Details

Nanotechnology for Energy Sustainability


Nanotechnology for Energy Sustainability


Applications of Nanotechnology 1. Aufl.

von: Baldev Raj, Marcel Van de Voorde, Yashwant Mahajan

521,99 €

Verlag: Wiley-VCH
Format: EPUB
Veröffentl.: 27.01.2017
ISBN/EAN: 9783527696116
Sprache: englisch
Anzahl Seiten: 1316

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

In three handy volumes, this ready reference provides a detailed overview of nanotechnology as it is applied to energy sustainability. Clearly structured, following an introduction, the first part of the book is dedicated to energy production, renewable energy, energy storage, energy distribution, and energy conversion and harvesting. The second part then goes on to discuss nano-enabled materials, energy conservation and management, technological and intellectual property-related issues and markets and environmental remediation. The text concludes with a look at and recommendations for future technology advances.<br> An essential handbook for all experts in the field - from academic researchers and engineers to developers in industry.
<p>Foreword by Prof. Dr. Dr. hc. Mult. Herbert Gleiter XXXV</p> <p>Foreword by Prof. Dr. Joachim Maier XXXVII</p> <p>Foreword by Prof. C.N.R. RAO, F.R.S. XXXIX</p> <p>“Perspective” on the Book on Nanotechnology for Sustainable Energy by Prof. Tu Hailing XLI</p> <p>A Way Forward by Baldev Raj, Marcel Van de Voorde, and Yashwant Mahajan XLV</p> <p>Introduction by Baldev Raj, Marcel Van de Voorde, and Yashwant Mahajan LIII</p> <p><b>Volume 1</b></p> <p><b>Part One Energy Production 1</b></p> <p><b>1 Fossil Fuels: The Effect of Zeolite Catalyst Particle Morphology on Catalyst Performance in the Conversion of Methanol to Hydrocarbons 3</b><br /><i>Katarzyna Anna Łukaszuk, Pablo del Campo Huertas, Andrea Molino, Malte Nielsen, Daniel Rojo-Gama, Juan Salvador Martinez-Espin, Karl Petter Lillerud, Unni Olsbye, Silvia Bordiga, Pablo Beato, and Stian Svelle</i></p> <p>1.1 Zeolites and Zeotypes as Nanocatalysts for Petroleum and Natural Gas 3</p> <p>1.2 Modification of Porosity: Hierarchical Zeolites 4</p> <p>1.3 Modification of Size and Morphology 8</p> <p>1.4 Tools to Predict and Characterize Zeolite Morphology 14</p> <p>1.5 Tailor-Made Catalysts for the Methanol-to-Hydrocarbons (MTH) Reaction 18</p> <p>1.6 Summary and Outlook 29</p> <p>Acknowledgments 30</p> <p>References 30</p> <p><b>2 Fossil Fuels: Nanotechnologies for Petroleum Reservoir Engineering 41</b><br /><i>Igor N. Evdokimov</i></p> <p>2.1 Introduction 41</p> <p>2.2 Addition of Nanosized Colloidal Particles to Technological Fluids 42</p> <p>2.3 Indigenous Nanocolloidal Particles in Native Petroleum Fluids 51</p> <p>2.4 Conclusions 53</p> <p>2.5 Appendix 54</p> <p>References 55</p> <p><b>3 Fossil Fuels: Coke-Resistant Nanomaterials for Gas-to-Liquid (GTL) Fuels 59</b><br /><i>Brian A. Rosen and Sarika Singh</i></p> <p>3.1 Introduction to Gas-to-Liquid (GTL) Technology 59</p> <p>3.2 A Thermodynamic View of Catalyst Coking 60</p> <p>3.3 Tuning of Active Sites to Resist Coking 65</p> <p>3.4 Methods for Characterizing Carbon Deposits 71</p> <p>3.5 Summary and Outlook 79</p> <p>References 79</p> <p><b>4 Photovoltaics: Light Energy Harvesting with Plasmonic Nanoparticle Networks 83</b><br /><i>Jean-Paul Hugonin, Mondher Besbes, and Philippe Ben-Abdallah</i></p> <p>4.1 Introduction 83</p> <p>4.2 Light Absorption by a Single Particle 84</p> <p>4.3 Light Absorption by a Collection of Particles 86</p> <p>4.4 Upper Bound for Light Absorption in Nanoparticle Networks 89</p> <p>4.5 Light Absorption Beyond the Dipolar Approximation 91</p> <p>4.6 Design of Absorption Spectrum with Plasmonic Particles 93</p> <p>4.7 Concluding Remarks 97</p> <p>Acknowledgments 97</p> <p>References 98</p> <p><b>5 Photovoltaics: Role of Nanotechnology in Dye-Sensitized Solar Cells 101</b><br /><i>Murugesan Janani, Shantikumar V. Nair, and A. Sreekumaran Nair</i></p> <p>5.1 Nanotechnology and Its Relevance 101</p> <p>5.2 A Brief History on Dye-Sensitized Solar Cells (DSSCs) 102</p> <p>5.3 Construction and Working of DSSCs 103</p> <p>5.4 Transparent Conducting Substrate 104</p> <p>5.5 Semiconductor Materials 105</p> <p>5.6 Nanotechnology vis–à–vis Renewable Energy Industry 105</p> <p>5.7 Nanotechnology vis–à–vis Dye-Sensitized Solar Cells 105</p> <p>5.8 Sensitizer 118</p> <p>5.9 Plasmonics 122</p> <p>5.10 Counter Electrode 124</p> <p>5.11 Conclusions 127</p> <p>References 128</p> <p><b>6 Photovoltaics: Nanomaterials for Photovoltaic Conversion 133</b><br /><i>Abdelilah Slaoui, Daniel Lincot, Jean François Guillemoles, and Ludovic Escoubas</i></p> <p>6.1 Introduction 133</p> <p>6.2 Photovoltaic Materials and Technologies: State of the Art 134</p> <p>6.3 Nanomaterials for Photovoltaics 137</p> <p>6.4 Conclusion and Outlook 157</p> <p>References 158</p> <p><b>7 Photovoltaics: Light-Trapping in Crystalline Silicon and Thin-Film Solar Cells by Nanostructured Optical Coatings 163</b><br /><i>Pierpaolo Spinelli, B.K. Newman, and A. Polman</i></p> <p>7.1 Introduction 163</p> <p>7.2 Crystalline Si Solar Cells 165</p> <p>7.3 Nanostructured Coatings for Thin-Film Solar Cells 171</p> <p>7.4 Other PV Applications of Resonant Nanostructures 176</p> <p>7.5 Summary 177</p> <p>References 178</p> <p><b>8 Photovoltaics: Nanoengineered Materials and Their Functionality in Solar Cells 181</b><br /><i>Kaining Ding, Thomas Kirchartz, Karsten Bittkau, Andreas Lambertz, Vladimir Smirnov, Jürgen Hüpkes, and Uwe Rau</i></p> <p>8.1 Introduction 181</p> <p>8.2 Functional Elements of a Solar Cell 182</p> <p>8.3 Transparent and Conductive Front Electrodes 185</p> <p>8.4 Nanostructured Contact Material 187</p> <p>8.5 Nanostructured Absorber Materials 191</p> <p>8.6 Back Electrodes and Intermediate Layer 196</p> <p>8.7 Conclusions 200</p> <p>References 200</p> <p><b>9 Nonselective Coatings for Solar Thermal Applications in CSP 207</b><br /><i>Raj Kumar Bera, Daniel Mandler, and Shlomo Magdassi</i></p> <p>9.1 Introduction 207</p> <p>9.2 Materials 210</p> <p>9.3 Fabrication Methods 212</p> <p>9.4 Performance 215</p> <p>9.5 Advantages and Disadvantages of Nonselective Overselective Coatings 227</p> <p>9.6 Conclusions and Perspectives 227</p> <p>9.7 Future Aspects 228</p> <p>References 229</p> <p><b>10 Selective Surfaces for Solar Thermal Energy Conversion in CSP: From Multilayers to Nanocomposites 231</b><br /><i>Audrey Soum-Glaude, Laurie Di Giacomo, Sébastien Quoizola, Thomas Laurent, and Gilles Flamant</i></p> <p>10.1 Introduction 231</p> <p>10.2 State of the Art on Selective Surfaces for Solar Thermal Energy Conversion 232</p> <p>10.3 W–SiC Multinanolayers as High-Temperature Solar Selective Coatings 237</p> <p>10.4 Conclusions 243</p> <p>Acknowledgments 244</p> <p>References 244</p> <p><b>11 Nanobiotechnology Augmenting Biological Gaseous Energy Recovery 249</b><br /><i>Shantonu Roy and Debabrata Das</i></p> <p>11.1 Introduction 