Details

Nanoporous Catalysts for Biomass Conversion


Nanoporous Catalysts for Biomass Conversion


Wiley Series in Renewable Resource 1. Aufl.

von: Feng-Shou Xiao, Liang Wang, Christian V. Stevens

134,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 05.09.2017
ISBN/EAN: 9781119128090
Sprache: englisch
Anzahl Seiten: 336

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>A comprehensive introduction to the </b><b>design, synthesis, characterization, and catalytic properties </b><b>of nanoporous catalysts for the</b><b> biomass conversion</b> </p> <p>With the specter of peak oil demand looming on the horizon, and mounting concerns over the environmental impact of greenhouse gas emissions, biomass has taken on a prominent role as a sustainable alternative fuel source. One critical aspect of the biomass challenge is the development of novel catalytic materials for effective and controllable biomass conversion. Edited by two scientists recognized internationally for their pioneering work in the field, this book focuses on nanoporous catalysts, the most promising class of catalytic materials for the conversion of biomass into fuel and other products.</p> <p>Although various catalysts have been used in the conversion of biomass-derived feedstocks, nanoporous catalysts exhibit high catalytic activities and/or unique product selectivities due to their large surface area, open nanopores, and highly dispersed active sites. This book covers an array of nanoporous catalysts currently in use for biomass conversion, including resins, metal oxides, carbons, mesoporous silicates, polydivinylbenzene, and zeolites. The authors summarize the design, synthesis, characterization and catalytic properties of these nanoporous catalysts for biomass conversions, discussing the features of these catalysts and considering future opportunities for developing more efficient catalysts. Topics covered include:</p> <ul> <li>Resins for biomass conversion</li> <li>Supported metal oxides/sulfides for biomass oxidation and hydrogenation</li> <li>Nanoporous metal oxides</li> <li>Ordered mesoporous silica-based catalysts</li> <li>Sulfonated carbon catalysts</li> <li>Porous polydivinylbenzene</li> <li>Aluminosilicate zeolites for bio-oil upgrading</li> <li>Rice straw Hydrogenation for sugar conversion</li> <li>Lignin depolymerization</li> </ul> <p>Timely, authoritative, and comprehensive, <i>Nanoporous Catalysts for Biomass Conversion </i>is a valuable working resource for academic researchers, industrial scientists and graduate students working in the fields of biomass conversion, catalysis, materials science, green and sustainable chemistry, and chemical/process engineering.</p>
<p>List of Contributors xiii</p> <p>Series Preface xvii</p> <p>Acknowledgements xix</p> <p><b>1 Nanoporous Organic Frameworks for Biomass Conversion 1<br /></b><i>Xiang Zhu, Chi-Linh Do-Thanh, and Sheng Dai</i></p> <p>1.1 Introduction 1</p> <p>1.2 Nanoporous Crystalline Organic Frameworks 4</p> <p>1.2.1 Metal–Organic Frameworks 4</p> <p>1.2.2 Covalent Organic Frameworks 10</p> <p>1.3 Nanoporous Organic Sulfonated Resins 11</p> <p>1.3.1 Amberlyst Resins 11</p> <p>1.3.2 Nafion Resins 11</p> <p>1.4 Conclusions and Perspective 13</p> <p>References 13</p> <p><b>2 Activated Carbon and Ordered Mesoporous Carbon-Based Catalysts for Biomass Conversion 17<br /></b><i>Xiaochen Zhao, Jifeng Pang, Guangyi Li, Fei Liu, Jinming Xu, Mingyuan </i><i>Zheng, Ning Li, Changzhi Li, Aiqin Wang, and Tao Zhang</i></p> <p>2.1 Introduction 17</p> <p>2.2 Activated Carbon and Mesoporous Carbon 18</p> <p>2.2.1 Preparation of Activated Carbon and Mesoporous Carbon 18</p> <p>2.2.2 Properties of Carbon in Catalysis 19</p> <p>2.2.3 Functionalization of Carbon Materials 20</p> <p>2.3 Cellulose Conversion 21</p> <p>2.3.1 Cellulose Hydrolysis 21</p> <p>2.3.2 Conversion of Cellulose to Hexitols 27</p> <p>2.3.3 Conversion of Cellulose to Glycols 30</p> <p>2.3.4 Conversion of Cellulose to Other Important Chemicals 32</p> <p>2.4 Lignin Conversion 33</p> <p>2.4.1 Hydrogenolysis (Hydrocracking) 34</p> <p>2.4.2 Hydrodeoxygenation (HDO) 35</p> <p>2.4.3 Hydrogenation and Ethanolysis 38</p> <p>2.5 Synthesis of Biofuel (Diesel or Jet Fuel) from Lignocellulose 39</p> <p>2.5.1 C–C Coupling Reactions 40</p> <p>2.5.2 Hydrodeoxygenation (HDO) 42</p> <p>2.6 Summary 46</p> <p>References 46</p> <p><b>3 Nanoporous Carbon/Nitrogen Materials and their Hybrids for Biomass Conversion 55<br /></b><i>Hui Su, Hong-Hui Wang, Tian-Jian Zhao, and Xin-Hao Li</i></p> <p>3.1 Introduction 55</p> <p>3.2 Dehydrogenation of Formic Acid 57</p> <p>3.2.1 Mono-Metallic Nanoparticle/Carbon–Nitrogen Nanocomposites: Metal-Support Effect 57</p> <p>3.2.2 Bimetallic Nanoparticle/Carbon–Nitrogen Nanocomposites 59</p> <p>3.2.3 Trimetallic Nanoparticle/Carbon–Nitrogen Nanocomposites 59</p> <p>3.2.4 Core–Shell Nanostructure/Carbon–Nitrogen Nanocomposites 60</p> <p>3.2.5 Reduction of Carbon Dioxide to Formic Acid Using Carbon/Nitrogen Materials 61</p> <p>3.3 Transfer Hydrogenation of Unsaturated Compounds from Formic Acid 64</p> <p>3.4 Synthesis of High-Value-Added Chemicals from Biomass 67</p> <p>3.5 Metal-Free Catalyst: Graphene Oxide for the Conversion of Fructose 71</p> <p>3.6 Conclusions and Outlook 72</p> <p>References 73</p> <p><b>4 Recent Developments in the Use of Porous Carbon Materials for Cellulose Conversion 79<br /></b><i>Abhijit Shrotri, Hirokazu Kobayashi, and Atsushi Fukuoka</i></p> <p>4.1 Introduction 79</p> <p>4.2 Overview of Catalytic Cellulose Hydrolysis 81</p> <p>4.3 Functionalized Carbon Catalyst for Cellulose Hydrolysis 84</p> <p>4.3.1 Synthesis and Properties of Carbon Catalysts 84</p> <p>4.3.2 Sulfonated Carbon Catalyst for Cellulose Hydrolysis 85</p> <p>4.3.3 Oxygenated Carbon Catalyst for Cellulose Hydrolysis 87</p> <p>4.3.4 Mechanistic Aspects of Carbon-Catalyzed Cellulose Hydrolysis 90</p> <p>4.4 Summary and Outlook 93</p> <p>References 94</p> <p><b>5 Ordered Mesoporous Silica-Based Catalysts for Biomass Conversion 99<br /></b><i>Liang Wang, Shaodan Xu, Xiangju Meng, and Feng-Shou Xiao</i></p> <p>5.1 Introduction 99</p> <p>5.2 Sulfated Ordered Mesoporous Silicas 100</p> <p>5.2.1 Conversion of Levulinic Acid to Valerate Esters 100</p> <p>5.2.2 One-Pot Conversion of Cellulose into Chemicals 101</p> <p>5.2.3 Dehydration of Xylose to Furfural 104</p> <p>5.3 Ordered Mesoporous Silica-Supported Polyoxometalates and Sulfated Metal Oxides 106</p> <p>5.4 Heteroatom-Doped Ordered Mesoporous Silica 108</p> <p>5.4.1 Al-Doped Mesoporous Silica 108</p> <p>5.4.2 Sn-Doped Mesoporous Silica 108</p> <p>5.5 Ordered Mesoporous Silica-Supported Metal Nanoparticles 109</p> <p>5.5.1 Mesoporous Silica-Supported Pd Nanoparticles 110</p> <p>5.5.2 Mesoporous Silica-Supported Pt Nanoparticles 111</p> <p>5.5.3 Mesoporous Silica-Supported Ni Nanoparticles 111</p> <p>5.6 Overall Summary and Outlook 113</p> <p>References 115</p> <p><b>6 Porous Polydivinylbenzene-Based Solid Catalysts for Biomass Transformation Reactions 127<br /></b><i>Fujian Liu and Yao Lin</i></p> <p>6.1 Introduction 127</p> <p>6.2 Synthesis of Porous PDVB-Based Solid Acids and Investigation of their Catalytic Performances 129</p> <p>6.2.1 Sulfonic Group-Functionalized Porous PDVB 129</p> <p>6.2.2 Sulfonic Group-Functionalized Porous PDVB-SO3HSO2CF3 132</p> <p>6.2.3 PDVB-Based Porous Solid Bases for Biomass Transformation 133</p> <p>6.2.4 Strong Acid Ionic Liquid-Functionalized PDVB-Based Catalysts 135</p> <p>6.2.5 Cooperative Effects in Applying both PDVB-Based Solid Acids and Solid Bases for Biomass Transformation 141</p> <p>6.3 Perspectives of PDVB-Based Solid Catalysts and their Application for Biomass Transformations 144</p> <p>Acknowledgments 144</p> <p>References 145</p> <p><b>7 Designing Zeolite Catalysts to Convert Glycerol, Rice Straw, and Bio-Syngas 149<br /></b><i>Chuang Xing, Guohui Yang, Ruiqin Yang, and Noritatsu Tsubaki</i></p> <p>7.1 Glycerol Conversion to Propanediols 149</p> <p>7.1.1 Introduction 149</p> <p>7.1.2 Mechanisms of Propanediol Synthesis 151</p> <p>7.1.3 Zeolite Catalysts for Propanediol Synthesis 152</p> <p>7.1.4 Conclusions and Outlook 156</p> <p>7.2 Rice Straw Hydrogenation 156</p> <p>7.2.1 Introduction 156</p> <p>7.2.2 Direct Conversion of Rice Straw into Sugar Alcohol Through In-Situ Hydrogen 157</p> <p>7.2.3 Conclusions and Outlook 159</p> <p>7.3 Bio-Gasoline Direct Synthesis from Bio-Syngas 159</p> <p>7.3.1 Introduction 159</p> <p>7.3.2 Biomass Gasification to Bio-Syngas 160</p> <p>7.3.3 Representative FT Gasoline Synthesis System 161</p> <p>7.3.4 FT Gasoline Synthesis Catalysts 163</p> <p>7.3.5 Conclusions and Outlook 168</p> <p>References 169</p> <p><b>8 Depolymerization of Lignin with Nanoporous Catalysts 177<br /></b><i>Zhicheng Luo, Jiechen Kong, Liubi Wu, and Chen Zhao</i></p> <p>8.1 Introduction 177</p> <p>8.2 Developed Techniques for Lignin Depolymerization 178</p> <p>8.2.1 Heterogeneous Noble Metal Catalyst System in the Presence of Hydrogen 178</p> <p>8.2.2 Heterogeneous Transition Metal Catalyst System in the Presence of Hydrogen 183</p> <p>8.2.3 Homogeneous Catalyst System for Lignin Depolymerization in the Presence of H2 187</p> <p>8.2.4 Cleavage of C–O Bonds in Lignin with Metals and Hydrogen-Donor Solvents in the Absence of Hydrogen 188</p> <p>8.3 Oxidative Depolymerization of Lignin 190</p> <p>8.3.1 Metal-Supported Oxide Catalysts 191</p> <p>8.3.2 Polyoxometalate Catalysts 195</p> <p>8.3.3 Organometallic Catalysts 196</p> <p>8.3.4 Ionic Liquid Catalysts 197</p> <p>8.4 Hydrolysis of Lignin with Base and Acid Catalysts 198</p> <p>8.5 Other Depolymerization Techniques (Cracking, Photocatalysis, Electrocatalysis, and Biocatalysis) 200</p> <p>8.6 Conclusions 202</p> <p>Acknowledgments 203</p> <p>References 203</p> <p><b>9 Mesoporous Zeolite for Biomass Conversion 209<br /></b><i>Liang Wang, Shaodan Xu, Xiangju Meng, and Feng-Shou Xiao</i></p> <p>9.1 Introduction 209</p> <p>9.2 Production of Biofuels 210</p> <p>9.2.1 Pyrolysis of Biomass 210</p> <p>9.2.2 Upgrading of Pyrolysis Oil 211</p> <p>9.2.3 Conversion of Lipids into Alkane Oil 217</p> <p>9.2.4 Synthesis of Ethyl Levulinate Biofuel 218</p> <p>9.3 Conversion of Glycerol 220</p> <p>9.3.1 Dehydration of Glycerol 220</p> <p>9.3.2 Etherification of Glycerol 221</p> <p>9.3.3 Aromatization of Glycerol 223</p> <p>9.4 Overall Summary and Outlook 224</p> <p>References 225</p> <p><b>10 Lignin Depolymerization Over Porous Copper-Based Mixed-Oxide Catalysts in Supercritical Ethanol 231<br /></b><i>Xiaoming Huang, Tamás I. Korányi, and Emiel J. M. Hensen</i></p> <p>10.1 Introduction 231</p> <p>10.1.1 Hydrotalcites 231</p> <p>10.1.2 Lignin Depolymerization 233</p> <p>10.2 Lignin Depolymerization by CuMgAl Mixed-Oxide Catalysts in Supercritical Ethanol 234</p> <p>10.2.1 Effect of Catalyst and Ethanol Solvent 236</p> <p>10.2.2 Influence of Reaction Parameters and Lignin Source 240</p> <p>10.2.3 Effect of Catalyst Composition 242</p> <p>10.3 Conclusions 246</p> <p>References 248</p> <p><b>11 Niobium-Based Catalysts for Biomass Conversion 253<br /></b><i>Qineng Xia and Yanqin Wang</i></p> <p>11.1 Introduction 253</p> <p>11.2 Hydrolysis 255</p> <p>11.3 Dehydration 257</p> <p>11.3.1 Sorbitol Dehydration 257</p> <p>11.3.2 Carbohydrate Dehydration 258</p> <p>11.3.3 Glycerol Dehydration 261</p> <p>11.4 HMF Hydration to Levulinic Acid 265</p> <p>11.5 Hydrodeoxygenation 266</p> <p>11.6 C–C Coupling Reactions 272</p> <p>11.7 Esterification/Transesterification 272</p> <p>11.8 Other Reactions in Biomass Conversion 273</p> <p>11.8.1 Delignification 273</p> <p>11.8.2 Ring-Opening of GVL 273</p> <p>11.8.3 Steam Reforming Reaction 274</p> <p>11.8.4 Ketalization 274</p> <p>11.9 Summary and Outlook 274</p> <p>References 275</p> <p><b>12 Towards More Sustainable Chemical Synthesis, Using Formic Acid as a Renewable Feedstock 283<br /></b><i>Shu-Shuang Li, Lei Tao, Yong-Mei Liu, and Yong Cao</i></p> <p>12.1 Introduction 283</p> <p>12.2 General Properties of FA and Implications for Green Synthesis 285</p> <p>12.3 Transformation of Bio-Based Platform Chemicals 286</p> <p>12.3.1 Reductive Transformation Using FA as a Hydrogen Source 286</p> <p>12.3.2 Tandem Transformation Using FA as a Versatile Reagent 291</p> <p>12.4 FA-Mediated Depolymerization of Lignin or Chitin 292</p> <p>12.4.1 Lignin Depolymerization using FA 292</p> <p>12.4.2 Chitin Depolymerization using FA 295</p> <p>12.5 Upgrading of Bio-Oil and Related Model Compounds 296</p> <p>12.6 FA as the Direct Feedstock for Bulk Chemical Synthesis 297</p> <p>12.7 Conclusions and Outlook 300</p> <p>References 300</p> <p>Index 307</p>
<p> Edited by <p><strong>Feng-Shou Xiao,</strong> <em>Zhejiang University, Hangzhou, China</em> <p><strong>Liang Wang,</strong> <em>Zhejiang University, Hangzhou, China</em> <p>Series Editor <p><strong>Christian Stevens,</strong> <em>Faculty of Bioscience Engineering, Ghent University, Belgium</em>
<p> <strong>A comprehensive introduction to the design, synthesis, characterization, and catalytic properties of nanoporous catalysts for the biomass conversion</strong> <p> With the specter of peak oil demand looming on the horizon, and mounting concerns over the environmental impact of greenhouse gas emissions, biomass has taken on a prominent role as a sustainable alternative fuel source. One critical aspect of the biomass challenge is the development of novel catalytic materials for effective and controllable biomass conversion. Edited by two scientists recognized internationally for their pioneering work in the field, this book focuses on nanoporous catalysts, the most promising class of catalytic materials for the conversion of biomass into fuel and other products. <p> Although various catalysts have been used in the conversion of biomass-derived feedstocks, nanoporous catalysts exhibit high catalytic activities and/or unique product selectivities due to their large surface area, open nanopores, and highly dispersed active sites. This book covers an array of nanoporous catalysts currently in use for biomass conversion, including resins, metal oxides, carbons, mesoporous silicates, polydivinylbenzene, and zeolites. The authors summarize the design, synthesis, characterization and catalytic properties of these nanoporous catalysts for biomass conversions, discussing the features of these catalysts and considering future opportunities for developing more efficient catalysts. <p>Topics covered include: <ul> <li>Resins for biomass conversion</li> <li>Supported metal oxides/sulfides for biomass oxidation and hydrogenation</li> <li>Nanoporous metal oxides</li> <li>Ordered mesoporous silica-based catalysts</li> <li>Sulfonated carbon catalysts</li> <li>Porous polydivinylbenzene</li> <li>Aluminosilicate zeolites for bio-oil upgrading</li> <li>Rice straw Hydrogenation for sugar conversion</li> <li>Lignin depolymerization</li> </ul> <br> <p> Timely, authoritative, and comprehensive, <em>Nanoporous Catalysts for Biomass Conversion</em> is a valuable working resource for academic researchers, industrial scientists and graduate students working in the fields of biomass conversion, catalysis, materials science, green and sustainable chemistry, and chemical/process engineering.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €