numerical Methods in Computational Finance


Numerical Methods in Computational Finance

A Partial Differential Equation (PDE/FDM) Approach
Wiley Finance 1. Aufl.

von: Daniel J. Duffy

71,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 14.03.2022
ISBN/EAN: 9781119719724
Sprache: englisch
Anzahl Seiten: 544

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>This book is a detailed and step-by-step introduction to the mathematical foundations of ordinary and partial differential equations, their approximation by the finite difference method and applications to computational finance. The book is structured so that it can be read by beginners, novices and expert users.</p> <p>Part A Mathematical Foundation for One-Factor Problems</p> <p>Chapters 1 to 7 introduce the mathematical and numerical analysis concepts that are needed to understand the finite difference method and its application to computational finance.</p> <p>Part B Mathematical Foundation for Two-Factor Problems</p> <p>Chapters 8 to 13 discuss a number of rigorous mathematical techniques relating to elliptic and parabolic partial differential equations in two space variables. In particular, we develop strategies to preprocess and modify a PDE before we approximate it by the finite difference method, thus avoiding ad-hoc and heuristic tricks.</p> <p>Part C The Foundations of the Finite Difference Method (FDM)</p> <p>Chapters 14 to 17 introduce the mathematical background to the finite difference method for initial boundary value problems for parabolic PDEs. It encapsulates all the background information to construct stable and accurate finite difference schemes.</p> <p>Part D Advanced Finite Difference Schemes for Two-Factor Problems</p> <p>Chapters 18 to 22 introduce a number of modern finite difference methods to approximate the solution of two factor partial differential equations. This is the only book we know of that discusses these methods in any detail.</p> <p>Part E Test Cases in Computational Finance</p> <p>Chapters 23 to 26 are concerned with applications based on previous chapters. We discuss finite difference schemes for a wide range of one-factor and two-factor problems.</p> <p>This book is suitable as an entry-level introduction as well as a detailed treatment of modern methods as used by industry quants and MSc/MFE students in finance. The topics have applications to numerical analysis, science and engineering.</p> <p>More on computational finance and the author’s online courses, see www.datasim.nl.</p>
<p>Preface xix</p> <p>Who Should Read this Book? xxiii</p> <p><b>Part A : Mathematical Foundation for One-Factor Problems</b></p> <p><b>Chapter 1 : Real Analysis Foundations for this Book 3</b></p> <p>1.1 Introduction and Objectives 3</p> <p>1.2 Continuous Functions 4</p> <p>1.2.1 Formal Definition of Continuity 5</p> <p>1.2.2 An Example 6</p> <p>1.2.3 Uniform Continuity 6</p> <p>1.2.4 Classes of Discontinuous Functions 7</p> <p>1.3 Differential Calculus 8</p> <p>1.3.1 Taylor’s Theorem 9</p> <p>1.3.2 Big O and Little o Notation 10</p> <p>1.4 Partial Derivatives 11</p> <p>1.5 Functions and Implicit Forms 13</p> <p>1.6 Metric Spaces and Cauchy Sequences 14</p> <p>1.6.1 Metric Spaces 15</p> <p>1.6.2 Cauchy Sequences 16</p> <p>1.6.3 Lipschitz Continuous Functions 17</p> <p>1.7 Summary and Conclusions 19</p> <p><b>Chapter 2 : Ordinary Differential Equations (ODEs), Part 1 21</b></p> <p>2.1 Introduction and