Details

Green Techniques for Organic Synthesis and Medicinal Chemistry


Green Techniques for Organic Synthesis and Medicinal Chemistry


2. Aufl.

von: Wei Zhang, Berkeley W. Cue

171,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 16.01.2018
ISBN/EAN: 9781119288176
Sprache: englisch
Anzahl Seiten: 728

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>An updated overview of the rapidly developing field of green techniques for organic synthesis and medicinal chemistry</b></p> <p>Green chemistry remains a high priority in modern organic synthesis and pharmaceutical R&D, with important environmental and economic implications. This book presents comprehensive coverage of green chemistry techniques for organic and medicinal chemistry applications, summarizing the available new technologies, analyzing each technique’s features and green chemistry characteristics, and providing examples to demonstrate applications for green organic synthesis and medicinal chemistry.  </p> <p>The extensively revised edition of <i>Green Techniques for Organic Synthesis and Medicinal Chemistry </i>includes 7 entirely new chapters on topics including green chemistry and innovation, green chemistry metrics, green chemistry and biological drugs, and the business case for green chemistry in the generic pharmaceutical industry. It is divided into 4 parts. The first part introduces readers to the concepts of green chemistry and green engineering, global environmental regulations, green analytical chemistry, green solvents, and green chemistry metrics. The other three sections cover green catalysis, green synthetic techniques, and green techniques and strategies in the pharmaceutical industry.</p> <ul> <li>Includes more than 30% new and updated material—plus seven brand new chapters</li> <li>Edited by highly regarded experts in the field (Berkeley Cue is one of the fathers of Green Chemistry in Pharma) with backgrounds in academia and industry</li> <li>Brings together a team of international authors from academia, industry, government agencies, and consultancies (including John Warner, one of the founders of the field of Green Chemistry)</li> </ul> <p><i>Green Techniques for Organic Synthesis and Medicinal Chemistry, Second Edition</i> is an essential resource on green chemistry technologies for academic researchers, R&D professionals, and students working in organic chemistry and medicinal chemistry.</p>
<p>List of Contributors xvii</p> <p>Foreword xxi</p> <p>Preface xxiii</p> <p><b>Part I General Topics in Green Chemistry 1</b></p> <p><b>Green ChemistryMetrics 3<br /></b><i>Frank Roschangar and Juan Colberg</i></p> <p>1.1 Business Case 3</p> <p>1.2 Historical Context 3</p> <p>1.3 Metrics, Awards, and Barriers 4</p> <p>1.4 Metrics Unification Via Green Aspiration Level 9</p> <p>1.5 Green Scorecard 12</p> <p>1.6 Supply Chain 14</p> <p>1.7 Outlook and Opportunities 15</p> <p>References 17</p> <p><b>Green Solvents 21<br /></b><i>Janet L. Scott and Helen F. Sneddon</i></p> <p>2.1 Introduction 21</p> <p>2.2 Solvent Selection Guides and Tools 23</p> <p>2.3 Greener Molecular Solvents 24</p> <p>2.4 Opportunities, Challenges, and Future Developments 34</p> <p>References 34</p> <p><b>Green Analytical Chemistry 43<br /></b><i>Paul Ferguson and Douglas Raynie</i></p> <p>3.1 Introduction 43</p> <p>3.2 Sample Preparation 47</p> <p>3.3 Techniques and Methods 50</p> <p>3.4 Process Analytical Technology 60</p> <p>3.5 Biopharmaceutical Analysis 62</p> <p>3.6 Conclusions 65</p> <p>Acknowledgments 66</p> <p>References 66</p> <p><b>Green Engineering 71<br /></b><i>Christopher L. Kitchens and Lindsay Soh</i></p> <p>4.1 Introduction: Green Engineering Misconceptions and Realizations 71</p> <p>4.2 12 Principles of Green Engineering 72</p> <p>4.3 Green Chemistry Metrics Applied to Engineering 73</p> <p>4.4 Use of Green Solvents in the Chemical Industry 80</p> <p>4.5 Presidential Green Chemistry Awards 86</p> <p>4.6 Opportunities and Outlook 87</p> <p>References 87</p> <p><b>Greening of Consumer Cleaning Products 91<br /></b><i>David C. Long</i></p> <p>5.1 History of Green Consumer Cleaning Products 91</p> <p>5.2 Drivers for Greener Products 94</p> <p>5.3 Development of Green Cleaning Criteria and Eco-Labeling 98</p> <p>5.4 Development of Greener Ingredients for Cleaners 102</p> <p>5.5 The Future of Green Cleaning 111</p> <p>Acknowledgments 112</p> <p>References 112</p> <p><b>Innovation with Non-Covalent Derivatization 117<br /></b><i>John C.Warner and Emily Stoler</i></p> <p>6.1 Introduction 117</p> <p>6.2 NCD Overview 118</p> <p>6.3 Pharmaceutical NCDs 121</p> <p>6.4 Environmental and Green Chemistry Benefits 123</p> <p>References 123</p> <p><b>Part II Green Catalysts 131</b></p> <p><b>Catalytic C-H Bond Cleavage for Heterocyclic Compounds 133<br /></b><i>Zhanxiang Liu and Yuhong Zhang</i></p> <p>7.1 Introduction 133</p> <p>7.2 Synthesis of Nitrogen Heterocycles 133</p> <p>7.3 Synthesis of Oxygen-Containing Heterocycles 144</p> <p>7.4 Synthesis of Sulfur-Containing Heterocycles 148</p> <p>7.5 Medium-Sized Heterocyclic Compounds 150</p> <p>7.6 Conclusion 152</p> <p>References 152</p> <p><b>Biocatalysis 161<br /></b><i>James Lalonde</i></p> <p>8.1 Introduction 161</p> <p>8.2 Enzymes for Biocatalysis 162</p> <p>8.3 Advances in Enzyme Engineering and Directed Evolution 164</p> <p>8.4 Biocatalytic Synthesis of Pharmaceuticals: Case Studies of Highly Efficient Pharmaceutical Syntheses 165</p> <p>8.5 Summary and Future Outlook 178</p> <p>References 180</p> <p><b>Practical Asymmetric Organocatalysis 185<br /></b><i>Wen-Zhao Zhang, Samik Nanda, and Sanzhong Luo</i></p> <p>9.1 Introduction 185</p> <p>9.2 Aminocatalysis 185</p> <p>9.3 Brønsted Acid Catalysis 191</p> <p>9.4 Brønsted Base Catalysis 193</p> <p>9.5 Hydrogen-Bonding Catalysis 197</p> <p>9.6 Phase-Transfer Catalysis 202</p> <p>9.7 Lewis Acid, Lewis Base, and N-Heterocyclic Carbene Catalysis 204</p> <p>9.8 Large-Scale Reaction (>100-Gram Reaction) 207</p> <p>9.9 Conclusion 209</p> <p>References 209</p> <p><b>Fluorous Catalysis 219<br /></b><i>L´aszl´o T. Mika and Istv´an T. Horv´ath</i></p> <p>10.1 Introduction and the Principles of Fluorous Catalysis 219</p> <p>10.2 Ligands for Fluorous Transition Metal Catalysts 224</p> <p>10.3 Synthetic Application of Fluorous Catalysis 225</p> <p>10.4 Fluorous Organocatalysis 256</p> <p>10.5 Other Applications of Fluorous Catalysis 259</p> <p>References 259</p> <p><b>Solid-Supported Catalysis 269<br /></b><i>Sukanta Bhattacharyya and Basudeb Basu</i></p> <p>11.1 Introduction 269</p> <p>11.2 Immobilized Palladium Catalysts 270</p> <p>11.3 Immobilized Rhodium Catalysts 276</p> <p>11.4 Immobilized Ruthenium Catalysts 279</p> <p>11.5 Other Immobilized Catalysts 284</p> <p>11.6 Conclusions 286</p> <p>References 287</p> <p><b>Asymmetric Organocatalysis in Aqueous Media 291<br /></b><i>Kartick C. Bhowmick and Tanmoy Chanda</i></p> <p>12.1 Introduction 291</p> <p>12.2 Carbon-Carbon Bond-Formation Reactions 292</p> <p>12.3 Reactions Other than C-C Bond Formation 313</p> <p>12.4 Conclusion 314</p> <p>References 314</p> <p><b>Part III Green Synthetic Techniques 325</b></p> <p><b>Solvent-Free Synthesis 327<br /></b><i>Kendra Leahy Denlinger and JamesMack</i></p> <p>13.1 Introduction 327</p> <p>13.2 Ball Milling 328</p> <p>References 339</p> <p><b>Ultrasonic Reactions 343<br /></b><i>Rodrigo Cella and H´elio A. Stefani</i></p> <p>14.1 Introduction 343</p> <p>14.2 How Does CavitationWork? 343</p> <p>14.3 Aldol/Condensation Reactions 345</p> <p>14.4 1,4-Addition 351</p> <p>14.5 Heterocycles Synthesis 353</p> <p>14.6 Coupling Reactions 356</p> <p>14.7 Wittig Reaction 361</p> <p>14.8 Diels-Alder Reaction 362</p> <p>14.9 Miscellaneous 365</p> <p>14.10 Conclusions 366</p> <p>References 366</p> <p><b>Photochemical Synthesis 373<br /></b><i>Stefano Protti,Maurizio Fagnoni, and Angelo Albini</i></p> <p>15.1 Introduction 373</p> <p>15.2 Synthesis and Rearrangement of Open-Chain Compounds 376</p> <p>15.3 Synthesis of Three- and Four-Membered Rings 382</p> <p>15.4 Synthesis of Five-, Six- (and Larger)-Membered Rings 391</p> <p>15.5 Oxygenation and Oxidation 398</p> <p>15.6 Conclusions 400</p> <p>Acknowledgments 401</p> <p>References 401</p> <p><b>Pot Economy Synthesis 407<br /></b><i>Wenbin Yi, Xin Zeng, and Song Gao</i></p> <p>16.1 Introduction 407</p> <p>16.2 Multicomponent Reactions 407</p> <p>16.3 One-Pot and Multi-Step Reactions 415</p> <p>16.4 One-Pot Asymmetric Synthesis 424</p> <p>16.5 Outlook 434</p> <p>References 434</p> <p><b>Microwave-Assisted Organic Synthesis: Overview of Recent Applications 441<br /></b><i>Nandini Sharma, Upendra K. Sharma, and Erik V. Van der Eycken</i></p> <p>17.1 Introduction 441</p> <p>17.2 C-H Functionalization 449</p> <p>17.3 Insertion Reactions 452</p> <p>17.4 Reduction 453</p> <p>17.5 Synthesis of Peptides and Related Fine Chemicals 455</p> <p>17.6 Newer Developments 459</p> <p>17.7 Summary 461</p> <p>References 461</p> <p><b>Solid-Supported Synthesis 469<br /></b><i>Indrajeet J. Barve and Chung-Ming Sun</i></p> <p>Abbreviations 469</p> <p>18.1 Introduction 471</p> <p>18.2 Techniques of Solid-Phase Supported Synthesis 472</p> <p>18.3 Solid-Phase Supported Heterocyclic Chemistry 476</p> <p>18.4 Solid-Supported Synthesis of Natural Products 486</p> <p>18.5 Solid-Supported Organometallic Chemistry 491</p> <p>18.6 Solid-Phase Synthesis of Peptides 493</p> <p>18.7 Solid-Phase Supported Stereoselective Synthesis 494</p> <p>18.8 Interdisciplinary Solid-Supported Synthesis 499</p> <p>References 505</p> <p><b>Light Fluorous Synthesis 509<br /></b><i>Wei Zhang</i></p> <p>19.1 Introduction 509</p> <p>19.2 “Heavy” Versus “Light” Fluorous Chemistry 509</p> <p>19.3 The Green Chemistry Aspects of Fluorous Synthesis 510</p> <p>19.4 Fluorous Techniques for Discovery Chemistry 511</p> <p>19.5 Conclusions 533</p> <p>References 533</p> <p><b>Part IV Green Techniques and Strategies in the Pharmaceutical Industry 539</b></p> <p><b>Ionic Liquids in Pharmaceutical Industry 541<br /></b><i>Julia L. Shamshina, Paula Berton, HuiWang, Xiaosi Zhou, Gabriela Gurau, and Robin D. Rogers</i></p> <p>Abbreviations 541</p> <p>20.1 Introduction 543</p> <p>20.2 Finding the Right Role for ILs in the Pharmaceutical Industry 544</p> <p>20.3 Conclusions and Prospects 567</p> <p>References 568</p> <p><b>Green Technologies and Approaches in theManufacture of Biologics 579<br /></b><i>Sa V. Ho and Kristi L. Budzinski</i></p> <p>21.1 Introduction 579</p> <p>21.2 Characteristics of Biologics 580</p> <p>21.3 Manufacture of Therapeutic Biologics 581</p> <p>21.4 Environmental Metrics Development and Impact Analysis 587</p> <p>21.5 Some Future Directions 592</p> <p>21.6 Conclusions 594</p> <p>Acknowledgments 594</p> <p>References 594</p> <p><b>Benchmarking Green Chemistry Adoption by “Big Pharma”and Generics Manufacturers 601<br /></b><i>Vesela R. Veleva and BerkeleyW. Cue</i></p> <p>22.1 Introduction 601</p> <p>22.2 Literature Review 602</p> <p>22.3 Pharmaceutical Industry Overview and Green Chemistry Drivers 604</p> <p>22.4 Benchmarking Industry Adoption of Green Chemistry 607</p> <p>22.5 Results and Discussion 610</p> <p>22.6 Conclusion 616</p> <p>References 616</p> <p><b>Green Process Chemistry in the Pharmaceutical Industry: Case Studies Update 621<br /></b><i>Joseph M. Fortunak, Ji Zhang, Frederick E. Nytko III, and Tiffany N. Ellison</i></p> <p>23.1 Introduction 621</p> <p>23.2 Pharmaceutical Patents Driving Innovation 622</p> <p>23.3 A Caution About Drug Manufacturing Costs 623</p> <p>23.4 Process Evolution by Multiple Route Discovery Efforts—Dolutegravir 624</p> <p>23.5 The Impact of Competition on Process Evolution—Tenofovir Disoproxil Fumarate 628</p> <p>23.6 Simeprevir (Olysio/Sovriad) and Analogues: Chiral Phase-Transfer Catalyst-Promoted Optical Alpha-Amino Acid Synthesis: A Metal-free Process 633</p> <p>23.7 Vaniprevir (MK 7009), Simeprevir (TMC435), and Danoprevir: Ring-Closing Metathesis (RCM) for Macrocyclic Lactam Synthesis: Now a Commercial Reality 635</p> <p>23.8 Daclatasvir (BMS-790052, Daklinza), and Ledipasvir (GS-5885): Palladium Catalyzed Cross-Coupling for Greening a Process 638</p> <p>23.9 Sitagliptin (Januvia) and Ponatinib (Iclusig): Greening the Process by Telescoping Multiple Steps Together 639</p> <p>23.10 Febuxostat (Uloric): Greening the Process via Metal Catalyzed C-H Activation: A Prospect 641</p> <p>23.11 Conclusions 644</p> <p>References 644</p> <p><b>Greener Pharmaceutical Science Through Collaboration: The ACS GCI Pharmaceutical Roundtable 649<br /></b><i>Julie B. Manley andMichael E. Kopach</i></p> <p>24.1 Introduction 649</p> <p>24.2 Establishing Pre-Competitive Collaborations 650</p> <p>24.3 Informing and Influencing the Research Agenda 654</p> <p>24.4 Developing Tools 661</p> <p>24.5 Educating Leaders 666</p> <p>24.6 Collaborating Globally 668</p> <p>24.7 Future Opportunities 669</p> <p>24.8 Success Factors 671</p> <p>References 673</p> <p>Index 675</p>
<p><b>WEI ZHANG, P<small>H</small>D,</b> is Professor of Chemistry and Director of the Center for Green Chemistry at the University of Massachusetts Boston. He is known for research work in organic synthesis, medicinal chemistry, and green chemistry. He received the 2015 International Fluorous Technology Award and is one of the top three most published authors in fluorous chemistry. <p><b>BERKELEY W. CUE, P<small>H</small>D,</b> is President and Founder of BWC Pharma Consulting LLC, a consultancy specializing in pharmaceutical sciences and green chemistry, and Adjunct Professor of Chemistry at the University of Massachusetts Boston.
<p><b>Green Techniques FOR Organic Synthesis AND Medicinal Chemistry</b> <p><b>An updated overview of the rapidly developing field of green techniques for organic synthesis and medicinal chemistry</b> <p>Green chemistry remains a high priority in modern organic synthesis and pharmaceutical R&D, with important environmental and economic implications. This book presents comprehensive coverage of green chemistry techniques for organic and medicinal chemistry applications, summarizing the available new technologies, analyzing each technique's features and green chemistry characteristics, and providing examples to demonstrate applications for green organic synthesis and medicinal chemistry. <p>The extensively revised edition of <i>Green Techniques for Organic Synthesis and Medicinal Chemistry</i> includes 7 entirely new chapters on topics including green chemistry and innovation, green chemistry metrics, green chemistry and biological drugs, and the business case for green chemistry in the generic pharmaceutical industry. It is divided into 4 parts. The first part introduces readers to the concepts of green chemistry and green engineering, global environmental regulations, green analytical chemistry, green solvents, and green chemistry metrics. The other three sections cover green catalysis, green synthetic techniques, and green techniques and strategies in the pharmaceutical industry. <ul> <li>Includes more than 30% new and updated material—plus seven brand new chapters</li> <li>Edited by highly regarded experts in the field (Berkeley Cue is one of the fathers of Green Chemistry in Pharma) with backgrounds in academia and industry</li> <li>Brings together a team of international authors from academia, industry, government agencies, and consultancies (including John Warner, one of the founders of the field of Green Chemistry)</li> </ul> <p><i>Green Techniques for Organic Synthesis and Medicinal Chemistry, 2nd Edition</i> is an essential resource on green chemistry technologies for academic researchers, R&D professionals, and students working in organic chemistry and medicinal chemistry.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
Preis: 136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
Preis: 136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
Preis: 99,99 €