249</p> <p>11.2 Dark Fermentative Hydrogen Production and Its Improvement Using Nanoparticles 250</p> <p>11.3 Gaseous Energy Extraction via Biomethanation Process and Improvement of Biomethanation Process Using<br />Nanoparticles 256</p> <p>11.4 BioH2 Production via Photofermentation and Role of Nanoparticles in the Improvement of H2 Production 260</p> <p>11.5 Photocatalytic Conversion of Acetate in Spent Media to H2 262</p> <p>11.6 Conclusion 265</p> <p>Acknowledgments 266</p> <p>References 266</p> <p><b>12 Nanotechnologies in Sodium-Cooled Fast Spectrum Reactor and Closed Fuel Cycle Sustainable Nuclear Energy System 271</b><br /><i>Baldev Raj and U. Kamachi Mudali</i></p> <p>12.1 Introduction 271</p> <p>12.2 Nanomaterials for Nuclear Systems 273</p> <p>12.3 Nanosensors, Surface Modification, and Coatings for Reactor and Reprocessing Applications 280</p> <p>12.4 Surface Modification and Coating Technologies Based on Nanotechnology 285</p> <p>12.5 Summary 290</p> <p>Acknowledgments 291</p> <p>References 291</p> <p><b>13 Nanotechnology and Applications for Electric Power: The Perspective of a Major Player in Electricity 295</b><br /><i>Didier Noël</i></p> <p>13.1 The Context and Perspective of a Global Player in Electricity 295</p> <p>13.2 The Issue of Nanotechnology for Electric Power 298</p> <p>13.3 Main Subjects Studied 299</p> <p>13.4 Social Acceptance and Health Risk 315</p> <p>13.5 Conclusions 320</p> <p>Acknowledgments 320</p> <p>References 320</p> <p><b>14 Lightweight Nanostructured Materials and Their Certification for Wind Energy Applications 323</b><br /><i>Bikramjit Basu, Sherine Alex, and N. Eswara Prasad</i></p> <p>14.1 Introduction 323</p> <p>14.2 Property Requirements for Wind Energy Applications 326</p> <p>14.3 Brief Overview on Materials for Wind Energy Applications 332</p> <p>14.4 Properties of Bulk Ceramic Nanomaterials 339</p> <p>14.5 Certification 342</p> <p>14.6 Conclusion and Outlook 346</p> <p>Acknowledgments 348</p> <p>References 348</p> <p><b>Volume 2</b></p> <p><b>Part Two Energy Storage and Distribution 353</b></p> <p><b>15 Nanostructured Materials for Next-Generation Lithium-Ion Batteries 355</b><br /><i>T. Sri Devi Kumari, T. Prem Kumar, and A.K. Shukla</i></p> <p>15.1 Introduction 355</p> <p>15.2 Anode-Active Materials 357</p> <p>15.3 Cathode-Active Materials 361</p> <p>15.4 Electrolytes 362</p> <p>15.5 New Reactions 364</p> <p>15.6 Safety 367</p> <p>15.7 Conclusions 369</p> <p>References 369</p> <p><b>16 Carbon Nanotube Materials to Realize High-Performance Supercapacitors 377</b><br /><i>Anthony Childress, Jingyi Zhu, Mehmet Karakaya, Deepika Saini, Ramakrishna Podila, and Apparao Rao</i></p> <p>16.1 Introduction 377</p> <p>16.2 CNI’s Contributions 380</p> <p>16.3 Sustainability 386</p> <p>16.4 Conclusions and Future Prospects 387</p> <p>Acknowledgment 387</p> <p>References 387</p> <p><b>17 Recent Developments and Prospects of Nanostructured Supercapacitors 391</b><br /><i>Katherine L. Van Aken and Yury Gogotsi</i></p> <p>17.1 Introduction 391</p> <p>17.2 Properties of Supercapacitors 391</p> <p>17.3 Terminology and Electric Double Layer 393</p> <p>17.4 Nanostructured Electrode Materials for Supercapacitors 395</p> <p>17.5 Electrolytes for Electrochemical Capacitors 398</p> <p>17.6 Electrode–Electrolyte Interfaces 400</p> <p>17.7 Design of Capacitive Energy Storage Devices through Electrode–Electrolyte Coupling 404</p> <p>17.8 Future Outlook and Recommendations 409</p> <p>Acknowledgments 410</p> <p>References 410</p> <p><b>18 Nanostructured and Complex Hydrides for Hydrogen Storage 415</b><br /><i>Lars H. Jepsen, Mark Paskevicius, and Torben R. Jensen</i></p> <p>18.1 Introduction 415</p> <p>18.2 The “Weaker” Bonds Formed by Hydrogen 417</p> <p>18.3 The “Stronger” Bonds Formed by Hydrogen 418</p> <p>18.4 Conclusion 427</p> <p>References 427</p> <p><b>19 Nanotechnology for the Storage of Hydrogen 433</b><br /><i>Marek Nowak and Mieczyslaw Jurczyk</i></p> <p>19.1 Introduction 433</p> <p>19.2 Nanotechnology 433</p> <p>19.3 Intermetallics-Based Hydrides with Nanostructure 440</p> <p>19.4 Nanocomposite-Based Hydrides 452</p> <p>19.5 Summary 456</p> <p>References 456</p> <p><b>20 Phase Change Nanomaterials for Thermal Energy Storage 459</b><br /><i>Kinga Pielichowska and Krzysztof Pielichowski</i></p> <p>20.1 Introduction 459</p> <p>20.2 Nanoenhanced PCMs 461</p> <p>20.3 Nanostructured PCMs 476</p> <p>20.4 Conclusions 478</p> <p>Acknowledgment 479</p> <p>References 479</p> <p><b>21 Carbon Nanotube Wires and Cables: Near-Term Applications and Future Perspectives 485</b><br /><i>Jeremy Lee and Seeram Ramakrishna</i></p> <p>21.1 Introduction 485</p> <p>21.2 Carbon Nanotube Wires and Cables 490</p> <p>21.3 Applications of CNT Wires and Cables 500</p> <p>21.4 Conclusion 502</p> <p>Acknowledgments 502</p> <p>References 502</p> <p><b>Part Three Energy Conversion and Harvesting 507</b></p> <p><b>22 Nanostructured Thermoelectric Materials: Current Research and Future Challenges 509</b><br /><i>Hilaal Alam and Seeram Ramakrishna</i></p> <p>22.1 Introduction to Thermoelectricity 509</p> <p>22.2 Challenges to Increase the Efficiency 511</p> <p>22.3 Electronic and Phonon Properties 516</p> <p>22.4 Current Researches: Thermoelectric Nano Materials materials and Their Performances 518</p> <p>22.5 Future Challenges 530</p> <p>22.6 Roadmap for the Future Researches 533</p> <p>22.7 Conclusion 535</p> <p>References 537</p> <p><b>23 Nanostructured Cost-Effective and Energy-Efficient Thermoelectric Materials 547</b><br /><i>Zhi-Gang Chen and Jin Zou</i></p> <p>23.1 Introduction 547</p> <p>23.2 Key Parameters for Controlling ZT 548</p> <p>23.3 Material Requirements 550</p> <p>23.4 Nanostructure Engineering to Lower Thermal Conductivity 551</p> <p>23.5 Band Engineering to Enhance the Power Factor 554</p> <p>23.6 Development of Cost-Effective and Energy-Efficient Nanostructured Thermoelectric Materials 555</p> <p>23.7 Outlook and Future Challenge 559</p> <p>Acknowledgment 560</p> <p>References 560</p> <p><b>24 Nanomaterials for Fuel Cell Technology 569</b><br /><i>K.S. Dhathathreyan, N. Rajalakshmi, and R. Balaji</i></p> <p>24.1 Introduction 569</p> <p>24.2 Nanomaterials for Polymer Electrolyte Membrane Fuel Cell and Fuel Cells Operating on Small Organic Molecules 569</p> <p>24.3 Role of Nanomaterials in Solid Oxide Fuel Cells 579</p> <p>24.4 Conclusion 585</p> <p>References 586</p> <p><b>25 Contributions of Nanotechnology to Hydrogen Production 597</b><br /><i>Sambandam Anandan, Femi Thomas Cheruvathoor, and Muthupandian Ashokkumar</i></p> <p>25.1 Introduction 597</p> <p>25.2 Photocatalytic Water Splitting Reaction 598</p> <p>25.3 Nano Semiconductor Materials for Photocatalytic Water Splitting 600</p> <p>25.4 Summary 624</p> <p>Acknowledgment 624</p> <p>References 625</p> <p><b>26 Nanoenhanced Materials for Photolytic Hydrogen Production 629</b><br /><i>Xiuquan Gu, Shuai Yuan, Mingguo Ma, and Jiefang Zhu</i></p> <p>26.1 Introduction 629</p> <p>26.2 Basic Principle and Evaluation Methods for Photolytic H2 Production 630</p> <p>26.3 Photolytic H2 Evolution Based on Nanoenhanced Materials 632</p> <p>26.4 Conclusion and Outlook 645</p> <p>Acknowledgments 646</p> <p>References 646</p> <p><b>27 Human Vibration Energy Harvester with PZT 649</b><br /><i>Tamil Selvan Ramadoss and Seeram Ramakrishna</i></p> <p>27.1 Introduction to Micro Energy Harvesting 649</p> <p>27.2 Human Vibration Energy Harvester with PZT 655</p> <p>27.3 Alternative Design of Cantilever Piezoelectric Energy Harvester 660</p> <p>27.4 Stress Distribution Simulation for Different Surface Shapes 664</p> <p>27.5 Variable Profile Thickness of the Metal Shim 666</p> <p>27.6 Comparison of Stress Distribution for Various Surface Shapes and Profiles 671</p> <p>27.7 Output Power Comparison of Various Profiles 672</p> <p>27.8 Conclusion 673</p> <p>Acknowledgment 674</p> <p>References 674</p> <p><b>28 Energy Consumption in Information and Communication Technology: Role of Semiconductor Nanotechnology 679</b><br /><i>Victor V. Zhirnov and Kota V.R.M. Murali</i></p> <p>28.1 Introduction 679</p> <p>28.2 Elements of Information Processing 681</p> <p>28.3 Energy Consumption in Computing: From Bits to Millions of Instructions per Second (MIPS) 687</p> <p>28.4 Fundamental Physics of Binary Operations 690</p> <p>28.5 Opportunities for Beyond the Current Information and Communication Technology Paradigm 701</p> <p>References 704</p> <p>Volume 3</p> <p><b>Part Four Nanoenabled Materials and Coatings for Energy Applications 707</b></p> <p><b>29 Nanocrystalline Bainitic Steels for Industrial Applications 709</b><br /><i>C. Garcia-Mateo and F.G. Caballero</i></p> <p>29.1 Introduction 709</p> <p>29.2 Design of Nanocrystalline Steel Grades: Scientific Concepts 709</p> <p>29.3 Microstructure and Properties 712</p> <p>29.4 Summary 721</p> <p>Acknowledgments 721</p> <p>References 722</p> <p><b>30 Graphene and Graphene Oxide for Energy Storage 725</b><br /><i>Edward P. Randviir and Craig E. Banks</i></p> <p>30.1 Graphene Hits the Headlines 725</p> <p>30.2 Graphene: Why All the Fuss? 726</p> <p>30.3 Graphene and Graphene Oxide in Energy Storage Devices 727</p> <p>30.4 Graphene and Graphene Oxide in Energy Generation Devices 734</p> <p>References 741</p> <p><b>31 Inorganic Nanotubes and Fullerene-Like Nanoparticles at the Crossroad between Materials Science and Nanotechnology and Their Applications with Regard to Sustainability 745</b><br /><i>Leela S. Panchakarla and Reshef Tenne</i></p> <p>31.1 Introduction 745</p> <p>31.2 Synthesis and Structural Characterization 746</p> <p>31.3 Doping Inorganic Fullerenes/Nanotubes 757</p> <p>31.4 Applications 758</p> <p>31.5 Fullerenes and Nanotubular Structures from Misfit Layered Compounds 764</p> <p>31.6 Conclusions 776</p> <p>References 776</p> <p><b>32 Nanotechnology, Energy, and Fractals Nature 781</b><br /><i>Vojislav V. Mitic ́, Ljubiša M. Kocic ́, Steven Tidrow, and Hans-Jörg Fecht</i></p> <p>32.1 Introduction 781</p> <p>32.2 Short Introduction to Fractals 782</p> <p>32.3 Nanosizes and Fractals 784</p> <p>32.4 Energy and Fractals 788</p> <p>32.5 Toward Fractal Nanoelectronics 793</p> <p>32.6 The Goldschmidt’s Tolerance Factor, Clausius–Mossotti Relation, Curie, and Curie–Weiss Law Bridge to Fractal Nanoelectronics Contribution 797</p> <p>32.7 Summary 803</p> <p>Acknowledgment 805</p> <p>References 805</p> <p><b>33 Magnesium Based Nanocomposites for Cleaner Transport 809</b><br /><i>Manoj Gupta and Sankaranarayanan Seetharaman</i></p> <p>33.1 Introduction 809</p> <p>33.2 Fabrication of Magnesium-based Nanocomposites 811</p> <p>33.3 Mechanical Properties and Corrosion 814</p> <p>33.4 Engineering Properties 822</p> <p>33.5 Potential Applications in Transport Industries 824</p> <p>33.6 Challenges 825</p> <p>33.7 Conclusions 825</p> <p>References 826</p> <p><b>34 Nanocomposites: A Gaze through Their Applications in Transport Industry 831</b><br /><i>Kottan Renganayagalu Ravi, Jayakrishnan Nampoothiri, and Baldev Raj</i></p> <p>34.1 Introduction 831</p> <p>34.2 Polymer Matrix Nanocomposites in Transport Sector 832</p> <p>34.3 Lightweight High-strength Metal Matrix Nanocomposites 838</p> <p>34.4 Ceramic Matrix Nanocomposites in Transport Industry 845</p> <p>34.5 Nanocomposite Coating 849</p> <p>34.6 Challenges and Opportunities for Nanocomposites 849</p> <p>References 851</p> <p><b>35 Semiconducting Nanowires in Photovoltaic and Thermoelectric Energy Generation 857</b><br /><i>Guglielmo Vastola and Gang Zhang</i></p> <p>35.1 Introduction 857</p> <p>35.2 Fabrication of Silicon and Silicon–Germanium Nanowires 858</p> <p>35.3 Nanowire-based Photovoltaics 865</p> <p>35.4 Introduction of Thermoelectric Effects 871</p> <p>35.5 Thermal Conductivity of Silicon Nanowires 874</p> <p>35.6 Thermoelectric Property of Silicon Nanowires 876</p> <p>35.7 Thermoelectric Property of Silicon–Germanium Nanowires 877</p> <p>35.8 Thermoelectric Property of Other Nanowires 879</p> <p>References 881</p> <p><b>36 Nanoliquid Metal Technology Toward High-Performance Energy Management, Conversion, and Storage 887</b><br /><i>Jing Liu</i></p> <p>36.1 Introduction 887</p> <p>36.2 Typical Properties of Nanoliquid Metal 889</p> <p>36.3 Emerging Applications of Nanoliquid Metal in Energy Areas 892</p> <p>36.4 Challenging Scientific and Technological Issues 904</p> <p>36.5 Summary 906</p> <p>Acknowledgment 907</p> <p>References 907</p> <p><b>37 IoNanofluids: Innovative Agents for Sustainable Development 911</b><br /><i>Carlos Nieto de Castro, Xavier Paredes, Salomé Vieira, Sohel Murshed, Maria José Lourenço, and Fernando Santos</i></p> <p>37.1 Introduction 911</p> <p>37.2 IoNanofluids: Nature, Definitions, Preparation, and Structure Characterization 912</p> <p>37.3 IoNanofluids Properties 920</p> <p>37.4 Applications of IoNanofluids 926</p> <p>37.5 Challenges in IoNanofluids Research 930</p> <p>37.6 Challenges to Industrial Applications 931</p> <p>Acknowledgments 932</p> <p>References 932</p> <p><b>Part Five Energy Conservation and Management 937</b></p> <p><b>38 Silica Aerogels for Energy Conservation and Saving 939</b><br /><i>Yamini Ananthan, K. Keerthi Sanghamitra, and Neha Hebalkar</i></p> <p>38.1 Introduction 939</p> <p>38.2 Thermal Insulation Materials 940</p> <p>38.3 Aerogels 940</p> <p>38.4 Preparation 944</p> <p>38.5 Aerogels in Various Forms: Monoliths, Granules, and Sheets 945</p> <p>38.6 Thermal Insulation Applications 954</p> <p>38.7 Energy Saving and Conservation Using Aerogel Products 960</p> <p>38.8 Challenges and Future Perspectives 961</p> <p>38.9 Safety and Hazard Measures 962</p> <p>38.10 Summary 962</p> <p>Acknowledgments 963</p> <p>References 963</p> <p><b>39 Nanotechnology in Architecture 967</b><br /><i>George Elvin</i></p> <p>39.1 Nanotechnology and Green Building 967</p> <p>39.2 Energy 969</p> <p>39.3 Air and Water 978</p> <p>39.4 Materials 980</p> <p>39.5 Nanosensors 990</p> <p>39.6 Environmental and Health Concerns 991</p> <p>References 992</p> <p><b>40 Nanofluids for Efficient Heat Transfer Applications 997</b><br /><i>Baldev Raj, S.A. Angayarkanni, and John Philip</i></p> <p>40.1 Introduction 997</p> <p>40.2 Traditional Nanofluids 999</p> <p>40.3 CNT-Based Nanofluids 1008</p> <p>40.4 Magnetic Nanofluids 1009</p> <p>40.5 Graphene Nanofluids 1012</p> <p>40.6 Hybrid Nanofluid 1013</p> <p>40.7 Thermal Conductivity of Phase Change Material 1015</p> <p>40.8 Conclusions 1018</p> <p>Acknowledgment 1019</p> <p>References 1019</p> <p><b>Part Six Technologies, Intellectual Property, and Markets 1029</b></p> <p><b>41 Nanomaterials for Li-Ion Batteries: Patents Landscape and Product Scenario 1031</b><br /><i>Md Shakeel Iqbal, Nisha C. Kalarickal, Vivek Patel, and Ratnesh Kumar Gaur</i></p> <p>41.1 Introduction 1031</p> <p>41.2 Lithium-Ion Battery: Basic Concepts 1031</p> <p>41.3 Advantages of Nanostructured Materials 1034</p> <p>41.4 Patent Analysis 1035</p> <p>41.5 Technology Analysis 1038</p> <p>41.6 Commercial Status of Nano-Enabled Li-Ion Batteries 1050</p> <p>41.7 Market 1051</p> <p>41.8 Conclusions and Future Perspectives 1051</p> <p>References 1053</p> <p><b>42 Nanotechnology in Fuel Cells: A Bibliometric Analysis 1057</b><br /><i>Manish Sinha, Ratnesh Kumar Gaur, and Harshad Karmarkar</i></p> <p>42.1 Introduction 1057</p> <p>42.2 Literature Analysis 1058</p> <p>42.3 Patent Landscaping 1061</p> <p>42.4 Proton Exchange Membrane Fuel Cells Patent Analysis 1067</p> <p>42.5 Technology Analysis 1070</p> <p>42.6 Scenario of Commercial Products Can Be Moved after Future Perspectives 1075</p> <p>42.7 Future Perspectives 1077</p> <p>42.8 Conclusion 1077</p> <p>Acknowledgments 1078</p> <p><b>43 Techno-Commercial Opportunities of Nanotechnology in Wind Energy 1079</b><br /><i>Vivek Patel and Y.R. Mahajan</i></p> <p>43.1 Introduction 1079</p> <p>43.2 Wind Energy Industry Requirements 1080</p> <p>43.3 Growth Drivers 1081</p> <p>43.4 Challenges 1081</p> <p>43.5 Applications 1083</p> <p>43.6 Intellectual Property Scenario 1094</p> <p>43.7 Products Outlook 1098</p> <p>43.8 Future Development and Directions 1100</p> <p>43.9 Conclusion 1102</p> <p>Acknowledgment 1103</p> <p>References 1103</p> <p><b>Part Seven Environmental Remediation 1107</b></p> <p><b>44 Nanomaterials for the Conversion of Carbon Dioxide into Renewable Fuels and Value-Added Products 1109</b><br /><i>Ibram Ganesh</i></p> <p>44.1 Introduction: Dealing with the Waste Stream Greenhouse CO2 Gas 1109</p> <p>44.2 Theoretical Potentials for Electrochemical Reduction of CO2 1112</p> <p>44.3 CO2 Speciation versus Electrolyte pH 1120</p> <p>44.4 Effect of Particle Size on Electrode Performance in Electrochemical CO2 Reduction Reaction 1125</p> <p>44.5 Effect of Particle Size on the Efficiency of Aqueous-Based CO2 Reduction Reactions 1126</p> <p>44.6 Effect of Particle Size on the Efficiency of Nonaqueous-Based CO2 Reduction Reactions 1129</p> <p>44.7 Reverse Microbial Fuel Cells: The Practical Artificial Leaves 1133</p> <p>44.8 Concluding Remarks and Future Perspectives 1136</p> <p>Acknowledgments 1136</p> <p>References 1136</p> <p><b>45 Nanomaterial-Based Methods for Cleaning Contaminated Water in Oil Spill Sites 1139</b><br /><i>Boris I. Kharisov, H.V. Rasika Dias, Oxana V. Kharissova, and Yolanda Peña Méndez</i></p> <p>45.1 Introduction 1139</p> <p>45.2 Inorganic Nanomaterials and Composites 1141</p> <p>45.3 Nanosized Natural and Synthetic Polymers 1151</p> <p>45.4 Nanomaterials-Based Membranes 1153</p> <p>45.5 Aerogels 1153</p> <p>45.6 Toxicity, Cost, and Selection of Nanomaterials for Water Cleanup from Oil 1154</p> <p>45.7 Conclusions and Further Outlook 1155</p> <p>References 1156</p> <p><b>46 Nanomaterials and Direct Air Capture of CO2 1161</b><br /><i>Dirk Fransaer</i></p> <p>46.1 Introduction 1161</p> <p>46.2 CO2 as a Resource 1163</p> <p>46.3 Circular CO2 Economy 1165</p> <p>46.4 CO2 Capture or Separation Technologies 1165</p> <p>46.5 New Roads into CO2 Capture: Direct Air Capture and Nanomaterials 1168</p> <p>46.6 Nanomaterials 1169</p> <p>46.7 Carbon Nanotubes 1171</p> <p>46.8 Conclusion 1174</p> <p>References 1174</p> <p>Index 1179</p>
Baldev Raj is Professor and Director of the National Institute of Advanced Studies (NIAS) in Bengaluru, India. He obtained his PhD from the Indian Institute of Science (IISc.) in Bangalore, India, in 1989. He has pursued his work in interdisciplinary domains of energy, cultural heritage, medical technologies, nanoscience and technology and education.<br> Prof. Raj has authored more than 1100 scientific publications and 70 books. He has been recognized by way of more than 100 awards, 380 honors, keynote, invited lectures and assignments in more than 30 countries. He is a fellow of all major science, engineering and social sciences academies in India.<br> <br> Marcel Van de Voorde has 40 years` experience in European Research Organisations including CERN-Geneva, European Commission, with 10 years at the Max Planck Institute in Stuttgart, Germany. For many years, he was involved in research and research strategies, policy and management, especially in European research institutions. He holds a Professorship at the University of Technology in Delft, the Netherlands, as well as multiple visiting professorships in Europe and worldwide. He holds a doctor honoris causa and various honorary Professorships.<br> He is senator of the European Academy for Sciences and Arts, in Salzburg and Fellow of the World Academy for Sciences. He is a Fellow of various scientific societies and has been decorated by the Belgian King. He has authored of multiple scientific and technical publications and co-edited multiple books in the field of nanoscience and nanotechnology.<br> <br> Y. R. Mahajan obtained his PhD from the Polytechnic Institute of Brooklyn in New York, USA, in 1978. He carried out his postdoctoral research at the Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio, USA. Then he held various roles as senior scientist at the Defense Metallurgical Research Laboratory; associate director, ARC International; associate technology director, Defense Research and Development Laboratory, Hyderabad, India. Under his leadership, a number of ceramic-based technologies were developed and transferred to industry. Since 2009, he is working as a technical advisor at the Centre for Knowledge Management of Nanoscience and Technology in Telangana, India. Dr. Mahajan has published more than 130 scientific publications and holds 13 patents.

Diese Produkte könnten Sie auch interessieren:

Nanoscale Science and Technology
Nanoscale Science and Technology
von: Robert Kelsall, Ian W. Hamley, Mark Geoghegan
PDF ebook
88,99 €
Nanotechnology
Nanotechnology
von: Jurgen Schulte
PDF ebook
91,99 €
Scaling Issues and Design of MEMS
Scaling Issues and Design of MEMS
von: Salvatore Baglio, Salvatore Castorina, Nicolo Savalli
PDF ebook
110,99 €