Details

Molecular Modelling for Beginners


Molecular Modelling for Beginners


2. Aufl.

von: Alan Hinchliffe

45,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 17.08.2011
ISBN/EAN: 9781119964810
Sprache: englisch
Anzahl Seiten: 432

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>A concise, basic introduction to modelling and computational chemistry which focuses on the essentials, including MM, MC, and MD, along with a chapter devoted to QSAR and Discovery Chemistry.</b></p> <ul> <li>Includes supporting website featuring background information, full colour illustrations, questions and answers tied into the text,Visual Basic packages and many realistic examples with solutions</li> <li>Takes a hands-on approach, using state of the art software packages G03/W and/or Hyperchem, Gaussian .gjf files and sample outputs.</li> <li>Revised with changes in emphasis and presentation to appeal to the modern student.</li> </ul>
<b>Chapter 1: Electric charges and their properties.</b> <p>1.1 Point Charges.</p> <p>1.2 Coulomb's Law.</p> <p>1.3 Pair wise additivity.</p> <p>1.4 The Electric Field.</p> <p>1.5 Work.</p> <p>1.6 Charge distributions.</p> <p>1.7 The mutual potential energy U.</p> <p>1.8 Relationship between force and mutual potential energy.</p> <p>1.9 Electric Multipoles.</p> <p>1.10 The electrostatic potential.</p> <p>1.11 Polarization and Polarizability.</p> <p>1.12 Dipole polarizability.</p> <p>1.13 Many-body forces.</p> <p>1.14 Problem Set.</p> <p><b>Chapter 2: The Forces between Molecules.</b></p> <p>2.1 The Pair Potential.</p> <p>2.2 The multipole expansion.</p> <p>2.3 The Charge-Dipole interaction.</p> <p>2.4 The dipole-dipole interaction.</p> <p>2.5 Taking account of the temperature.</p> <p>2.6 The Induction energy.</p> <p>2.7 Dispersion energy.</p> <p>2.8 Repulsive contributions.</p> <p>2.9 Combination rules.</p> <p>2.10 Comparison with Experiment.</p> <p>2.11 Improved pair potentials.</p> <p>2.12 A Numerical potential.</p> <p>2.13 Site-site potentials.</p> <p>2.14 Problem Set.</p> <p><b>Chapter 3: Balls on Springs.</b></p> <p>3.1 Vibrational Motion.</p> <p>3.2 The Force Law.</p> <p>3.3 A simple diatomic.</p> <p>3.4 Three Problems.</p> <p>3.5 The Morse Potential.</p> <p>3.6 More Advanced Potentials.</p> <p><b>Chapter 4: Molecular Mechanics (MM).</b></p> <p>4.1 More about balls on springs.</p> <p>4.2 Larger systems of balls on springs.</p> <p>4.3 Force fields.</p> <p>4.4 Molecular Mechanics (MM).</p> <p>4.5 Modelling the solvent.</p> <p>4.6 Time-and-Money-saving tricks.</p> <p>4.7 Modern Force Fields.</p> <p>4.8 Some commercial force fields.</p> <p><b>Chapter 5: The Molecular Potential Energy Surface (PES).</b></p> <p>5.1 Multiple Minima.</p> <p>5.2 Saddle Points.</p> <p>5.3 Characterization.</p> <p>5.4 Finding Minima.</p> <p>5.5 Multivariate grid search.</p> <p>5.6 Derivative methods.</p> <p>5.7 First Order Methods.</p> <p>5.8 Second Order methods.</p> <p>5.9 Choice of Method.</p> <p>5.10 The Z matrix.</p> <p>5.11 The end of the Z matrix.</p> <p>5.12 Redundant Internal Coordinates.</p> <p><b>Chapter 6: Molecular Mechanics Examples.</b></p> <p>6.1 Geometry Optimization.</p> <p>6.2 Conformation Searches.</p> <p>6.3 Aminoacids.</p> <p>6.4 QSAR.</p> <p>6.5 Problem Set.</p> <p><b>Chapter 7: Sharing out the energy.</b></p> <p>7.1 Games of Chance.</p> <p>7.2 Enumeration.</p> <p>7.3 The Boltzmann Probability.</p> <p>7.4 Safety in Numbers.</p> <p>7.5 The Partition Function.</p> <p>7.6 A two-level quantum system.</p> <p>7.7 Lindemann's Theory of Melting.</p> <p>7.8 Problem Set.</p> <p><b>Chapter 8: Quick guide to Statistical Thermodynamics.</b></p> <p>8.1 The Ensemble.</p> <p>8.2 The Internal Energy Uth.</p> <p>8.3 The Helmholtz energy A.</p> <p>8.4 The entropy S.</p> <p>8.5 Equation of state and pressure.</p> <p>8.6 Phase space.</p> <p>8.7 The Configurational Integral.</p> <p>8.8 The Virial of Clausius.</p> <p><b>Chapter 9: Monte Carlo Simulations.</b></p> <p>9.1 Introduction.</p> <p>9.2 An Early Paper.</p> <p>9.3 The First "Chemical" Monte Carlo Simulation.</p> <p>9.4 Importance Sampling.</p> <p>9.5 The Periodic Box.</p> <p>9.6 Cutoffs.</p> <p>9.7 MC Simulation of Rigid Molecules.</p> <p>9.8 Flexible Molecules.</p> <p><b>Chapter 10: Molecular Dynamics.</b></p> <p>10.1 The Radial Distribution function.</p> <p>10.2 Pair correlation functions.</p> <p>10.3 Molecular Dynamics Methodology.</p> <p>10.5 Algorithms for time dependence.</p> <p>10.6 Molten Salts.</p> <p>10.7 Liquid Water.</p> <p>10.8 Different Types of Molecular Dynamics.</p> <p>10.9 Uses in Conformational Studies.</p> <p><b>Chapter 11: Introduction to quantum modeling.</b></p> <p>11.1 The Schrödinger equation.</p> <p>11.2 The time-independent Schrödinger equation.</p> <p>11.3 Particles in potential wells.</p> <p>11.4 The Correspondence Principle.</p> <p>11.5 The two-dimensional infinite well.</p> <p>11.6 The three-dimensional infinite well.</p> <p>11.7 Two non-interacting particles.</p> <p>11.8 The Finite Well.</p> <p>11.9 Unbound States.</p> <p>11.10 Free Particles.</p> <p>11.11 Vibrational Motion.</p> <p><b>Chapter 12: Quantum Gases.</b></p> <p>12.1 Sharing out the energy.</p> <p>12.2 Rayleigh Counting.</p> <p>12.3 The Maxwell Boltzmann distribution of atomic kinetic energies.</p> <p>12.4 Black body radiation.</p> <p>12.5 Modelling metals.</p> <p>12.6 Indistinguishability.</p> <p>12.7 Spin.</p> <p>12.8 Fermions and Bosons.</p> <p>12.9 The Pauli exclusion principle.</p> <p>12.10 Boltzmann's counting rule.</p> <p><b>Chapter 13: One-electron atoms.</b></p> <p>13.1 Atomic Spectra.</p> <p>13.2 The Correspondence Principle.</p> <p>13.3 The infinite nucleus approximation.</p> <p>13.4 Hartree's atomic units.</p> <p>13.5 Schrödinger treatment of the H atom..</p> <p>13.6 The Radial Solutions.</p> <p>13.7 The atomic orbitals.</p> <p>13.8 The Stern Gerlach experiment.</p> <p>13.9 Electron Spin.</p> <p>13.10 Total angular momentum.</p> <p>13.11 Dirac Theory of the electron.</p> <p>13.12 Measurement in the Quantum World.</p> <p><b>Chapter 14: The orbital model.</b></p> <p>14.1 One- and two-electron operators.</p> <p>14.2 The Many-Body Problem.</p> <p>14.3 The Orbital model.</p> <p>14.4 Perturbation Theory.</p> <p>14.5 The Variation Method.</p> <p>14.6 The linear variation method.</p> <p>14.7 Slater Determinants.</p> <p>14.8 The Slater-Condon-Shortley Rules.</p> <p>14.9 The Hartree Model.</p> <p>14.10 Atomic Shielding Constants.</p> <p>14.11 Koopmans' Theorem.</p> <p><b>Chapter 15: Simple molecules..</b></p> <p>15.1 The Hydrogen molecule-ion H2+.</p> <p>15.2 The LCAO model.</p> <p>15.3 Elliptic orbitals.</p> <p>15.4 The Heilter-London Treatment of Dihydrogen.</p> <p>15.5 The dihydrogen MO treatment.</p> <p>15.6 The James and Coolidge treatment.</p> <p>15.7 Population Analysis.</p> <p><b>Chapter 16: The HF-LCAO model.</b></p> <p>16.1 Roothaan's 1951 Landmark Paper.</p> <p>16.2 The and operators.</p> <p>16.3 The HF-LCAO equations.</p> <p>16.4 The electronic energy.</p> <p>16.5 Koopmans? Theorem.</p> <p>16.6 Open Shell systems.</p> <p>16.7 The Unrestricted Hartree Fock (UHF) model.</p> <p>16.8 Basis Sets.</p> <p>16.9 Gaussian orbitals.</p> <p><b>Chapter17: HF-LCAO examples.</b></p> <p>17.1 Output.</p> <p>17.2 Visualization.</p> <p>17.3 Properties.</p> <p>17.4 Geometry Optimization.</p> <p>17.5 Vibrational analysis.</p> <p>17.6 Thermodynamic properties.</p> <p>17.7 Back to L-phenylanine.</p> <p>17.8 Excited states.</p> <p>17.9 Consequences of the Brillouin Theorem.</p> <p>17.10 Electric field gradients.</p> <p>17.11 Hyperfine Interactions.</p> <p>17.12 Problem Set.</p> <p><b>Chapter 18: Semiempirical models.</b></p> <p>18.1 Hückel ã-electron Theory.</p> <p>18.2 Extended Hückel Theory.</p> <p>18.3 Pariser, Parr and Pople.</p> <p>18.4 Zero Differential Overlap.</p> <p>18.5 Which basis functions are they?.</p> <p>18.6 All Valence Electron ZDO models.</p> <p>18.7 CNDO.</p> <p>18.8 CNDO/2.</p> <p>18.9 CNDO/S.</p> <p>18.10 INDO.</p> <p>18.11 NDDO (Neglect of Diatomic Differential Overlap).</p> <p>18.12 The MINDO Family.</p> <p>18.13 MNDO.</p> <p>18.14 Austin Model 1 (AM1).</p> <p>18.15 PM3.</p> <p>18.16 SAM1.</p> <p>18.17 ZINDO/1 and ZINDO/S.</p> <p>18.18 Effective Core Potentials.</p> <p>18.19 Problem Set.</p> <p><b>Chapter 19: Electron Correlation.</b></p> <p>19.1 Electron Density Functions.</p> <p>19.2 Configuration Interaction.</p> <p>19.3 The Coupled Cluster Method.</p> <p>19.4 Müller-Plesset Perturbation Theory.</p> <p>19.5 Multiconfiguration SCF.</p> <p><b>Chapter 20: Density functional theory and the Kohn-Sham LCAO equations.</b></p> <p>20.1 The Pauli and Thomas-Fermi models.</p> <p>20.2 The Hohenberg Kohn Theorems.</p> <p>20.3 The Kohn-Sham (KS-LCAO) equations.</p> <p>20.4 Numerical Integration (Quadrature).</p> <p>20.5 Practical Details.</p> <p>20.6 Custom and Hybrid Functionals.</p> <p>20.7 An example.</p> <p><b>Chapter 21: Accurate thermodynamic properties; the Gn models.</b></p> <p>21.1 G1 theory.</p> <p>21.2 G2 Theory.</p> <p>21.3 G3 Theory.</p> <p><b>Chapter 22: Transition states.</b></p> <p>22.1 An example.</p> <p>22.2 The Reaction Path.</p> <p><b>Chapter 23: Dealing with the Solvent.</b></p> <p>23.1 Solvent Models.</p> <p>23.2 Langevin Dynamics.</p> <p>23.3 Continuum Solvation Models.</p> <p>23.4 The periodic solvent box.</p> <p><b>Chapter 24: Hybrid Models.</b></p> <p>24.1 Link atoms.</p> <p>24.2 IMOMM.</p> <p>24.3 IMOMO.</p> <p>24.4 ONIOM (Our own N-layered Integrated molecular Orbital and Molecular mechanics).</p>
<p>"This book has been written as an introduction to molecular modeling and is particularly useful to students new to the field. It is particularly good as a reference material as it explains many commonly used terms and equations in a clear and concise manner." (<i>Chromatographia</i>, January 2010)</p> <p>"A useful and comprehensive introduction to the field of molecular modeling for those who wish to understand the theory behind many of the methods in use today." (<i>Reviews</i>, May 2009)</p>
<p><b>Alan Hinchliffe,</b> Department of Chemistry, UMIST, Manchester, UK.</p>
<p><i>Molecular Modelling for Beginners,</i> Second Edition is a concise, basic introduction to modelling and computational chemistry including relevant introductory material to ensure greater accessibility to the subject.</p> <ul> <li>Partially updated from the first edition, chapter dealing with Monte Carlo and molecular dynamics, the Gn models, transition states and solvent models have been completely rewritten. A new chapter entitled 'Sharing out the energy' has been added to give a deeper understanding of the many statistical concepts discussed. All the illustrative examples contained in the text have been reworked using state of the art software. The associated 3website contains a number of relevant problem sets, together with suggested solutions.</li> <li>The Appendix ('A Mathematical aide-memoire') gives relevant mathematical detail and can be used stand-alone.</li> </ul> <p>Carefully structured and including many real chemical examples:</p> <ul> <li>The text begins by introducing the relevant fundamental theories of classical mechanics and classical electrostatics.</li> <li>These basic theories are then applied to modelling, concentrating on developing models from classical mechanics an focusing in particular on molecular mechanics.</li> <li>Attention then turns to statistical concepts, with a discussion of the basic methods of statistical thermodynamics.</li> <li>Monte Carlo and molecular dynamics are then treated in some depth.</li> <li>We then turn to quantum models, from simple quantum gases through fashionable density functional theory.</li> <li>With an entire chapter devoted to QSAR and discovery chemistry, the text successfully combines the essential theory with relevant applications and examples designed to encourage student understanding.</li> <li>The text ends with a discussion of transition states and hybrid models.</li> </ul> <p>This text will appeal to student taking undergraduate courses in chemistry, pharmacy, biochemistry, chemical engineering and materials science. It may also prove useful to students and researcher sin departments of biology, physics and maths who are required to study molecular modelling as part of their course and professionals who need a basic introduction to this increasingly important subject.</p>

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €