Details

Modern Electromagnetic Scattering Theory with Applications


Modern Electromagnetic Scattering Theory with Applications


1. Aufl.

von: Andrey V. Osipov, Sergei A. Tretyakov

147,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 31.01.2017
ISBN/EAN: 9781119293293
Sprache: englisch
Anzahl Seiten: 824

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>This self-contained book gives fundamental knowledge about scattering and diffraction of electromagnetic waves and fills the gap between general electromagnetic theory courses and collections of engineering formulas. The book is a tutorial for advanced students learning the mathematics and physics of electromagnetic scattering and curious to know how engineering concepts and techniques relate to the foundations of electromagnetics</p>
Preface xi <p>Acknowledgements xiii</p> <p>List of Abbreviations xv</p> <p><b>1 Introduction 1</b></p> <p>1.1 Scattering and Diffraction Theory 1</p> <p>1.2 Books on Related Subjects 3</p> <p>1.3 Concept and Outline of the Book 5</p> <p>References 8</p> <p><b>2 Fundamentals of Electromagnetic Scattering 11</b></p> <p>2.1 Introduction 11</p> <p>2.2 Fundamental Equations and Conditions 11</p> <p>2.2.1 Maxwell’s Equations 12</p> <p>2.2.2 Constitutive Relations 12</p> <p>2.2.3 Time-harmonic Scattering Problems 19</p> <p>2.3 Approximate Boundary Conditions 26</p> <p>2.3.1 Impedance Boundary Conditions 26</p> <p>2.3.2 Generalized (Higher-order) Impedance Boundary Conditions 31</p> <p>2.3.3 Sheet Transition Conditions 32</p> <p>2.4 Fundamental Properties of Time-harmonic Electromagnetic Fields 35</p> <p>2.4.1 Energy Conservation and Uniqueness 35</p> <p>2.4.2 Reciprocity 39</p> <p>2.5 Basic Solutions of Maxwell’s Equations in Homogeneous Isotropic Media 42</p> <p>2.5.1 Plane, Spherical, and Cylindrical Waves 43</p> <p>2.5.2 Electromagnetic Potentials and Fields of External Currents 46</p> <p>2.5.3 Tensor Green’s Function 50</p> <p>2.5.4 E and H Modes 54</p> <p>2.5.5 Fields with Translational Symmetry 58</p> <p>2.6 Electromagnetic Formulation of Huygens’ Principle 61</p> <p>2.6.1 Compact Scatterers 62</p> <p>2.6.2 Cylindrical Scatterers 67</p> <p>2.7 Problems 70</p> <p>References 84</p> <p><b>3 Far-field Scattering 87</b></p> <p>3.1 Introduction 87</p> <p>3.2 Scattering Cross Section 87</p> <p>3.2.1 Monostatic and Bistatic, Backscattering and Forward-scattering Cross Sections, Differential, Total, Absorption, and Extinction Cross Sections 87</p> <p>3.2.2 Scattering Width 91</p> <p>3.2.3 Backscattering from Impedance-matched Bodies 93</p> <p>3.3 Scattering Matrix 95</p> <p>3.3.1 Definition 95</p> <p>3.3.2 Scattering Matrix in Spherical Coordinates 97</p> <p>3.3.3 Scattering Matrix in the Plane of Scattering Coordinates 99</p> <p>3.4 Far-field Coefficient 101</p> <p>3.4.1 Integral Representations and Far-field Conditions 102</p> <p>3.4.2 Reciprocity of Scattered Fields 106</p> <p>3.4.3 Forward Scattering 108</p> <p>3.4.4 Cylindrical Bodies 113</p> <p>3.5 Scattering Regimes 120</p> <p>3.5.1 Resonant-size Scatterers 120</p> <p>3.5.2 Electrically Large Scatterers 121</p> <p>3.6 Electrically Small Scatterers 125</p> <p>3.6.1 Physics of Dipole Scattering 126</p> <p>3.6.2 Dipole Scattering in Terms of Polarizability Tensors 129</p> <p>3.6.3 Magneto-dielectric Ellipsoid 131</p> <p>3.6.4 Rotationally Symmetric Particles 137</p> <p>3.7 Problems 148</p> <p>References 162</p> <p><b>4 Planar Interfaces 165</b></p> <p>4.1 Introduction 165</p> <p>4.2 Interface of Two Homogeneous Semi-infinite Media 167</p> <p>4.2.1 Reflection and Transmission Coefficients 167</p> <p>4.2.2 Brewster’s Angle 173</p> <p>4.2.3 Total Internal Reflection 173</p> <p>4.2.4 Interfaces with Double-negative Materials 176</p> <p>4.2.5 Surface Waves 177</p> <p>4.2.6 Vector Solution of Reflection and Transmission Problems 179</p> <p>4.3 Arbitrary Number of Planar Layers 182</p> <p>4.3.1 Solution by the Method of Characteristic Matrices 182</p> <p>4.3.2 Discussion and Limiting Cases 189</p> <p>4.4 Reflection and Transmission of Cylindrical and Spherical Waves 195</p> <p>4.4.1 Excitation by a Linear Electric Current 195</p> <p>4.4.2 Excitation by an Electric Dipole 202</p> <p>4.5 A Layer between Homogeneous Half-spaces 207</p> <p>4.5.1 Different Half-spaces 207</p> <p>4.5.2 A PEC-backed Layer 213</p> <p>4.5.3 Layer Immersed in a Homogeneous Space 215</p> <p>4.6 Modeling with Approximate Boundary Conditions 224</p> <p>4.6.1 Accuracy of Impedance Boundary Conditions 225</p> <p>4.6.2 Accuracy of Transition Boundary Conditions 229</p> <p>4.6.3 Impedance-matched Surface 232</p> <p>4.7 Problems 235</p> <p>References 249</p> <p><b>5 Wedges 251</b></p> <p>5.1 Introduction 251</p> <p>5.2 The Perfectly Conducting Wedge 253</p> <p>5.2.1 Formulation of Boundary Value Problem 254</p> <p>5.2.2 Solution by Separation of Variables 256</p> <p>5.2.3 Fields and Currents at the Edge 258</p> <p>5.2.4 Reduction to an Integral Form 260</p> <p>5.2.5 Special Cases 262</p> <p>5.2.6 Edge-diffracted and GO Components. Diffraction Coefficient 266</p> <p>5.3 Scattering from a Half-plane (Solution by Factorization Method) 271</p> <p>5.3.1 Statement of the Problem 271</p> <p>5.3.2 Functional Equation 273</p> <p>5.3.3 Factorization and Solution 274</p> <p>5.3.4 Scattered Field Far from the Edge 276</p> <p>5.4 The Impedance Wedge 279</p> <p>5.4.1 Boundary Value Problem, Sommerfeld’s Integrals, and Functional Equations 279</p> <p>5.4.2 Normal Incidence (Maliuzhinets’ Solution) 288</p> <p>5.4.3 Unit Surface Impedance 297</p> <p>5.4.4 Further Exactly Solvable Cases 300</p> <p>5.5 High-frequency Scattering from Impenetrable Wedges 306</p> <p>5.5.1 GO Components and Surface Waves 307</p> <p>5.5.2 Edge-diffracted Field, Diffraction Coefficient, and Scattering Widths 310</p> <p>5.5.3 Uniform Asymptotic Approximations 316</p> <p>5.5.4 GTD/UTD Formulation 319</p> <p>5.6 Behavior of Electromagnetic Fields at Edges 322</p> <p>5.6.1 Determining the Degree of Singularity 322</p> <p>5.6.2 Analytical Structure of Meixner’s Series 328</p> <p>5.7 Problems 329</p> <p>References 336</p> <p><b>6 Circular Cylinders and Convex Bodies 339</b></p> <p>6.1 Introduction 339</p> <p>6.2 Perfectly Conducting Cylinders: Separation of Variables and Series Solution 340</p> <p>6.2.1 Separation of Variables 342</p> <p>6.2.2 Satisfying the Boundary Conditions 342</p> <p>6.2.3 Scattered Fields 343</p> <p>6.2.4 Numerical Examples 345</p> <p>6.3 Homogeneous Cylinders under Normal Illumination 350</p> <p>6.3.1 Field Equations and Boundary Conditions 350</p> <p>6.3.2 Rayleigh Series Solution 351</p> <p>6.3.3 Numerical Examples 352</p> <p>6.4 Watson’s Transformation and High-frequency Approximations 354</p> <p>6.4.1 Watson’s Transformation 355</p> <p>6.4.2 Alternative Solution by Separation of Variables 358</p> <p>6.4.3 High-frequency Approximations 360</p> <p>6.4.4 Surface Currents in the Penumbra Region. Fock’s Functions 369</p> <p>6.5 Coated and Impedance Cylinders under Oblique Illumination 375</p> <p>6.5.1 PEC Cylinder with Magneto-dielectric Coating 376</p> <p>6.5.2 Impedance Cylinder 383</p> <p>6.6 Extension to Generally Shaped Convex Impedance Bodies 392</p> <p>6.6.1 Fock’s Principle of the Local Field in the Penumbra Region 393</p> <p>6.6.2 Asymptotic Solution for the Field on the Surface of Circular Impedance Cylinders under Oblique Illumination 396</p> <p>6.6.3 Fock- and GTD-type Solutions for Electrically Large Convex Impedance Bodies 398</p> <p>6.7 Problems 403</p> <p>References 411</p> <p><b>7 Spheres 412</b></p> <p>7.1 Introduction 412</p> <p>7.2 Exact Solution for a Multilayered Sphere 414</p> <p>7.2.1 Formulation of the Problem in Terms of Debye’s Potentials 415</p> <p>7.2.2 Derivation of the Series Solution 417</p> <p>7.2.3 Solution for Impedance Boundary Conditions 427</p> <p>7.3 Physics of Scattering from Spheres 429</p> <p>7.3.1 Classification of Scattering 430</p> <p>7.3.2 Spiral Waves 436</p> <p>7.3.3 Debye’s Expansions for Homogeneous Spheres 438</p> <p>7.3.4 Waves in Electrically Large Homogeneous Low-absorption Spheres 442</p> <p>7.4 Scattered Field in the Far Zone 463</p> <p>7.4.1 Far-field Coefficient, Scattering Cross Sections, and Polarization Structure. Approximations for Electrically Large Spheres 463</p> <p>7.4.2 Electrically Small Spheres: Dipole, Quasi-static, and Resonance Approximations 471</p> <p>7.4.3 PEC Spheres 479</p> <p>7.4.4 Core-shell Spheres 483</p> <p>7.4.5 Impedance Spheres 488</p> <p>7.5 Far-field Scattering from Homogeneous Spheres 493</p> <p>7.5.1 Exact Solution and Limiting Cases 494</p> <p>7.5.2 Electrically Small Lossy Spheres 495</p> <p>7.5.3 Electrically Small Low-absorption Spheres 499</p> <p>7.5.4 Electrically Large Lossy Spheres: Relation to the Impedance Sphere and the Role of Absorption 506</p> <p>7.5.5 Electrically Large Low-absorption Spheres: Light Scattering from Water Droplets 513</p> <p>7.6 Metamaterial Effects in Scattering from Spheres 542</p> <p>7.6.1 Small Spheres 542</p> <p>7.6.2 Invisibility Cloak 546</p> <p>7.7 Problems 552</p> <p>References 562</p> <p><b>8 Method of Physical Optics 565</b></p> <p>8.1 Introduction 565</p> <p>8.1.1 On Numerical Techniques for Studying Scattering from Arbitrary-shaped Bodies 565</p> <p>8.1.2 PO as one of the Approximate Analytical Techniques 566</p> <p>8.1.3 Structure of the Chapter 567</p> <p>8.2 Principles and General Solution 567</p> <p>8.2.1 Principles of PO 567</p> <p>8.2.2 Derivation of PO Solutions 569</p> <p>8.2.3 PO for Cylindrical Bodies 573</p> <p>8.3 Transmission through Apertures 575</p> <p>8.3.1 PO Solution 575</p> <p>8.3.2 GO Rays and Fresnel Zones 576</p> <p>8.3.3 Contribution from the Rim of the Aperture: Edge-diffracted Rays 582</p> <p>8.4 Scattering from Curved Surfaces 594</p> <p>8.4.1 Fock’s Reflection Formula 594</p> <p>8.4.2 Application to a Spherical Segment 600</p> <p>8.4.3 Reflection Formula in the Far-field Region 605</p> <p>8.4.4 Diffraction by an Edge in a Non-metallic Surface 609</p> <p>8.5 Advantages and Limitations of Physical Optics 615</p> <p>8.6 Problems 616</p> <p>References 632</p> <p><b>9 Physical Optics Solutions of Canonical Problems 634</b></p> <p>9.1 Introduction 634</p> <p>9.2 Vertices 635</p> <p>9.2.1 Vertex on an Edge of a Thin Plate 637</p> <p>9.2.2 Apex of a Pyramid 641</p> <p>9.2.3 Tip of an Elliptic Cone 643</p> <p>9.3 Electrically Large Plates 652</p> <p>9.3.1 Arbitrarily Shaped Plates 653</p> <p>9.3.2 Circular Disc 658</p> <p>9.3.3 Polygonal Plates 663</p> <p>9.3.4 Far-field Patterns of Polygonal Plates and Apertures 667</p> <p>9.4 Bodies of Revolution 671</p> <p>9.4.1 PO Solution for Bodies of Revolution 672</p> <p>9.4.2 Imperfectly Reflecting Bodies under Axial Illumination 675</p> <p>9.4.3 PEC Bodies under Oblique Illumination 677</p> <p>9.4.4 Axial Backscattering 678</p> <p>9.4.5 Examples 684</p> <p>9.5 Problems 689</p> <p>References 712</p> <p><b>A Definitions and Useful Relations of Vector Analysis and Differential Geometry 714</b></p> <p>A.1 Vector Algebra 714</p> <p>A.2 Vector Analysis 716</p> <p>A.3 Vectors and Vector Differential Operators in Orthogonal Curvilinear Coordinates 717</p> <p>A.3.1 General Orthogonal Curvilinear Coordinates 717</p> <p>A.3.2 Spherical Coordinates 718</p> <p>A.4 Curves and Surfaces in Space 720</p> <p>A.4.1 Curves 720</p> <p>A.4.2 Surfaces 720</p> <p>A.5 Problems 722</p> <p>References 724</p> <p><b>B Fresnel Integral and Related Functions 725</b></p> <p>B.1 Fresnel Integral 725</p> <p>B.2 Relation to the Error Function 728</p> <p>B.3 Transition Functions of Uniform Theories of Diffraction 730</p> <p>B.4 Problems 731</p> <p>References 732</p> <p><b>C Principles of Complex Integration 733</b></p> <p>C.1 Introduction 733</p> <p>C.2 Deforming the Integration Contour 734</p> <p>C.2.1 Basic Facts about Functions of a Complex Variable 734</p> <p>C.2.2 Integrals over Infinite Contours 736</p> <p>C.3 Steepest Descent Method 737</p> <p>C.3.1 Steepest Descent Path 738</p> <p>C.3.2 Saddle Point Contribution 739</p> <p>C.3.3 Pole Singularity near the Saddle Point 741</p> <p>C.3.4 Further Cases 742</p> <p>C.4 Problems 743</p> <p>References 745</p> <p><b>D The Stationary Phase Method 746</b></p> <p>D.1 Introduction 746</p> <p>D.2 One-dimensional Integrals 746</p> <p>D.2.1 No Stationary Points on the Integration Interval 747</p> <p>D.2.2 Isolated Stationary Points 748</p> <p>D.2.3 Two Coalescing Stationary Points 751</p> <p>D.3 Two-dimensional Integrals 756</p> <p>D.3.1 Stationary Point in the Integration Domain 756</p> <p>D.3.2 Stationary Point near the Boundary of the Integration Domain 758</p> <p>D.3.3 Contribution from the Boundary of the Integration Domain 760</p> <p>D.3.4 Kontorovich’s Formula 763</p> <p>D.3.5 Integrand Vanishing on the Boundary 765</p> <p>D.3.6 Summary of the Two-dimensional Stationary-phase Method 766</p> <p>D.4 Problems 766</p> <p>References 768</p> <p><b>E Asymptotic Approximations of Bessel Functions of Large Argument and Arbitrary Order 770</b></p> <p>E.1 Introduction 770</p> <p>E.1.1 Basic Definitions and Properties 770</p> <p>E.1.2 Large-argument Approximations (|z| ?a 1) 772</p> <p>E.1.3 Content of the Appendix 775</p> <p>E.2 Debye’s Asymptotic Approximations 776</p> <p>E.2.1 Debye’s Method 776</p> <p>E.2.2 WKB Approximation 778</p> <p>E.2.3 Bessel Functions on the Complex 𝜈 Plane 791</p> <p>E.3 Almost Equal Argument and Order 795</p> <p>E.3.1 Approximations in Terms of Airy Functions 796</p> <p>E.3.2 Approximations in Terms of Normalized Airy Functions 797</p> <p>E.3.3 Zeros in the Neighborhood of the Points 𝜈 = ±z 798</p> <p>References 799</p> <p>Index 801</p>
<strong>Andrey Osipov</strong>, Microwaves and Radar Institute, German Aerospace Center (DLR), Germany. <p><strong>Sergei Tretyakov</strong>, Department of Radio Science and Engineering, Aalto University, Finland.

Diese Produkte könnten Sie auch interessieren:

Strategies to the Prediction, Mitigation and Management of Product Obsolescence
Strategies to the Prediction, Mitigation and Management of Product Obsolescence
von: Bjoern Bartels, Ulrich Ermel, Peter Sandborn, Michael G. Pecht
PDF ebook
116,99 €