Details

Nanotechnology Commercialization


Nanotechnology Commercialization

Manufacturing Processes and Products
1. Aufl.

von: Thomas O. Mensah, Ben Wang, Geoffrey Bothun, Jessica Winter, Virginia Davis

109,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 20.10.2017
ISBN/EAN: 9781119371731
Sprache: englisch
Anzahl Seiten: 448

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>A fascinating and informative look at state-of-the-art nanotechnology research, worldwide, and its vast commercial potential</b> </p> <p><i>Nanotechnology Commercialization: Manufacturing Processes and Products </i>presents a detailed look at the state of the art in nanotechnology and explores key issues that must still be addressed in order to successfully commercialize that vital technology. Written by a team of distinguished experts in the field, it covers a range of applications notably: military, space, and commercial transport applications, as well as applications for missiles, aircraft, aerospace, and commercial transport systems.</p> <p>The drive to advance the frontiers of nanotechnology has become a major global initiative with profound economic, military, and environmental implications. Nanotechnology has tremendous commercial and economic implications with a projected $ 1.2 trillion-dollar global market. This book describes current research in the field and details its commercial potential—from work bench to market.</p> <ul> <li>Examines the state of the art in nanotechnology and explores key issues surrounding its commercialization  </li> <li>Takes a real-world approach, with chapters written from a practical viewpoint, detailing the latest research and considering its potential commercial and defense applications</li> <li>Presents the current research and proposed applications of nanotechnology in such a way as to stimulate further research and development of new applications</li> <li>Written by an all-star team of experts, including pioneer patent-holders and award-winning researchers in nanotechnology  </li> </ul> <p>The major challenge currently faced by researchers in nanotechnology is successfully transitioning laboratory research into viable commercial products for the 21<sup>st</sup> century. Written for professionals across an array of research and engineering disciplines, <i>Nanotechnology Commercialization: Manufacturing Processes and Products </i>does much to help them bridge the gap between lab and marketplace.</p>
<p>List of Contributors xv</p> <p>Preface xix</p> <p>Editor in Chief xxi</p> <p><b>1 Overview: Affirmation of Nanotechnology between 2000 and 2030 1<br /></b><i>Mihail C. Roco</i></p> <p>1.1 Introduction 1</p> <p>1.2 Nanotechnology – A FoundationalMegatrend in Science and Engineering 2</p> <p>1.3 Three Stages for Establishing the New General Purpose Technology 9</p> <p>1.4 Several Challenges for Nanotechnology Development 15</p> <p>1.5 About the Return on Investment 16</p> <p>1.6 Closing Remarks 21</p> <p>Acknowledgments 22</p> <p>References 22</p> <p><b>2 Nanocarbon Materials in Catalysis 25<br /></b><i>Xing Zhang, Xiao Zhang, and Yongye Liang</i></p> <p>2.1 Introduction to Nanocarbon Materials 25</p> <p>2.2 Synthesis and Functionalization of Nanocarbon Materials 26</p> <p>2.2.1 Synthesis and Functionalization of Carbon Nanotubes 26</p> <p>2.2.2 Synthesis and Functionalization of Graphene and Graphene Oxide 27</p> <p>2.2.3 Synthesis and Functionalization of Carbon Nanodots 29</p> <p>2.2.4 Synthesis and Functionalization of Mesoporous Carbon 29</p> <p>2.3 Applications of Nanocarbon Materials in Electrocatalysis 31</p> <p>2.3.1 Oxygen Reduction Reaction 32</p> <p>2.3.2 Oxygen Evolution Reaction 36</p> <p>2.3.3 Hydrogen Evolution Reaction 39</p> <p>2.3.4 Roles of Nanocarbon Materials in Catalytic CO2 Reduction Reaction 43</p> <p>2.4 Applications of Nanocarbon Materials in Photocatalysis 47</p> <p>2.4.1 Application of Nanocarbon Materials as Photogenerated Charge Acceptors 48</p> <p>2.4.2 Application of Nanocarbon Materials as Electron Shuttle Mediator 48</p> <p>2.4.3 Application of Nanocarbon Materials as Cocatalyst for Photocatalysts 50</p> <p>2.4.4 Application of Nanocarbon Materials as Active Photocatalyst 51</p> <p>2.5 Summary 51</p> <p>Acknowledgments 52</p> <p>References 52</p> <p><b>3 Controlling and Characterizing Anisotropic Nanomaterial Dispersion 65<br /></b><i>Virginia A. Davis andMicah J. Green</i></p> <p>3.1 Introduction 65</p> <p>3.2 What Is Dispersion andWhy Is It Important? 66</p> <p>3.2.1 Factors Affecting Dispersion 73</p> <p>3.2.2 Thermodynamic Dissolution of Pristine Nanomaterials 73</p> <p>3.2.3 Intermolecular Potential in Dispersions 74</p> <p>3.2.4 Functionalization of Nanomaterials 75</p> <p>3.2.5 Physical Mixing 77</p> <p>3.2.5.1 Sonication 77</p> <p>3.2.5.2 Solvent IntercalationMethods 78</p> <p>3.2.5.3 Shear Mixing Methods 78</p> <p>3.3 Characterizing Dispersion State in Fluids 81</p> <p>3.3.1 Visualization 81</p> <p>3.3.2 Spectroscopy 83</p> <p>3.3.3 TEM 85</p> <p>3.3.4 AFM 85</p> <p>3.3.5 Light Scattering 85</p> <p>3.3.6 Rheology 86</p> <p>3.4 Characterization of Dispersion State in Solidified Materials 88</p> <p>3.4.1 Microscopy 89</p> <p>3.4.2 Electrical Percolation 89</p> <p>3.4.3 Mechanical Property Enhancement 89</p> <p>3.4.4 Thermal Property Changes 90</p> <p>3.5 Conclusion 90</p> <p>Acknowledgments 90</p> <p>References 91</p> <p><b>4 High-Throughput Nanomanufacturing via Spray Processes 101<br /></b><i>Gauri Nabar,Matthew Souva, Kil Ho Lee, Souvik De, Jodie Lutkenhaus, Barbara Wyslouzil, and Jessica</i> <i>O.Winter</i></p> <p>4.1 Introduction 101</p> <p>4.2 Flash Nanoprecipitation 104</p> <p>4.2.1 Overview 104</p> <p>4.2.2 Importance of Rapid Mixing 105</p> <p>4.2.3 Mixers Employed in FNP 106</p> <p>4.2.3.1 Confined Impinging Jet Mixers (CIJMs) 106</p> <p>4.2.3.2 Multi-Inlet Vortex Mixers (MIVMs) 107</p> <p>4.2.3.3 Mixer Selection 107</p> <p>4.2.4 FNP Product Structure 107</p> <p>4.2.5 Applications of FNP Nanocomposites 108</p> <p>4.3 Electrospray 108</p> <p>4.3.1 Overview 108</p> <p>4.3.2 Single Nozzle Electrospray 109</p> <p>4.3.2.1 Forces and Modes of Electrospray 109</p> <p>4.3.2.2 Applications of Single Nozzle Electrospray 110</p> <p>4.3.3 Coaxial Electrospray 111</p> <p>4.3.3.1 Configuration 111</p> <p>4.3.3.2 Applications 112</p> <p>4.3.4 Future Directions 113</p> <p>4.4 Liquid-in-Liquid Electrospray 113</p> <p>4.4.1 Overview 113</p> <p>4.4.2 Importance of Relative Conductivities of the Dispersed and Continuous Phases 114</p> <p>4.4.3 Modified Liquid-in-Liquid Electrospray Designs 115</p> <p>4.4.4 Applications and Future Directions 117</p> <p>4.5 Spray-Assisted Layer-by-Layer Assembly 117</p> <p>4.5.1 Overview 117</p> <p>4.5.2 Influence of Processing Parameters on Film Quality 119</p> <p>4.5.2.1 Effect of Concentration 120</p> <p>4.5.2.2 Effect of Spraying Time 120</p> <p>4.5.2.3 Effect of Spraying Distance 120</p> <p>4.5.2.4 Effect of Air Pressure 121</p> <p>4.5.2.5 Effect of Charge Density 121</p> <p>4.5.2.6 Effect of Rinsing and Blow-Drying 122</p> <p>4.5.2.7 Effect of Rinsing Solution 122</p> <p>4.5.3 Applications 122</p> <p>4.5.4 Future Directions 123</p> <p>4.6 Conclusion and Future Directions 123</p> <p>References 123</p> <p><b>5 Overview of Nanotechnology in Military and Aerospace Applications 133<br /></b><i>Eugene Edwards, Christina Brantley, and Paul B. Ruffin</i></p> <p>5.1 Introduction 133</p> <p>5.2 Implications of Nanotechnology in Military and Aerospace Systems Applications 134</p> <p>5.3 Nano-Based Microsensor Technology for the Detection of Chemical Agents 135</p> <p>5.3.1 Surface-Enhanced Raman Spectroscopy 135</p> <p>5.3.1.1 Design Approach 136</p> <p>5.3.1.2 Experiment 137</p> <p>5.3.1.3 Results 138</p> <p>5.3.2 Voltammetric Techniques 139</p> <p>5.3.2.1 Design Approach 140</p> <p>5.3.2.2 Experimental/Test Setup 142</p> <p>5.3.2.3 Results 143</p> <p>5.3.3 Functionalized Nanowires – Zinc Oxide 145</p> <p>5.3.3.1 Design Approach 145</p> <p>5.3.3.2 Experimental/Test Setup 146</p> <p>5.3.3.3 Results 146</p> <p>5.3.4 Functionalized Nanowires – Tin Oxide 147</p> <p>5.3.4.1 Design Approach 148</p> <p>5.3.4.2 Prototype Configuration/Testing 148</p> <p>5.3.4.3 Results 148</p> <p>5.4 Nanotechnology for Missile Health Monitoring 149</p> <p>5.4.1 Nanoporous Membrane Sensors 150</p> <p>5.4.1.1 Design Approach 150</p> <p>5.4.1.2 Experimental Setup and Prototype Configuration 150</p> <p>5.4.1.3 Results 152</p> <p>5.4.2 Multichannel Chip with Single-Walled Carbon Nanotubes Sensor Arrays 154</p> <p>5.4.2.1 Design Concept 154</p> <p>5.4.2.2 Experimental Configuration 154</p> <p>5.4.2.3 Results 155</p> <p>5.4.3 Optical Spectroscopic Configured Sensing Techniques – Fiber Optics 155</p> <p>5.4.3.1 Design Concept Spectroscopic Sensing 156</p> <p>5.4.3.2 Experimental Approach/Aged Propellant Samples 156</p> <p>5.4.3.3 Results from Absorption Measurements 157</p> <p>5.5 Nanoenergetics – Missile Propellants 158</p> <p>5.5.1 Multiwall Carbon Nanotubes 158</p> <p>5.5.1.1 Design Approach 158</p> <p>5.5.1.2 Experiment 159</p> <p>5.5.1.3 Results 160</p> <p>5.5.2 Single-Wall Carbon Nanotubes 160</p> <p>5.5.2.1 Design Approach 160</p> <p>5.5.2.2 Experiment 161</p> <p>5.5.2.3 Results 162</p> <p>5.6 Nanocomposites for Missile Motor Casings and Structural Components 162</p> <p>5.6.1 Thermal Methods 162</p> <p>5.6.2 VibrationalMethods 164</p> <p>5.6.2.1 Design Approach 164</p> <p>5.6.2.2 Experiment 164</p> <p>5.6.2.3 Results 165</p> <p>5.7 Nanoplasmonics 167</p> <p>5.7.1 Metallic Nanostructures 168</p> <p>5.7.2 Gallium-Based UV Plasmonics 169</p> <p>5.8 Nanothermal Batteries and Supercapacitors 169</p> <p>5.9 Conclusion 172</p> <p>References 173</p> <p><b>6 Novel Polymer Nanocomposite Ablative Technologies for Thermal Protection of Propulsion and</b> <b>Reentry Systems for Space Applications 177<br /></b><i>Joseph H. Koo and Thomas O. Mensah</i></p> <p>6.1 Introduction 177</p> <p>6.2 Motor Nozzle and Insulation Materials 179</p> <p>6.2.1 Behavior of Ablative Materials 182</p> <p>6.3 Advanced Polymer Nanocomposite Ablatives 184</p> <p>6.3.1 Polymer Nanocomposites for Motor Nozzle 185</p> <p>6.3.1.1 Phenolic Nanocomposites Studies byThe University of Texas at Austin 185</p> <p>6.3.1.2 Phenolic-MWNT Nanocomposites Studies by Texas State University-San Marcos 188</p> <p>6.3.2 Polymer Nanocomposites for Internal Insulation 189</p> <p>6.3.2.1 Thermoplastic Polyurethane Nanocomposite (TPUN) Studies by The University of Texas at Austin 190</p> <p>6.4 New Sensing Technology 195</p> <p>6.4.1 In situ Ablation Recession and Thermal Sensors 196</p> <p>6.4.1.1 Production of the C/C Sensor Plugs 198</p> <p>6.4.1.2 Ablation Test Results of Carbon/Carbon Sensors 200</p> <p>6.4.1.3 Ablation Test Results of Carbon/Phenolic Carbon Sensors 209</p> <p>6.4.1.4 Other Ablation Sensors Results 211</p> <p>6.4.1.5 Summary and Conclusions 212</p> <p>6.4.2 Char Strength Sensor 213</p> <p>6.4.2.1 Setup and Calibration of Compression Sensor 214</p> <p>6.4.2.2 Analysis Method 215</p> <p>6.4.2.3 Char Compressive Strength Results 216</p> <p>6.4.2.4 Additional Considerations on the Interpretation of the Data 223</p> <p>6.4.2.5 Concluding Remarks 226</p> <p>6.5 Technologies Needed to Advance Polymer Nanocomposite Ablative Research 227</p> <p>6.5.1 Thermophysical Properties Characterization 227</p> <p>6.5.1.1 Thermal Conductivity 227</p> <p>6.5.1.2 Thermal Expansion 228</p> <p>6.5.1.3 Density and Composition 228</p> <p>6.5.1.4 Microstructure 229</p> <p>6.5.1.5 Elemental Composition 229</p> <p>6.5.1.6 Char Yield 229</p> <p>6.5.1.7 Specific Heat 229</p> <p>6.5.1.8 Heat of Combustion 230</p> <p>6.5.1.9 Optical Properties 230</p> <p>6.5.1.10 Porosity 230</p> <p>6.5.1.11 Permeability 230</p> <p>6.5.2 Ablation Modeling 231</p> <p>6.6 Summary and Conclusion 236 Nomenclature 236</p> <p>Acronyms 237</p> <p>Acknowledgments 237</p> <p>References 238</p> <p><b>7 Manufacture of Multiscale Composites 245<br /></b><i>David O. Olawale,Micah C. McCrary-Dennis, and Okenwa O. Okoli</i></p> <p>7.1 Introduction 245</p> <p>7.1.1 Multifunctionality of Multiscale Composites 245</p> <p>7.1.2 Nanomaterials 247</p> <p>7.2 Nanoconstituents Preparation Processes 249</p> <p>7.2.1 Functionalization of CNTs 249</p> <p>7.2.1.1 Chemical Functionalization 249</p> <p>7.2.1.2 Physical (Noncovalent) Functionalization 250</p> <p>7.2.2 Dispersion of Carbon Nanotubes 252</p> <p>7.2.2.1 Ultrasonication 254</p> <p>7.2.2.2 Calendering Process 255</p> <p>7.2.2.3 Ball Milling 256</p> <p>7.2.2.4 Stir and Extrusion 256</p> <p>7.2.3 Alignment of CNTS 258</p> <p>7.2.3.1 Ex situ Alignment 258</p> <p>7.2.3.2 Force Field-Induced Alignment of CNTs 259</p> <p>7.2.3.3 Magnetic Field-Induced Alignment of CNTs 259</p> <p>7.2.3.4 Electrospinning-Induced Alignment of CNTs 260</p> <p>7.2.3.5 Liquid Crystalline Phase-induced Alignment of CNTs 261</p> <p>7.3 Liquid Composites Molding (LCM) Processes for Multiscale Composites Manufacturing 261</p> <p>7.3.1 Resin Transfer Molding (RTM) 262</p> <p>7.3.2 Vacuum-Assisted Resin Transfer Molding (VARTM) 263</p> <p>7.3.3 Resin Film Infusion (RFI) 265</p> <p>7.3.4 The Resin Infusion under Flexible Tooling (RIFT) and Resin Infusion between Double Flexible Tooling (RIDFT) 266</p> <p>7.3.5 Autoclave Manufacturing 267</p> <p>7.3.6 Out-of-Autoclave Manufacturing: Quickset 268</p> <p>7.3.6.1 Quickstep 268</p> <p>7.4 Continuous Manufacturing Processes for Multiscale Composites 269</p> <p>7.4.1 Pultrusion 269</p> <p>7.4.2 FilamentWinding 270</p> <p>7.5 Challenges and Advances in Multiscale Composites Manufacturing – Environmental, Health, and Safety (E, H, & S) 271</p> <p>7.5.1 Nanoconstituents Processing Hazards 271</p> <p>7.5.2 Composite Production and Processing 272</p> <p>7.5.3 Life Cycle Assessment – Use and Disposal 273</p> <p>7.6 Modeling and Simulation Tools for Multiscale Composites Manufacture 273</p> <p>7.6.1 Nanoparticle Modeling 274</p> <p>7.6.2 Molecular Modeling 274</p> <p>7.6.3 Simulation 274</p> <p>7.7 Conclusion 275</p> <p>References 276</p> <p><b>8 Bioinspired Systems 285<br /></b><i>Oluwamayowa Adigun, Alexander S. Freer, LaurieMueller, Christopher Gilpin, BryanW. Boudouris,</i> <i>and Michael T. Harris</i></p> <p>8.1 Introduction and Literature Overview 285</p> <p>8.2 Electrical Properties of a Single Palladium-Coated Biotemplate 289</p> <p>8.3 Materials and Methods 290</p> <p>8.4 Results and Discussion 293</p> <p>8.5 Conclusion and Outlook 297</p> <p>Acknowledgments 300</p> <p>References 300</p> <p><b>9 Prediction of Carbon Nanotube Buckypaper Mechanical Properties with Integrated Physics-Based and Statistical Models 307<br /></b><i>KanWang, Arda Vanli, Chuck Zhang, and BenWang</i></p> <p>9.1 Introduction 307</p> <p>9.2 Manufacturing Process of Buckypaper 310</p> <p>9.3 Finite Element-Based ComputationalModels for Buckypaper Mechanical Property Prediction 313</p> <p>9.4 Calibration and Adjustment of FE Models with Statistical Methods 322</p> <p>9.5 Summary 331</p> <p>References 332</p> <p><b>10 Fabrication and Fatigue of Fiber-Reinforced Polymer Nanocomposites – A Tool for Quality Control</b> <b>335<br /></b><i>Daniel C. Davis and Thomas O. Mensah</i></p> <p>10.1 Introduction 335</p> <p>10.2 Materials 336</p> <p>10.2.1 Carbon Fabric and Fiber 337</p> <p>10.2.2 Glass Fabric and Fibers 337</p> <p>10.2.3 Polymer Resin 337</p> <p>10.2.4 Carbon Nanotubes 338</p> <p>10.2.5 Carbon Nanofibers 339</p> <p>10.2.6 Nanoclays 340</p> <p>10.3 Composite Fabrication 341</p> <p>10.3.1 Hand Layup 341</p> <p>10.3.2 Resin Transfer Molding 342</p> <p>10.4 Discussion – Fatigue and Fracture 344</p> <p>10.4.1 Fatigue and Durability 344</p> <p>10.4.2 Carbon Nanotube – Polymer Matrix Composites 347</p> <p>10.4.3 Carbon Nanofiber – Polymer Matrix Composites 349</p> <p>10.4.4 Nanoclay – PolymerMatrix Composites 354</p> <p>10.5 Summary and Conclusion 359</p> <p>Acknowledgments 360</p> <p>References 360</p> <p><b>11 Nanoclays: A Review of Their Toxicological Profiles and Risk Assessment Implementation Strategies</b> <b>369<br /></b><i>Alixandra Wagner, Rakesh Gupta, and Cerasela Z. Dinu</i></p> <p>11.1 Introduction 369</p> <p>11.2 Nanoclay Structure and Resulting Applications 369</p> <p>11.3 Nanoclays in Food Packaging Applications 370</p> <p>11.4 Possible Toxicity upon Implementation of Nanoclay in Consumer Applications 375</p> <p>11.4.1 In Vitro Studies Reveal the Potential of Nanoclay to Induce Changes in Cellular Viability 376</p> <p>11.4.2 Proposed Mechanisms of Toxicity for the In Vitro Cellular Studies 380</p> <p>11.4.3 In Vivo Evaluation of Nanoclay Toxicity 383</p> <p>11.5 Conclusion and Outlook 385</p> <p>Acknowledgments 387</p> <p>References 388</p> <p><b>12 Nanotechnology EHS: Manufacturing and Colloidal Aspects 395<br /></b><i>Geoffrey D. Bothun and Vinka Oyanedel-Craver</i></p> <p>12.1 Introduction 395</p> <p>12.1.1 Challenges 397</p> <p>12.1.2 Recent Initiatives and Reviews 399</p> <p>12.2 Colloidal Properties and Environmental Transformations 400</p> <p>12.3 Assessing Nano EHS 402</p> <p>12.3.1 Example: Silver Nanoparticles (AgNPs) 407</p> <p>12.3.2 Role of Manufacturing 407</p> <p>Summary 409</p> <p>Acknowledgments 409</p> <p>References 409</p> <p>Index 417</p>
<p><b> THOMAS O. MENSAH, PhD,</b> is currently the President and CEO of the Georgia Aerospace Systems, an advanced aerospace composite manufacturing company, which has supplied nanoscale composite structures for unmanned aerial vehicle systems to the US Department of Defense. He is a Fellow of the National Academy of Inventors and is a holder of 7 US Patents. He has previously worked at AT&T Bell Laboratories and Corning Glass Works. He is a Director of AIChE Nanoscale Engineering Forum. <p><b> BEN WANG, PhD,</b> Director of Georgia Tech Manufacturing Institute. He is the Executive Director Georgia Tech Manufacturing Institute. He is the co-developer of the first continuous process for making free standing carbon nanotube network or Bucky paper. Dr. Wang was awarded the Micro/NANO 25 Award by NASA and the Nanotechnology Institute and is the holder of 6 US patents. He is Chair of the Industrial Systems Engineering at Georgia Institute of Technology. <p><b> GEOFFREY BOTHUN, PhD,</b> is Professor of Chemical Engineering and Principal Investigator as well as Director of Rhode Island Consortium for Nanoscience and Nanotechnology, a state wide Initiative. He is also Director of Rhode Island NSF EPSCoR and the current Chairman of AIChE Nanoscale Engineering Forum, NSEF. <p><b> JESSICA WINTER, PhD</b> is the H.C. Slip Slider Assistant Professor of Chemical and Biological Engineering at the University of Ohio, Columbus. She is a Fellow of the American Institute of Medical and Biological Engineers and a Fellow of the American Association of the Advancement of Science AAAS. She is Past Chairman of AIChE Nanoscale Engineering Forum NSEF. <p><b> VIRGINIA DAVIS, PhD</b> is Associate Professor Chemical Engineering, Auburn University, Auburn, Alabama. She is Global Marketing manager at Shell Chemicals in Europe and serves as Director of AIChE Nanoscale Engineering Forum NSEF. She is the recipient of NSEF Young Investigator Award.
<p><b> A fascinating and informative look at state-of-the-art nanotechnology research, worldwide, and its vast commercial potential </b> <p><i> Nanotechnology Commercialization: Manufacturing Processes and Products</i> presents a detailed look at the state of the art in nanotechnology and explores key issues that must still be addressed in order to successfully commercialize that vital technology. Written by a team of distinguished experts in the field, it covers military, space, and commercial transport applications, as well as applications for missiles, aircraft, aerospace, and commercial transport systems. The next series will examine applications in solar and photovoltaics, medical sensing, imaging and power applications, including smart grids, CNT power cables. Future series will examine fuel cells and large-scale energy storage systems, touch screen technologies for computers and cellphones, and small-scale applications for maximizing battery life while minimizing battery size. <p> The drive to advance the frontiers of nanotechnology has become a major global initiative with profound economic, military, and environmental implications. This book describes current research in the field and details its commercial potential—from work bench to market. <ul> <li>Examines the state of the art in nanotechnology and explores key issues surrounding its commercialization</li> <li>Takes a real-world approach, with chapters written from a practical viewpoint, detailing the latest research and considering its potential commercial and defense applications</li> <li>Presents the current research and proposed applications of nanotechnology in such a way as to stimulate further research and development of new applications</li> <li>Written by an all-star team of experts, including pioneer patent-holders and award-winning researchers in nanotechnology</li> </ul> <br> <p> The major challenge currently faced by researchers in nanotechnology is successfully transitioning laboratory research into viable commercial products for the 21<sup>st</sup> century. Written for professionals across an array of research and engineering disciplines, <i>Nanotechnology Commercialization: Manufacturing Processes and Products</i> does much to help them bridge the gap between lab and marketplace.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €