Details

Molecular Water Oxidation Catalysis


Molecular Water Oxidation Catalysis

A Key Topic for New Sustainable Energy Conversion Schemes
1. Aufl.

von: Antoni Llobet

110,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 14.04.2014
ISBN/EAN: 9781118698631
Sprache: englisch
Anzahl Seiten: 304

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>Photocatalytic water splitting is a promising strategy for capturing energy from the sun by coupling light harvesting and the oxidation of water, in order to create clean hydrogen fuel. Thus a deep knowledge of the water oxidation catalysis field is essential to be able to come up with useful energy conversion devices based on sunlight and water splitting.</p> <p><i>Molecular Water Oxidation Catalysis: A Key Topic for New Sustainable Energy Conversion Schemes</i> presents a comprehensive and state-of-the-art overview of water oxidation catalysis in homogeneous phase, describing in detail the most important catalysts discovered today based on first and second row transition metals. A strong emphasis is placed on the description of their performance, as well as how they work from a mechanistic perspective. In addition, a theoretical description of some of the most relevant catalysts based on DFT are presented, as well as a description of related natural systems, such as the oxygen evolving system of photosystem II and the heme chlorite-dismutase.</p> <p>This book is a valuable resource for researchers working on water oxidation catalysis, solar energy conversion and artificial photosynthesis, as well as for chemists and materials scientists with a broad interest in new sustainable energy conversion schemes.</p>
<p><b><i>List of Contributors </i></b><b>xi</b></p> <p><b><i>Preface </i></b><b>xv</b></p> <p><b>1. Structural Studies of Oxomanganese Complexes for Water Oxidation Catalysis 1<br /> </b><i>Ivan Rivalta, Gary W. Brudvig, and Victor S. Batista</i></p> <p>1.1 Introduction 1</p> <p>1.2 Structural Studies of the OEC 2</p> <p>1.3 The Dark-Stable State of the OEC 4</p> <p>1.4 Biomimetic Oxomanganese Complexes 6</p> <p>1.5 Base-Assisted O–O Bond Formation 7</p> <p>1.6 Biomimetic Mn Catalysts for Artificial Photosynthesis 8</p> <p>1.7 Conclusion 11</p> <p>Acknowledgments 12</p> <p>References 12</p> <p><b>2. O–O Bond Formation by a Heme Protein: The Unexpected Efficiency of Chlorite Dismutase 15<br /> </b><i>Jennifer L. DuBois</i></p> <p>2.1 Introduction 15</p> <p>2.2 Origins of O2-Evolving Chlorite Dismutases (Clds) 15</p> <p>2.3 Major Structural Features of the Proteins and their Active Sites 16</p> <p>2.4 Efficiency, Specificity, and Stability 20</p> <p>2.5 Mechanistic Insights from Surrogate Reactions with Peracids and Peroxide 22</p> <p>2.6 Possible Mechanisms 23</p> <p>2.7 Conclusion 25</p> <p>Acknowledgements 25</p> <p>References 25</p> <p><b>3. Ru-Based Water Oxidation Catalysts 29<br /> </b><i>Laia Francàs, Roger Bofill, Jordi García-Antón, Lluis Escriche, Xavier Sala and Antoni Llobet</i></p> <p>3.1 Introduction 29</p> <p>3.2 Proton-Coupled Electron Transfer (PCET) and Water Oxidation Thermodynamics 31</p> <p>3.3 O–O Bond Formation Mechanisms 33</p> <p>3.4 Polynuclear Ru Water Oxidation Catalysts 34</p> <p>3.5 Mononuclear Ru WOCs 40</p> <p>3.6 Anchored Molecular Ru WOCs 42</p> <p>3.7 Light-Induced Ru WOCs 43</p> <p>3.8 Conclusion 45</p> <p>Acknowledgments 46</p> <p>References 46</p> <p><b>4. Towards the Visible Light-Driven Water Splitting Device: Ruthenium Water Oxidation Catalysts with Carboxylate-Containing Ligands 51<br /> </b><i>Lele Duan, Lianpeng Tong, and Licheng Sun</i></p> <p>4.1 Introduction 51</p> <p>4.2 Binuclear Ru Complexes 52</p> <p>4.3 Mononuclear Ru Complexes 54</p> <p>4.3.1 Ru–O2N–N3 Analogs 55</p> <p>4.3.2 Ru–O2N2–N2 Analogs 57</p> <p>4.4 Homogeneous Light-Driven Water Oxidation 68</p> <p>4.4.1 The Three-Component System 68</p> <p>4.4.2 The Supramolecular Assembly Approach 69</p> <p>4.5 Water Oxidation Device 72</p> <p>4.5.1 Electrochemical Water Oxidation Anode 72</p> <p>4.5.2 Photo-Anode for Water Oxidation 74</p> <p>4.6 Conclusion 75</p> <p>References 75</p> <p><b>5. Water Oxidation by Ruthenium Catalysts with Non-Innocent Ligands 77<br /> </b><i>Tohru Wada, Koji Tanaka, James T. Muckerman, and Etsuko Fujita</i></p> <p>5.1 Introduction 77</p> <p>5.2 Water Oxidation Catalyzed by Dinuclear Ruthenium Complexes with NILs 81</p> <p>5.3 Water Oxidation by Intramolecular O–O Coupling with [Ru<sup>II</sup><sub>2</sub> (<i>𝜇</i>-Cl)(bpy)<sub>2</sub>(btpyan)]<sup>3+</sup> 85</p> <p>5.4 Mononuclear Ru–Aqua Complexes with a Dioxolene Ligand 91</p> <p>5.4.1 Structural Characterization 91</p> <p>5.4.2 Theoretical and Electrochemical Characterization 96</p> <p>5.5 Mechanistic Investigation of Water Oxidation by Dinuclear Ru Complexes with NILs: Characterization of Key Intermediates 101</p> <p>References 107</p> <p><b>6. Recent Advances in the Field of Iridium-Catalyzed Molecular Water Oxidation 113<br /> </b><i>James A. Woods, Stefan Bernhard, and Martin Albrecht</i></p> <p>6.1 Introduction 113</p> <p>6.2 Bernhard 2008 [11] 114</p> <p>6.3 Crabtree 2009 115</p> <p>6.4 Crabtree 2010 116</p> <p>6.5 Macchioni 2010 117</p> <p>6.6 Albrecht/Bernhard 2010 117</p> <p>6.7 Hetterscheid/Reek 2011 118</p> <p>6.8 Crabtree 2011 119</p> <p>6.9 Crabtree 2011 120</p> <p>6.10 Lin 2011 120</p> <p>6.11 Macchioni 2011 122</p> <p>6.12 Grotjahn 2011 123</p> <p>6.13 Fukuzumi 2011 123</p> <p>6.14 Lin 2012 124</p> <p>6.15 Crabtree 2012 125</p> <p>6.16 Albrecht/Bernhard 2012 125</p> <p>6.17 Crabtree 2012 126</p> <p>6.18 Beller 2012 127</p> <p>6.19 Lin 2012 128</p> <p>6.20 Lloblet and Macchioni 2012 129</p> <p>6.21 Analysis 130</p> <p>References 131</p> <p><b>7. Complexes of First Row d-Block Metals: Manganese 135<br /> </b><i>Philipp Kurz</i></p> <p>7.1 Background 135</p> <p>7.2 Oxidation States of Manganese in an Aqueous Environment 137</p> <p>7.3 Dinuclear Manganese Complexes: Syntheses and Structures 138</p> <p>7.4 Redox and Acid–Base Chemistry of Mn2-<i>𝜇</i>-WDL Systems 139</p> <p>7.5 Mn2 Systems: Oxygen Evolution (but not Water Oxidation) Catalysis 142</p> <p>7.6 Mn2 Complexes/the OEC/Ru2 Catalysts: A Comparison 144</p> <p>7.7 Heterogeneous Water Oxidation Catalysis by Mn<i>></i>2 Systems 146</p> <p>7.8 Conclusion 148</p> <p>Acknowledgements 148</p> <p>References 149</p> <p><b>8. Molecular Water Oxidation Catalysts from Iron 153<br /> </b><i>W. Chadwick Ellis, Neal D. McDaniel, and Stefan Bernhard</i></p> <p>8.1 Introduction 153</p> <p>8.2 Fe-Tetrasulfophthalocyanine 154</p> <p>8.3 Fe-TAML 155</p> <p>8.4 Fe-mcp 157</p> <p>8.5 Fe2O3 as a Microheterogeneous Catalyst 158</p> <p>8.6 Conclusion 160</p> <p>References 161</p> <p><b>9. Water Oxidation by Co-Based Oxides with Molecular Properties 163<br /> </b><i>Marcel Risch, Katharina Klingan, Ivelina Zaharieva, and Holger Dau</i></p> <p>9.1 Introduction 163</p> <p>9.2 CoCat Formation 164</p> <p>9.3 Structure and Structure–Function Relations 166</p> <p>9.4 Functional Characterization 173</p> <p>9.5 Directly Light-Driven Water Oxidation 175</p> <p>References 180</p> <p><b>10. Developing Molecular Copper Complexes for Water Oxidation 187<br /> </b><i>Shoshanna M. Barnett, Christopher R. Waidmann, Margaret L. Scheuermann, Jared C. Nesvet, Karen Goldberg and James M. Mayer</i></p> <p>10.1 Introduction 187</p> <p>10.2 A Biomimetic Approach 188</p> <p>10.2.1 Thermochemistry: Developing Oxidant/Base Combinations as PCET Reagents 189</p> <p>10.2.2 Copper Complexes with Alkylamine Ligands 190</p> <p>10.2.3 Copper Complexes with Anionic Ligands 195</p> <p>10.2.4 Lessons Learned: Thermochemical Insights and Oxidant/Base Compatibility 198</p> <p>10.3 An Aqueous System: Electrocatalysis with (bpy)Cu(II) Complexes 198</p> <p>10.3.1 System Selection: bpy + Cu 199</p> <p>10.3.2 Observing Electrocatalysis 199</p> <p>10.3.3 Catalyst Turnover Number and Turnover Frequency 201</p> <p>10.3.4 Catalyst Speciation: Monomer, Dimer, or Nanoparticles? 203</p> <p>10.4 Conclusion 206</p> <p>Acknowledgement 206</p> <p>References 207</p> <p><b>11. Polyoxometalate Water Oxidation Catalytic Systems 211<br /> </b><i>Jordan M. Sumliner, James W. Vickers, Hongjin Lv, Yurii V. Geletii, and</i></p> <p><i>Craig L. Hill</i></p> <p>11.1 Introduction 211</p> <p>11.2 Recent POM WOCs 214</p> <p>11.3 Assessing POM WOC Reactivity 220</p> <p>11.4 The Ru(bpy)<sub>3</sub> <sup>2+</sup> ∕S<sub>2</sub>O<sub>8</sub> <sup>2-</sup>System 221</p> <p>11.5 Ru(bpy) <sub>3</sub> <sup>3+</sup> as an Oxidant for POM WOCs 222</p> <p>11.6 Additional Aspects of WOC System Stability 224</p> <p>11.7 Techniques for Assessing POM WOC Stability 224</p> <p>11.8 Conclusion 227</p> <p>Acknowledgments 228</p> <p>References 228</p> <p><b>12. Quantum Chemical Characterization of Water Oxidation Catalysts 233<br /> </b><i>Pere Miró, Mehmed Z. Ertem, Laura Gagliardi, and Christopher J. Cramer</i></p> <p>12.1 Introduction 233</p> <p>12.2 Computational Details 235</p> <p>12.2.1 Density Functional Theory Calculations 235</p> <p>12.2.2 Multiconfigurational Calculations 236</p> <p>12.3 Methodology 237</p> <p>12.3.1 Solvation and Standard Reduction Potentials 237</p> <p>12.3.2 Multideterminantal State Energies 238</p> <p>12.4 Water Oxidation Catalysts 238</p> <p>12.4.1 Ruthenium-Based Catalysts 238</p> <p>12.4.2 Cobalt-Based Catalysts 245</p> <p>12.4.3 Iron-Based Catalysts 248</p> <p>12.5 Conclusion 251</p> <p>References 252</p> <p><b><i>Index </i></b><b>257</b></p>
<p><b>Professor Dr. Antoni Llobet, Institute of Chemical Research of Catalonia (ICIQ) and Universitat Autònoma de Barcelona, Spain</b><br />Professor Llobet is one of the world leaders on water oxidation catalysis. He has been working in the field of redox catalysis for 25 years; his research interests include the development of tailored transition metal complexes as catalysts for selective organic and inorganic transformations including the oxidation of water to molecular dioxygen, supramolecular catalysis, the activation of C-H and C-F bonds, and the preparation low molecular weight complexes as models of the active sites of oxidative metalloproteins.<br />In 2000, Professor Llobet received the Distinction Award from <i>Generalitat de Catalunya</i> for Young Scientists and in 2011 he was awarded the Bruker Prize in Inorganic Chemistry from the Spanish Royal Society of Chemistry (RSEQ). He is the author of over 120 research publications.</p>

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €