Details

Mineral Trioxide Aggregate


Mineral Trioxide Aggregate

Properties and Clinical Applications
1. Aufl.

von: Mahmoud Torabinejad

113,99 €

Verlag: Wiley-Blackwell
Format: PDF
Veröffentl.: 23.06.2014
ISBN/EAN: 9781118892466
Sprache: englisch
Anzahl Seiten: 360

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>Mineral trioxide aggregate (MTA) was developed more than 20 years ago to seal the pathways of communication of the root canal system. It’s currently the preferred material used by endodontists because of its superior properties such as its seal and biocompatibility that significantly improves outcomes of endodontic treatments.<br /> <br /> Dr. Torabinejad, who was the principle investigator of the dental applications of MTA, and leading authorities on this subject provide a clinically focused reference detailing the properties and uses of MTA, including vital pulp therapy (pulp capping, pulpotomy), apexification, pulp regeneration, repair of root perforations, root end filling and root canal filling. Line illustrations and clinical photographs show proper technique. An accompanying website features photographs and video presentations for selected procedures using MTA.<br /> <i><br /> Mineral Trioxide Aggregate: Properties and Clinical Applications</i> is an ideal book for dental students and endodontic residents learning procedures for the first time as well as practicing dentists and endodontists who would like to improve outcomes of endodontic treatments.</p>
<p>Contributors xv</p> <p>Preface xvii</p> <p><b>1 Pulp and Periradicular Pathways, Pathosis, and Closure 1</b><br /> <i>Mahmoud Torabinejad</i></p> <p>Pulp and Periradicular Pathways 2</p> <p>Natural Pathways 2</p> <p>Apical foramen 2</p> <p>Lateral canals 4</p> <p>Dentinal tubules 4</p> <p>Pathological and Iatrogenic Pathways 5</p> <p>Dental caries 5</p> <p>Role of microorganisms 6</p> <p>Root perforations 7</p> <p>Root perforations during access preparation 7</p> <p>Root perforations during cleaning and shaping 8</p> <p>Root perforations during post space preparations 10</p> <p>Vertical fracture 10</p> <p>Periradicular Pathosis 11</p> <p>Inflammatory process of periradicular lesions 11</p> <p>Materials to Seal the Pathways to the Root Canal System and the Periodontium 13</p> <p>References 15</p> <p><b>2 Chemical Properties of MTA 17</b><br /> <i>David W. Berzins</i></p> <p>Introduction 17</p> <p>MTA Composition 19</p> <p>Portland cement 19</p> <p>Role of bismuth oxide and gypsum 20</p> <p>MTA powder morphology 21</p> <p>Trace elements and compounds 23</p> <p>Setting Reactions 23</p> <p>Setting time 26</p> <p>Maturation 26</p> <p>Factors that affect setting: additives and accelerants 26</p> <p>Effect of water and moisture 27</p> <p>Interaction with environment 27</p> <p>Development of Reaction Zones 28</p> <p>References 31</p> <p><b>3 Physical Properties of MTA 37</b><br /> <i>Ricardo Caicedo and Lawrence Gettleman</i></p> <p>Introduction 38</p> <p>pH 38</p> <p>Solubility 40</p> <p>Setting Expansion 45</p> <p>Radiopacity 46</p> <p>Various Types of Strength 49</p> <p>Compressive strength 49</p> <p>Flexural strength 54</p> <p>Shear strength 55</p> <p>Push-out strength 56</p> <p>Shear bond strength 56</p> <p>Overview 57</p> <p>Microhardness 59</p> <p>Color and Aesthetics 61</p> <p>Physicochemical Properties 62</p> <p>Acknowledgment 66</p> <p>References 66</p> <p><b>4 MTA in Vital Pulp Therapy 71</b><br /> <i>Till Dammaschke, Joe H. Camp, and George Bogen</i></p> <p>Introduction 72</p> <p>Advantages 74</p> <p>Pulp Responses to Capping Materials 74</p> <p>Direct Pulp Capping with Calcium Hydroxide 75</p> <p>Mineral Trioxide Aggregate 77</p> <p>Physiochemical properties 77</p> <p>Mode of action in pulp capping and pulpotomy 80</p> <p>Comparison with calcium hydroxide 83</p> <p>Pulpotomy in Primary Teeth 85</p> <p>MTA Pulpotomy 86</p> <p>Primary teeth 86</p> <p>Immature permanent teeth 88</p> <p>Symptomatic permanent teeth 90</p> <p>Pulp Capping in Teeth Diagnosed with Reversible Pulpitis 94</p> <p>Treatment Considerations 96</p> <p>Disadvantages 98</p> <p>Summary 99</p> <p>Acknowledgment 99</p> <p>References 100</p> <p><b>5 Management of Teeth with Necrotic Pulps and Open Apices 111</b><br /> <i>Shahrokh Shabahang and David E. Witherspoon</i></p> <p>Diagnosis in Immature Teeth 111</p> <p>History of Treating Immature Teeth 114</p> <p>Infection Control in Immature Teeth 116</p> <p>Apexification 118</p> <p>Calcium Hydroxide Apexification Therapy: Outcomes 119</p> <p>Non-Vital Pulp Therapy 121</p> <p>Root-end closure via the use of apical barriers 121</p> <p>Mineral trioxide aggregate apical plug 122</p> <p>Technical placement 124</p> <p>Outcomes 124</p> <p>References 131</p> <p><b>6 Regenerative Endodontics (Revitalization/Revascularization) 141</b><br /> <i>Mahmoud Torabinejad, Robert P. Corr, and George T.-J. Huang</i></p> <p>Introduction 142</p> <p>Revascularization after Replantation and Autotransplantation 143</p> <p>Revitalization of Nonvital-Infected Teeth in Animals 145</p> <p>Clinical Evidence for Revitalization in Nonvital-Infected Teeth in Humans 152</p> <p>Potential Role of Stem Cells in Canal Tissue Generation and Regeneration 160</p> <p>Role of DPSCs and SCAP in revitalization and regenerative endodontic treatments 161</p> <p>Scaffolds and growth factors for regenerative endodontics (Revitalization) 164</p> <p>Clinical Procedures for Pulp Revitalization 168</p> <p>First appointment 168</p> <p>Second appointment 168</p> <p>Clinical and radiographic follow-up 170</p> <p>References 170</p> <p><b>7 Use of MTA as Root Perforation Repair 177</b><br /> <i>Mahmoud Torabinejad and Ron Lemon</i></p> <p>Introduction 178</p> <p>Types of Perforation Defects 182</p> <p>Access preparation-related perforations 182</p> <p>Cleaning and shaping related (“strip”) perforations 184</p> <p>Resorption-related perforations (internal/external) 184</p> <p>Factors Influencing Prognosis for Repair 187</p> <p>Size of perforation 187</p> <p>Location of the perforation 187</p> <p>Pulp Chamber Perforations 189</p> <p>Etiologies 189</p> <p>Prevention 189</p> <p>Recognition and treatment of pulp chamber perforations 189</p> <p>Lateral surface repairs 190</p> <p>Furcation repairs 190</p> <p>Root Perforations During Cleaning and Shaping 191</p> <p>Coronal root perforations 191</p> <p>Causes, indicators and prevention 191</p> <p>Treatment 193</p> <p>Prognosis 193</p> <p>Lateral perforations 194</p> <p>Causes and indicators 194</p> <p>Treatment of mid-root perforation 194</p> <p>Prognosis 195</p> <p>Apical perforations 195</p> <p>Causes and indicators 196</p> <p>Treatment 197</p> <p>Prognosis 197</p> <p>Root Perforation during Post Space preparation 197</p> <p>Causes, indicators and prevention 197</p> <p>Treatment 197</p> <p>Prognosis 199</p> <p>Time elapsed since perforation 199</p> <p>Techniques for Internal Repair Using MTA 199</p> <p>Method 199</p> <p>Summary 202</p> <p>References 203</p> <p><b>8 MTA Root Canal Obturation 207</b><br /> <i>George Bogen, Ingrid Lawaty, and Nicholas Chandler</i></p> <p>Introduction 208</p> <p>Charactertics/Properties 210</p> <p>Mechanisms of action in obturation 210</p> <p>Particle size 211</p> <p>Hydration products and pH 211</p> <p>Formation of interstitial layer 212</p> <p>Fracture resistance 212</p> <p>Sealing ability and setting expansion 213</p> <p>Applications/Uses 214</p> <p>Conventional obturation 214</p> <p>Retreatment 216</p> <p>Obturation prior to surgery 219</p> <p>Obturation with perforation repair 219</p> <p>Apexification using MTA obturation 222</p> <p>Obturation for dental anomalies 225</p> <p>Obturation Techniques 225</p> <p>Standard compaction technique 226</p> <p>Lawaty technique 229</p> <p>Auger technique 231</p> <p>Restorative Considerations 234</p> <p>Drawbacks 234</p> <p>Sealers 235</p> <p>Zinc oxide–eugenol sealers 236</p> <p>Calcium hydroxide sealers 236</p> <p>Epoxy resin-based sealers 236</p> <p>Glass ionomer sealers 237</p> <p>Silicone-based sealers 237</p> <p>Monoblock sealer systems 237</p> <p>Calcium silicate-based sealers 237</p> <p>Summary 238</p> <p>References 239</p> <p><b>9 Root-End Fillings Using MTA 251</b><br /> <i>Seung-Ho Baek and Su-Jung Shin</i></p> <p>Introduction of Root-End Filling Materials 252</p> <p>Purpose of root-end fillings 252</p> <p>History of Root-End Filling Materials 253</p> <p>Amalgam 254</p> <p>ZOE-based materials: IRM and SuperEBA 254</p> <p>Resin-based materials: Retroplast and Geristore 256</p> <p>Mineral trioxide aggregate (MTA) 256</p> <p>Gray vs. White MTA 257</p> <p>New types of MTA-like cements 257</p> <p>Requirements of Ideal Root-End Filling Materials 258</p> <p>Advantages and disadvantages of MTA as a root-end filling material 258</p> <p>Advantages of MTA 258</p> <p>Disadvantages of MTA 259</p> <p>MTA as a Root-End Filling Material 260</p> <p>Cytotoxicity and biocompatibility 260</p> <p>Bioactivity 263</p> <p>Sealability 264</p> <p>Antibacterial effect 265</p> <p>Clinical Applications of MTA 265</p> <p>Retropreparation and root-end filling 265</p> <p>Cavity preparation for MTA root-end filling 265</p> <p>Mixing procedure 266</p> <p>Methods for placement of MTA 266</p> <p>Clinical outcomes 268</p> <p>Conclusion 272</p> <p>References 275</p> <p><b>10 Calcium Silicate–Based Cements 281</b><br /> <i>Masoud Parirokh and Mahmoud Torabinejad</i></p> <p>Introduction 284</p> <p>Portland Cement (PC) 285</p> <p>Chemical composition 285</p> <p>Physical properties 286</p> <p>Antibacterial activity 287</p> <p>Sealing ability 288</p> <p>Biocompatibility 288</p> <p>Cell culture studies 288</p> <p>Subcutaneous implantation 288</p> <p>In vivo investigations 289</p> <p>Clinical applications 289</p> <p>Limitations 289</p> <p>Angelus MTA 291</p> <p>Chemical composition 291</p> <p>Physical properties 292</p> <p>Antibacterial activity 293</p> <p>Sealing ability 293</p> <p>Biocompatibility properties 293</p> <p>Cell structure studies 293</p> <p>Subcutaneous implantation 294</p> <p>Intraosseous implantation 294</p> <p>In vivo investigations 294</p> <p>Clinical applications 295</p> <p>Bioaggregate (BA) 295</p> <p>Chemical composition 295</p> <p>Physical properties 296</p> <p>Antibacterial activity 296</p> <p>Sealing ability 296</p> <p>Biocompatibility 296</p> <p>Cell culture studies 296</p> <p>Biodentine (BD) 297</p> <p>Chemical composition 297</p> <p>Physical properties 297</p> <p>Biocompatibility and clinical applications 297</p> <p>iRoot 298</p> <p>Chemical composition 298</p> <p>Physical properties 298</p> <p>Biocompatibility 299</p> <p>Calcium Enriched Mixture (CEM) Cement 299</p> <p>Chemical composition 299</p> <p>Physical properties 300</p> <p>Antibacterial activities 301</p> <p>Sealing ability 301</p> <p>Biocompatibility 301</p> <p>Cell culture studies 301</p> <p>Skin test and subcutaneous implantation 302</p> <p>Intraosseous implantation 302</p> <p>In vivo investigations 302</p> <p>Clinical investigations 303</p> <p>MTA Fillapex 304</p> <p>Chemical composition 304</p> <p>Physical properties 304</p> <p>Antibacterial activities 305</p> <p>Biocompatibility 306</p> <p>Cell culture studies 306</p> <p>Subcutaneous implantation 306</p> <p>Endo-CPM 306</p> <p>Chemical composition 307</p> <p>Physical properties 307</p> <p>Antibacterial activity 307</p> <p>Sealing ability 307</p> <p>Biocompatibility 307</p> <p>Cell culture studies 307</p> <p>Subcutaneous implantation 307</p> <p>In vivo investigations 308</p> <p>Cimento Endodontico Rapido (CER) 308</p> <p>Chemical composition 308</p> <p>Physical properties 308</p> <p>Biocompatibility 308</p> <p>Subcutaneous implantation 308</p> <p>Endosequence 309</p> <p>Chemical composition 309</p> <p>Physical properties 309</p> <p>Antibacterial activities 310</p> <p>Sealing ability 310</p> <p>Biocompatibility 310</p> <p>Cell culture studies 310</p> <p>EndoSequence BC Sealer 310</p> <p>Chemical composition 311</p> <p>Physical properties 311</p> <p>Biocompatibility 311</p> <p>ProRoot Endo Sealer 311</p> <p>Chemical composition 311</p> <p>Physical properties 312</p> <p>MTA Plus 312</p> <p>Chemical composition 312</p> <p>Physical properties 312</p> <p>Ortho MTA 313</p> <p>Chemical composition 313</p> <p>Biocompatibility 313</p> <p>Cell culture studies 313</p> <p>MTA Bio 313</p> <p>Chemical composition 313</p> <p>Physical properties 314</p> <p>Biocompatibility 314</p> <p>Cell culture studies 314</p> <p>Subcutaneous implantation 315</p> <p>MTA Sealer (MTAS) 315</p> <p>Chemical compositions and physical properties 315</p> <p>Fluoride-Doped MTA Cement 315</p> <p>Chemical composition 315</p> <p>Physical properties 316</p> <p>Sealing ability 316</p> <p>Capasio 316</p> <p>Chemical composition and physical properties 316</p> <p>Generex A 317</p> <p>Chemical composition and physical properties 317</p> <p>Biocompatibility 317</p> <p>Cell culture study 317</p> <p>Ceramicrete-D 317</p> <p>Chemical composition and physical properties 317</p> <p>Nano-Modified MTA (NMTA) 318</p> <p>Chemical composition and physical properties 318</p> <p>Light-Cured MTA 318</p> <p>Chemical composition and physical properties 318</p> <p>Biocompatibility 319</p> <p>Subcutaneous implantation 319</p> <p>Calcium Silicate (CS) 319</p> <p>Chemical composition and physical properties 319</p> <p>Endocem 320</p> <p>Chemical composition and physical properties 320</p> <p>Biocompatibility 320</p> <p>Cell culture study 320</p> <p>Other Experimental MTA Lookalike Mixtures 320</p> <p>Conclusion 320</p> <p>References 321</p> <p>Index 333</p>
<b>Mahmoud Torabinejad, DMD, MSD, PhD</b>, is Professor of Endodontics and Director of the Advanced Specialty Education Program in Endodontics at Loma Linda University School of Dentistry in Loma Linda, California. As a researcher and international lecturer on dental and endodontic issues and procedures, Dr. Torabinejad has made over 200 national and international presentations in more than 40 countries. In addition to co-authoring three textbooks in nonsurgical and surgical endodontics, he has authored more than 300 publications on various endodontic and dental topics. As a researcher, he is the top -cited author in endodontic journals, with authorship in 16 articles of the top 100 list. Dr. Torabinejad was the principle investigator in the applications of MTA in dental procedures.
Mineral trioxide aggregate (MTA) was developed more than 20 years ago to seal the pathways of communication of the root canal system. It’s currently the preferred material used by endodontists because of its superior properties such as its seal and biocompatibility that significantly improves outcomes of endodontic treatments.<br /> <br /> Dr. Torabinejad, who was the principle investigator of the dental applications of MTA, and leading authorities on this subject provide a clinically focused reference detailing the properties and uses of MTA, including vital pulp therapy (pulp capping, pulpotomy), apexification, pulp regeneration, repair of root perforations, root end filling and root canal filling. Line illustrations and clinical photographs show proper technique. An accompanying website features photographs and video presentations for selected procedures using MTA.<br /> <i><br /> Mineral Trioxide Aggregate: Properties and Clinical Applications</i> is an ideal book for dental students and endodontic residents learning procedures for the first time as well as practicing dentists and endodontists who would like to improve outcomes of endodontic treatments.<br /> <br /> <p>Key Features</p> <ul> <li>The authoritative reference on MTA developed by experts on MTA.</li> <li>Descriptions of MTA’s properties and its clinical uses in endodontic procedures</li> <li>Website with video demonstrations</li> </ul>

Diese Produkte könnten Sie auch interessieren:

Biostatistics for Oral Healthcare
Biostatistics for Oral Healthcare
von: Jay S. Kim, Ronald J. Dailey
PDF ebook
164,99 €
Caries-Resistant Teeth
Caries-Resistant Teeth
von: G. E. W. Wolstenholme, Maeve O'Connor
PDF ebook
72,00 €
Cysts of the Oral and Maxillofacial Regions
Cysts of the Oral and Maxillofacial Regions
von: Mervyn Shear, Paul M. Speight
PDF ebook
183,99 €