Objectives 21</p> <p>2.2 Background and Problem Statement 22</p> <p>2.2.1 Qualitative Properties of the Solution and Maximum Principle 22</p> <p>2.2.2 Rationale and Generalisations 24</p> <p>2.3 Discretisation of Initial Value Problems: Fundamentals 25</p> <p>2.3.1 Common Schemes 26</p> <p>2.3.2 Discrete Maximum Principle 28</p> <p>2.4 Special Schemes 29</p> <p>2.4.1 Exponential Fitting 29</p> <p>2.4.2 Scalar Non-Linear Problems and Predictor-Corrector Method 31</p> <p>2.4.3 Extrapolation 31</p> <p>2.5 Foundations of Discrete Time Approximations 32</p> <p>2.6 Stiff ODEs 37</p> <p>2.7 Intermezzo: Explicit Solutions 39</p> <p>2.8 Summary and Conclusions 41</p> <p><b>Chapter 3 : Ordinary Differential Equations (ODEs), Part 2 43</b></p> <p>3.1 Introduction and Objectives 43</p> <p>3.2 Existence and Uniqueness Results 43</p> <p>3.2.1 An Example 45</p> <p>3.3 Other Model Examples 45</p> <p>3.3.1 Bernoulli ODE 45</p> <p>3.3.2 Riccati ODE 46</p> <p>3.3.3 Predator-Prey Models 47</p> <p>3.3.4 Logistic Function 48</p> <p>3.4 Existence Theorems for Stochastic Differential Equations (SDEs) 48</p> <p>3.4.1 Stochastic Differential Equations (SDEs) 49</p> <p>3.5 Numerical Methods for ODEs 51</p> <p>3.5.1 Code Samples in Python 52</p> <p>3.6 The Riccati Equation 55</p> <p>3.6.1 Finite Difference Schemes 57</p> <p>3.7 Matrix Differential Equations 59</p> <p>3.7.1 Transition Rate Matrices and Continuous Time Markov Chains 61</p> <p>3.8 Summary and Conclusions 62</p> <p><b>Chapter 4 : An Introduction to Finite Dimensional Vector Spaces 63</b></p> <p>4.1 Short Introduction and Objectives 63</p> <p>4.1.1 Notation 64</p> <p>4.2 What Is a Vector Space? 65</p> <p>4.3 Subspaces 67</p> <p>4.4 Linear Independence and Bases 68</p> <p>4.5 Linear Transformations 69</p> <p>4.5.1 Invariant Subspaces 70</p> <p>4.5.2 Rank and Nullity 71</p> <p>4.6 Summary and Conclusions 72</p> <p><b>Chapter 5 : Guide to Matrix Theory and Numerical Linear Algebra 73</b></p> <p>5.1 Introduction and Objectives 73</p> <p>5.2 From Vector Spaces to Matrices 73</p> <p>5.2.1 Sums and Scalar Products of Linear Transformations 73</p> <p>5.3 Inner Product Spaces 74</p> <p>5.3.1 Orthonormal Basis 75</p> <p>5.4 From Vector Spaces to Matrices 76</p> <p>5.4.1 Some Examples 76</p> <p>5.5 Fundamental Matrix Properties 77</p> <p>5.6 Essential Matrix Types 80</p> <p>5.6.1 Nilpotent and Related Matrices 80</p> <p>5.6.2 Normal Matrices 81</p> <p>5.6.3 Unitary and Orthogonal Matrices 82</p> <p>5.6.4 Positive Definite Matrices 82</p> <p>5.6.5 Non-Negative Matrices 83</p> <p>5.6.6 Irreducible Matrices 83</p> <p>5.6.7 Other Kinds of Matrices 84</p> <p>5.7 The Cayley Transform 84</p> <p>5.8 Summary and Conclusions 86</p> <p><b>Chapter 6 : Numerical Solutions of Boundary Value Problems 87</b></p> <p>6.1 Introduction and Objectives 87</p> <p>6.2 An Introduction to Numerical Linear Algebra 87</p> <p>6.2.1 BLAS (Basic Linear Algebra Subprograms) 90</p> <p>6.3 Direct Methods for Linear Systems 92</p> <p>6.3.1 LU Decomposition 92</p> <p>6.3.2 Cholesky Decomposition 94</p> <p>6.4 Solving Tridiagonal Systems 94</p> <p>6.4.1 Double Sweep Method 94</p> <p>6.4.2 Thomas Algorithm 96</p> <p>6.4.3 Block Tridiagonal Systems 97</p> <p>6.5 Two-Point Boundary Value Problems 99</p> <p>6.5.1 Finite Difference Approximation 100</p> <p>6.5.2 Approximation of Boundary Conditions 102</p> <p>6.6 Iterative Matrix Solvers 103</p> <p>6.6.1 Iterative Methods 103</p> <p>6.6.2 Jacobi Method 104</p> <p>6.6.3 Gauss–Seidel Method 104</p> <p>6.6.4 Successive Over-Relaxation (SOR) 105</p> <p>6.6.5 Other Methods 105</p> <p>6.7 Example: Iterative Solvers for Elliptic PDEs 106</p> <p>6.8 Summary and Conclusions 107</p> <p><b>Chapter 7 : Black–Scholes Finite Differences for the Impatient 109</b></p> <p>7.1 Introduction and Objectives 109</p> <p>7.2 The Black–Scholes Equation: Fully Implicit and Crank–Nicolson Methods 110</p> <p>7.2.1 Fully Implicit Method 110</p> <p>7.2.2 Crank–Nicolson Method 111</p> <p>7.2.3 Final Remarks 114</p> <p>7.3 The Black–Scholes Equation: Trinomial Method 115</p> <p>7.3.1 Comparison with Other Methods 115</p> <p>7.4 The Heat Equation and Alternating Direction Explicit (ADE) Method 120</p> <p>7.4.1 Background and Motivation 120</p> <p>7.5 ADE for Black–Scholes: Some Test Results 121</p> <p>7.6 Summary and Conclusions 126</p> <p><b>Part B : Mathematical Foundation for Two-Factor Problems</b></p> <p><b>Chapter 8 : Classifying and Transforming Partial Differential Equations 129</b></p> <p>8.1 Introduction and Objectives 129</p> <p>8.2 Background and Problem Statement 129</p> <p>8.3 Introduction to Elliptic Equations 130</p> <p>8.3.1 What is an Elliptic Operator? 130</p> <p>8.3.2 Total and Principal Symbols 131</p> <p>8.3.3 The Adjoint Equation 132</p> <p>8.3.4 Self-Adjoint Operators and Equations 133</p> <p>8.3.5 Numerical Approximation of PDEs in Adjoint Form 134</p> <p>8.3.6 Elliptic Equations with Non-Negative Characteristic Form 135</p> <p>8.4 Classification of Second-Order Equations 135</p> <p>8.4.1 Characteristics 136</p> <p>8.4.2 Model Example 137</p> <p>8.4.3 Test your Knowledge 138</p> <p>8.5 Examples of Two-Factor Models from Computational Finance 139</p> <p>8.5.1 Multi-Asset Options 139</p> <p>8.5.2 Stochastic Dividend PDE 140</p> <p>8.6 Summary and Conclusions 141</p> <p><b>Chapter 9 : Transforming Partial Differential Equations to a Bounded Domain 143</b></p> <p>9.1 Introduction and Objectives 143</p> <p>9.2 The Domain in Which a PDE Is Defined: Preamble 143</p> <p>9.2.1 Background and Specific Mappings 144</p> <p>9.2.2 Initial Examples 146</p> <p>9.3 Other Examples 147</p> <p>9.4 Hotspots 148</p> <p>9.5 What Happened to Domain Truncation? 148</p> <p>9.6 Another Way to Remove Mixed Derivative Terms 149</p> <p>9.7 Summary and Conclusions 151</p> <p><b>Chapter 10 : Boundary Value Problems for Elliptic and Parabolic Partial Differential Equations 153</b></p> <p>10.1 Introduction and Objectives 153</p> <p>10.2 Notation and Prerequisites 154</p> <p>10.3 The Laplace Equation 154</p> <p>10.3.1 Harmonic Functions and the Cauchy–Riemann Equations 154</p> <p>10.4 Properties of The Laplace Equation 156</p> <p>10.4.1 Maximum-Minimum Principle for Laplace’s Equation 158</p> <p>10.5 Some Elliptic Boundary Value Problems 159</p> <p>10.5.1 Some Motivating Examples 159</p> <p>10.6 Extended Maximum-Minimum Principles 159</p> <p>10.6.1 An Example 161</p> <p>10.7 Summary and Conclusions 162</p> <p><b>Chapter 11 : Fichera Theory, Energy Inequalities and Integral Relations 163</b></p> <p>11.1 Introduction and Objectives 163</p> <p>11.2 Background and Problem Statement 163</p> <p>11.2.1 The ‘Big Bang’: Cauchy–Euler Equation 163</p> <p>11.3 Well-Posed Problems and Energy Estimates 165</p> <p>11.3.1 Time to Reflect: What Have We Achieved and What’s Next? 167</p> <p>11.4 The Fichera Theory: Overview 168</p> <p>11.5 The Fichera Theory: The Core Business 168</p> <p>11.6 The Fichera Theory: Further Examples and Applications 171</p> <p>11.6.1 Cox–Ingersoll–Ross (CIR) 171</p> <p>11.6.2 Heston Model Fundamenals 172</p> <p>11.6.3 Heston Model by Fichera Theory 176</p> <p>11.6.4 First-Order Hyperbolic PDE in One and Two Space Variables 177</p> <p>11.7 Some Useful Theorems 178</p> <p>11.7.1 Divergence (Gauss–Ostrogradsky) Theorem 179</p> <p>11.7.2 Green’s Theorem/Formula 180</p> <p>11.7.3 Green’s First and Second Identities 180</p> <p>11.8 Summary and Conclusions 180</p> <p><b>Chapter 12 : An Introduction to Time-Dependent Partial Differential Equations 181</b></p> <p>12.1 Introduction and Objectives 181</p> <p>12.2 Notation and Prerequisites 181</p> <p>12.3 Preamble: Separation of Variables for the Heat Equation 182</p> <p>12.4 Well-Posed Problems 184</p> <p>12.4.1 Examples of an ill-posed Problem 185</p> <p>12.4.2 The Importance of Proving that Problems Are Well-Posed 187</p> <p>12.5 Variations on Initial Boundary Value Problem for the Heat Equation 188</p> <p>12.5.1 Smoothness and Compatibility Conditions 188</p> <p>12.6 Maximum-Minimum Principles for Parabolic PDEs 189</p> <p>12.7 Parabolic Equations with Time-Dependent Boundaries 190</p> <p>12.8 Uniqueness Theorems for Boundary Value Problems in Two Dimensions 192</p> <p>12.8.1 Laplace Equation 192</p> <p>12.8.2 Heat Equation 193</p> <p>12.9 Summary and Conclusions 193</p> <p><b>Chapter 13 : Stochastics Representations of PDEs and Applications 195</b></p> <p>13.1 Introduction and Objectives 195</p> <p>13.2 Background, Requirements and Problem Statement 196</p> <p>13.3 An Overview of Stochastic Differential Equations (SDEs) 196</p> <p>13.4 An Introduction to One-Dimensional Random Processes 196</p> <p>13.5 An Introduction to the Numerical Approximation of SDEs 199</p> <p>13.5.1 Euler–Maruyama Method 199</p> <p>13.5.2 Milstein Method 201</p> <p>13.5.3 Predictor-Corrector Method 201</p> <p>13.5.4 Drift-Adjusted Predictor-Corrector Method 202</p> <p>13.6 Path Evolution and Monte Carlo Option Pricing 203</p> <p>13.6.1 Monte Carlo Option Pricing 204</p> <p>13.6.2 Some C++ Code 205</p> <p>13.7 Two-Factor Problems 209</p> <p>13.7.1 Spread Options with Stochastic Volatility 209</p> <p>13.7.2 Heston Stochastic Volatility Model 211</p> <p>13.8 The Ito Formula 215</p> <p>13.9 Stochastics Meets PDEs 215</p> <p>13.9.1 A Statistics Refresher 215</p> <p>13.9.2 The Feynman–Kac Formula 217</p> <p>13.9.3 Kolmogorov Equations 218</p> <p>13.9.4 Kolmogorov Forward (Fokker–Planck (FPE)) Equation 218</p> <p>13.9.5 Multi-Dimensional Problems and Boundary Conditions 219</p> <p>13.9.6 Kolmogorov Backward Equation (KBE) 220</p> <p>13.10 First Exit-Time Problems 221</p> <p>13.11 Summary and Conclusions 222</p> <p><b>Part C : The Foundations of the Finite Difference Method (FDM)</b></p> <p><b>Chapter 14 : Mathematical and Numerical Foundations of the Finite Difference Method, Part I 225</b></p> <p>14.1 Introduction and Objectives 225</p> <p>14.2 Notation and Prerequisites 226</p> <p>14.3 What Is the Finite Difference Method, Really? 227</p> <p>14.4 Fourier Analysis of Linear PDEs 227</p> <p>14.4.1 Fourier Transform for Advection Equation 229</p> <p>14.4.2 Fourier Transform for Diffusion Equation 230</p> <p>14.5 Discrete Fourier Transform 232</p> <p>14.5.1 Finite and Infinite Dimensional Sequences and Their Norms 232</p> <p>14.5.2 Discrete Fourier Transform (DFT) 233</p> <p>14.5.3 Discrete von Neumann Stability Criterion 235</p> <p>14.5.4 Some More Examples 235</p> <p>14.6 Theoretical Considerations 237</p> <p>14.6.1 Consistency 237</p> <p>14.6.2 Stability 238</p> <p>14.6.3 Convergence 239</p> <p>14.7 First-Order Partial Differential Equations 239</p> <p>14.7.1 Why First-Order Equations are Different: Essential Difficulties 242</p> <p>14.7.2 A Simple Explicit Scheme 243</p> <p>14.7.3 Some Common Schemes for Initial Value Problems 245</p> <p>14.7.4 Some Other Schemes 246</p> <p>14.7.5 General Linear Problems 248</p> <p>14.8 Summary and Conclusions 248</p> <p><b>Chapter 15: Mathematical and Numerical Foundations of the Finite Difference Method, Part II 249</b></p> <p>15.1 Introduction and Objectives 249</p> <p>15.2 A Short History of Numerical Methods for CDR Equations 250</p> <p>15.2.1 Temporal and Spatial Stability 251</p> <p>15.2.2 Motivating Exponential Fitting Methods 253</p> <p>15.2.3 Eliminating Temporal and Spatial Stability Problems 254</p> <p>15.3 Exponential Fitting and Time-Dependent Convection-Diffusion 257</p> <p>15.4 Stability and Convergence Analysis 258</p> <p>15.5 Special Limiting Cases 260</p> <p>15.6 Stability for Initial Boundary Value Problems 260</p> <p>15.6.1 Gerschgorin’s Circle Theorem 261</p> <p>15.7 Semi-Discretisation for Convection-Diffusion Problems 264</p> <p>15.7.1 Essentially Positive Matrices 265</p> <p>15.7.2 Fully Discrete Schemes 267</p> <p>15.8 Padé Matrix Approximation 269</p> <p>15.8.1 Padé Matrix Approximations 270</p> <p>15.9 Time-Dependent Convection-Diffusion Equations 275</p> <p>15.9.1 Fully Discrete Schemes 275</p> <p>15.10 Summary and Conclusions 276</p> <p><b>Chapter 16 Sensitivity Analysis, Option Greeks and Parameter Optimisation, Part I 277</b></p> <p>16.1 Introduction and Objectives 277</p> <p>16.2 Helicopter View of Sensitivity Analysis 278</p> <p>16.3 Black–Scholes–Merton Greeks 279</p> <p>16.3.1 Higher-Order and Mixed Greeks 282</p> <p>16.4 Divided Differences 282</p> <p>16.4.1 Approximation to First and Second Derivatives 282</p> <p>16.4.2 Black–Scholes Numeric Greeks and Divided Differences 285</p> <p>16.5 Cubic Spline Interpolation 286</p> <p>16.5.1 Caveat: Cubic Splines with Sparse Input Data 289</p> <p>16.5.2 Cubic Splines for Option Greeks 290</p> <p>16.5.3 Boundary Conditions 291</p> <p>16.6 Some Complex Function Theory 292</p> <p>16.6.1 Curves and Regions 293</p> <p>16.6.2 Taylor’s Theorem and Series 294</p> <p>16.6.3 Laurent’s Theorem and Series 295</p> <p>16.6.4 Cauchy–Goursat Theorem 296</p> <p>16.6.5 Cauchy’s Integral Formula 297</p> <p>16.6.6 Cauchy’s Residue Theorem 298</p> <p>16.6.7 Gauss’s Mean Value Theorem 299</p> <p>16.7 The Complex Step Method (CSM) 299</p> <p>16.7.1 Caveats 302</p> <p>16.8 Summary and Conclusions 302</p> <p><b>Chapter 17 Advanced Topics in Sensitivity Analysis 305</b></p> <p>17.1 Introduction and Objectives 305</p> <p>17.2 Examples of CSE 305</p> <p>17.2.1 Simple Initial Value Problem 306</p> <p>17.2.2 Population Dynamics 307</p> <p>17.2.3 Comparing CSE and Complex Step Method (CSM) 310</p> <p>17.3 CSE and Black–Scholes PDE 310</p> <p>17.3.1 Black–Scholes Greeks: Algorithms and Design 311</p> <p>17.3.2 Some Specific Black–Scholes Greeks 312</p> <p>17.4 Using Operator Calculus to Compute Greeks 313</p> <p>17.5 An Introduction to Automatic Differentiation (AD) for the Impatient 314</p> <p>17.5.1 What Is Automatic Differentiation: The Details 316</p> <p>17.6 Dual Numbers 317</p> <p>17.7 Automatic Differentiation in C++ 318</p> <p>17.8 Summary and Conclusions 319</p> <p><b>Part D : Advanced Finite Difference Schemes for Two-Factor Problems</b></p> <p><b>Chapter 18 : Splitting Methods, Part I 323</b></p> <p>18.1 Introduction and Objectives 323</p> <p>18.2 Background and History 324</p> <p>18.3 Notation, Prerequisites and Model Problems 325</p> <p>18.4 Motivation: Two-Dimensional Heat Equation 328</p> <p>18.4.1 Alternating Direction Implicit (ADI) Method 328</p> <p>18.4.2 Soviet (Operator) Splitting 330</p> <p>18.4.3 Mixed Derivative and Yanenko Scheme 331</p> <p>18.5 Other Related Schemes for the Heat Equation 333</p> <p>18.5.1 D’Yakonov Method 333</p> <p>18.5.2 Approximate Factorisation of Operators 334</p> <p>18.5.3 Predictor-Corrector Methods 337</p> <p>18.5.4 Partial Integro Differential Equations (PIDEs) 338</p> <p>18.6 Boundary Conditions 339</p> <p>18.7 Two-Dimensional Convection PDEs 341</p> <p>18.8 Three-Dimensional Problems 343</p> <p>18.9 The Hopscotch Method 344</p> <p>18.10 Software Design and Implementation Guidelines 346</p> <p>18.11 The Future: Convection-Diffusion Equations 346</p> <p>18.12 Summary and Conclusions 347</p> <p><b>Chapter 19 : The Alternating Direction Explicit (ADE) Method 349</b></p> <p>19.1 Introduction and Objectives 349</p> <p>19.2 Background and Problem Statement 351</p> <p>19.3 Global Overview and Applicability of ADE 351</p> <p>19.4 Motivating Examples: One-Dimensional and Two-Dimensional Diffusion Equations 352</p> <p>19.4.1 Barakat and Clark (B&C) Method 353</p> <p>19.4.2 Saul’yev Method 354</p> <p>19.4.3 Larkin Method 355</p> <p>19.4.4 Two-Dimensional Diffusion Problems 355</p> <p>19.5 ADE for Convection (Advection) Equation 356</p> <p>19.6 Convection-Diffusion PDEs 358</p> <p>19.6.1 Example: Black–Scholes PDE 359</p> <p>19.6.2 Boundary Conditions 360</p> <p>19.6.3 Spatial Amplification Errors 361</p> <p>19.7 Attention Points with ADE 362</p> <p>The Consequences of Conditional Consistency 362</p> <p>Call Pay-Off Behaviour at the Far Field 362</p> <p>19.7.1 General Formulation of the ADE Method 362</p> <p>19.8 Summary and Conclusions 364</p> <p><b>Chapter 20 : The Method of Lines (MOL), Splitting and the Matrix Exponential 365</b></p> <p>20.1 Introduction and Objectives 365</p> <p>20.2 Notation and Prerequisites: The Exponential Function 366</p> <p>20.2.1 Initial Results 367</p> <p>20.2.2 The Exponential of a Matrix 367</p> <p>20.3 The Exponential of a Matrix: Advanced Topics 368</p> <p>20.3.1 Fundamental Theorem for Linear Systems 368</p> <p>Proof of Theorem 20.1. 369</p> <p>20.3.2 An Example 369</p> <p>20.4 Motivation: One-Dimensional Heat Equation 370</p> <p>20.5 Semi-Linear Problems 373</p> <p>20.6 Test Case: Double-Barrier Options 375</p> <p>20.6.1 PDE Formulation 376</p> <p>20.6.2 Using Exponential Fitting of Barrier Options 377</p> <p>20.6.3 Performing MOL with Boost C++ odeint 378</p> <p>20.6.4 Computing Sensitivities 381</p> <p>20.6.5 American Options 384</p> <p>20.7 Summary and Conclusions 384</p> <p><b>Chapter 21 : Free and Moving Boundary Value Problems 387</b></p> <p>21.1 Introduction and Objectives 387</p> <p>21.2 Background, Problem Statement and Formulations 388</p> <p>21.3 Notation and Prerequisites 388</p> <p>21.4 Some Initial Examples of Free and Moving Boundary Value Problems 389</p> <p>21.4.1 Single-Phase Melting Ice 389</p> <p>21.4.2 Oxygen Diffusion 390</p> <p>21.4.3 American Option Pricing 391</p> <p>21.4.4 Two-Phase Melting Ice 392</p> <p>21.5 An Introduction to Parabolic Variational Inequalities 392</p> <p>21.5.1 Formulation of Problem: Test Case 392</p> <p>21.5.2 Examples of Initial Boundary Value Problems 395</p> <p>21.6 An Introduction to Front-Fixing 399</p> <p>21.6.1 Front-Fixing for the Heat Equation 399</p> <p>21.7 Python Code Example: ADE for American Option Pricing 400</p> <p>21.8 Summary and Conclusions 405</p> <p><b>Chapter 22 : Splitting Methods, Part II 407</b></p> <p>22.1 Introduction and Objectives 407</p> <p>22.2 Background and Problem Statement: The Essence of Sequential Splitting 408</p> <p>22.3 Notation and Mathematical Formulation 408</p> <p>22.3.1 C0 Semigroups 408</p> <p>22.3.2 Abstract Cauchy Problem 409</p> <p>22.3.3 Examples 410</p> <p>22.4 Mathematical Foundations of Splitting Methods 411</p> <p>22.4.1 Lie (Trotter) Product Formula 411</p> <p>22.4.2 Splitting Error 411</p> <p>22.4.3 Component Splitting and Operator Splitting 413</p> <p>22.4.4 Splitting as a Discretisation Method 413</p> <p>22.5 Some Popular Splitting Methods 414</p> <p>22.5.1 First-Order (Lie–Trotter) Splitting 415</p> <p>22.5.2 Predictor-Corrector Splitting 415</p> <p>22.5.3 Marchuk’s Two-Cycle (1-2-2-1) Method 416</p> <p>22.5.4 Strang Splitting 417</p> <p>22.6 Applications and Relationships to Computational Finance 417</p> <p>22.7 Software Design and Implementation Guidelines 418</p> <p>22.8 Experience Report: Comparing ADI and Splitting 419</p> <p>22.9 Summary and Conclusions 421</p> <p><b>Part E : Test Cases in Computational Finance</b></p> <p><b>Chapter 23 : Multi-Asset Options 425</b></p> <p>23.1 Introduction and Objectives 425</p> <p>23.2 Background and Goals 426</p> <p>23.3 The Bivariate Normal Distribution (BVN) and its Applications 427</p> <p>23.3.1 Computing BVN by Solving a Hyperbolic PDE 430</p> <p>23.3.2 Analytical Solutions of Multi-Asset and Basket Options 433</p> <p>23.4 PDE Models for Multi-Asset Option Problems: Requirements and Design 435</p> <p>23.4.1 Domain Transformation 435</p> <p>23.4.2 Numerical Boundary Conditions 435</p> <p>23.5 An Overview of Finite Difference Schemes for Multi-Asset Option Problems 436</p> <p>23.5.1 Common Design Principles 436</p> <p>23.5.2 Detailed Design 438</p> <p>23.5.3 Testing the Software 440</p> <p>23.6 American Spread Options 440</p> <p>23.7 Appendices 442</p> <p>23.7.1 Traditional Approach to Numerical Boundary Conditions 442</p> <p>23.7.2 Top-Down Design of Monte Carlo Applications 443</p> <p>23.8 Summary and Conclusions 444</p> <p><b>Chapter 24 : Asian (Average Value) Options 447</b></p> <p>24.1 Introduction and Objectives 447</p> <p>24.2 Background and Problem Statement 448</p> <p>24.2.1 Challenges 449</p> <p>24.3 Prototype PDE Model 450</p> <p>24.3.1 Similarity Reduction 451</p> <p>24.4 The Many Ways to Handle the Convective Term 452</p> <p>24.4.1 Method of Lines (MOL) 452</p> <p>24.4.2 Other Schemes 454</p> <p>24.4.3 A Stable Monotone Upwind Scheme 455</p> <p>24.5 ADE for Asian Options 455</p> <p>24.6 ADI for Asian Options 456</p> <p>24.6.1 Modern ADI Variations 458</p> <p>24.7 Summary and Conclusions 459</p> <p><b>Chapter 25 : Interest Rate Models 461</b></p> <p>25.1 Introduction and Objectives 461</p> <p>25.2 Main Use Cases 462</p> <p>25.3 The CIR Model 462</p> <p>25.3.1 Analytic Solutions 463</p> <p>25.3.2 Initial Boundary Value Problem 466</p> <p>25.4 Well-Posedness of the CIRPDE Model 466</p> <p>25.4.1 Gronwall’s Inequalities 467</p> <p>25.4.2 Energy Inequalities 468</p> <p>25.5 Finite Difference Methods for the CIR Model 469</p> <p>25.5.1 Numerical Boundary Conditions 470</p> <p>25.6 Heston Model and the Feller Condition 471</p> <p>25.7 Summary and Conclusion 475</p> <p><b>Chapter 26 : Epilogue Models Follow-Up Chapters 1 to 25 477</b></p> <p>26.1 Introduction and Objectives 477</p> <p>26.2 Mixed Derivatives and Monotone Schemes 478</p> <p>26.2.1 The Maximum Principle and Mixed Derivatives 478</p> <p>26.2.2 Some Examples 480</p> <p>26.2.3 Code Sample Method of Lines (MOL) for Two-Factor Hull–White Model 481</p> <p>26.3 The Complex Step Method (CSM) Revisited 483</p> <p>26.3.1 Black–Scholes Greeks Using CSM and the Faddeeva Function 483</p> <p>26.3.2 CSM and Functions of Several Complex Variables 487</p> <p>26.3.3 C++ Code for Extended CSM 488</p> <p>26.3.4 CSM for Non-Linear Solvers 492</p> <p>26.4 Extending the Hull–White: Possible Projects 493</p> <p>26.5 Summary and Conclusions 495</p> <p>Bibliography 497</p> <p>Index 505</p>
<p><b>DANIEL DUFFY, PhD,</b> has BA (Mod), MSc and PhD degrees in pure, applied and numerical mathematics (University of Dublin, Trinity College) and he is active in promoting partial differential equations (PDE) and the Finite Difference Method (FDM) for applications in computational finance. He was responsible for the introduction of the Fractional Step (Soviet Splitting) method and the Alternating Direction Explicit (ADE) method in computational finance. He is the originator of the exponential fitting method for convection-dominated PDEs.
<p><b>Understand and apply ordinary and partial differential equations with this accessible, step-by-step guide</b> <p><i>Numerical Methods in Computational Finance: A Partial Differential Equation (PDE/FDM) Approach</i> delivers a detailed, step-by-step approach to the mathematical foundations of ordinary and partial differential equations, their approximation by the finite difference method, and their applications to computational finance. <p>Perfect for beginning, intermediate and expert practitioners, this book covers every critical aspect of the subject in an accessible format that progresses logically and gradually. It offers <ul><li><b>Robust mathematical foundations for one-factor and two-factor problems, including the mathematical and numerical concepts required to understand the finite difference method, elliptic and parabolic partial differential equations in two space variables, and more</li> <li>Discussions of the finite difference method, including initial boundary value problems for parabolic PDEs and methods to approximate the solution of two factor PDEs</li> <li>Practical applications of the included methods, with discussions of finite difference schemes for a wide range of one-factor and two-factor problems</b></li></ul> <p>Perfectly suited to anyone seeking an entry-level introduction to ordinary and partial differential equations, <i>Numerical Methods in Computational Finance</i> is also a must-read resource for industry quants and MSc/MFE students in finance looking for a detailed treatment of modern methods. The included topics have a wide range of applications to numerical analysis, science and engineering.

Diese Produkte könnten Sie auch interessieren:

Point and Figure Charting
Point and Figure Charting
von: Thomas J. Dorsey
EPUB ebook
47,99 €
Point and Figure Charting
Point and Figure Charting
von: Thomas J. Dorsey
PDF ebook
47,99 €