Details

Microwave and Millimeter Wave Circuits and Systems


Microwave and Millimeter Wave Circuits and Systems

Emerging Design, Technologies and Applications
2. Aufl.

von: Apostolos Georgiadis, Hendrik Rogier, Luca Roselli, Paolo Arcioni

114,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 17.09.2012
ISBN/EAN: 9781118406366
Sprache: englisch
Anzahl Seiten: 576

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><i>Microwave and Millimeter Wave Circuits and Systems: Emerging Design, Technologies and Applications</i> provides a wide spectrum of current trends in the design of microwave and millimeter circuits and systems. In addition, the book identifies the state-of-the art challenges in microwave and millimeter wave circuits systems design such as behavioral modeling of circuit components, software radio and digitally enhanced front-ends, new and promising technologies such as substrate-integrated-waveguide (SIW) and wearable electronic systems, and emerging applications such as tracking of moving targets using ultra-wideband radar, and new generation satellite navigation systems. Each chapter treats a selected problem and challenge within the field of Microwave and Millimeter wave circuits, and contains case studies and examples where appropriate. </p> <p>Key Features: </p> <ul> <li>Discusses modeling and design strategies for new appealing applications in the domain of microwave and millimeter wave circuits and systems</li> <li>Written by experts active in the Microwave and Millimeter Wave frequency range (industry and academia)</li> <li>Addresses modeling/design/applications both from the circuit as from the system perspective</li> <li>Covers the latest innovations in the respective fields</li> <li>Each chapter treats a selected problem and challenge within the field of Microwave and Millimeter wave circuits, and contains case studies and examples where appropriate </li> </ul> <p>This book serves as an excellent reference for engineers, researchers, research project managers and engineers working in R&D, professors, and post-graduates studying related courses. It will also be of interest to professionals working in product development and PhD students.</p>
<p>About the Editors xiii</p> <p>About the Authors xvii</p> <p>Preface xxxi</p> <p>List of Abbreviations xli</p> <p>List of Symbols xlv</p> <p><b>Part I DESIGN AND MODELING TRENDS</b></p> <p><b>1 Low Coefficient Accurate Nonlinear Microwave and Millimeter Wave Nonlinear Transmitter Power Amplifier Behavioural Models 3</b></p> <p>1.1 Introduction 3</p> <p>1.1.1 Chapter Structure 4</p> <p>1.1.2 LDMOS PA Measurements 4</p> <p>1.1.3 BF Model 7</p> <p>1.1.4 Modified BF Model (MBF) – Derivation 8</p> <p>1.1.5 MBF Models of an LDMOS PA 13</p> <p>1.1.6 MBF Model – Accuracy and Performance Comparisons 15</p> <p>1.1.7 MBF Model – the Memoryless PA Behavioural Model of Choice 22</p> <p>Acknowledgements 24</p> <p>References 24</p> <p><b>2 Artificial Neural Network in Microwave Cavity Filter Tuning 27</b></p> <p>2.1 Introduction 27</p> <p>2.2 Artificial Neural Networks Filter Tuning 28</p> <p>2.2.1 The Inverse Model of the Filter 29</p> <p>2.2.2 Sequential Method 30</p> <p>2.2.3 Parallel Method 31</p> <p>2.2.4 Discussion on the ANN’s Input Data 33</p> <p>2.3 Practical Implementation – Tuning Experiments 36</p> <p>2.3.1 Sequential Method 36</p> <p>2.3.2 Parallel Method 41</p> <p>2.4 Influence of the Filter Characteristic Domain on Algorithm Efficiency 43</p> <p>2.5 Robots in the Microwave Filter Tuning 47</p> <p>2.6 Conclusions 49</p> <p>Acknowledgement 49</p> <p>References 49</p> <p><b>3 Wideband Directive Antennas with High Impedance Surfaces 51</b></p> <p>3.1 Introduction 51</p> <p>3.2 High Impedance Surfaces (HIS) Used as an Artificial Magnetic Conductor (AMC) for Antenna Applications 52</p> <p>3.2.1 AMC Characterization 52</p> <p>3.2.2 Antenna over AMC: Principle 55</p> <p>3.2.3 AMC’s Wideband Issues 55</p> <p>3.3 Wideband Directive Antenna Using AMC with a Lumped Element 57</p> <p>3.3.1 Bow-Tie Antenna in Free Space 57</p> <p>3.3.2 AMC Reflector Design 59</p> <p>3.3.3 Performances of the Bow-Tie Antenna over AMC 60</p> <p>3.3.4 AMC Optimization 61</p> <p>3.4 Wideband Directive Antenna Using a Hybrid AMC 64</p> <p>3.4.1 Performances of a Diamond Dipole Antenna over the AMC 65</p> <p>3.4.2 Beam Splitting Identification and Cancellation Method 69</p> <p>3.4.3 Performances with the Hybrid AMC 73</p> <p>3.5 Conclusion 78</p> <p>Acknowledgments 80</p> <p>References 80</p> <p><b>4 Characterization of Software-Defined and Cognitive Radio Front-Ends for Multimode Operation 83</b></p> <p>4.1 Introduction 83</p> <p>4.2 Multiband Multimode Receiver Architectures 84</p> <p>4.3 Wideband Nonlinear Behavioral Modeling 87</p> <p>4.3.1 Details of the BPSR Architecture 87</p> <p>4.3.2 Proposed Wideband Behavioral Model 89</p> <p>4.3.3 Parameter Extraction Procedure 92</p> <p>4.4 Model Validation with a QPSK Signal 95</p> <p>4.4.1 Frequency Domain Results 95</p> <p>4.4.2 Symbol Evaluation Results 98</p> <p>References 99</p> <p><b>5 Impact and Digital Suppression of Oscillator Phase Noise in Radio Communications 103</b></p> <p>5.1 Introduction 103</p> <p>5.2 Phase Noise Modelling 104</p> <p>5.2.1 Free-Running Oscillator 104</p> <p>5.2.2 Phase-Locked Loop Oscillator 105</p> <p>5.2.3 Generalized Oscillator 107</p> <p>5.3 OFDM Radio Link Modelling and Performance under Phase Noise 109</p> <p>5.3.1 Effect of Phase Noise in Direct-Conversion Receivers 110</p> <p>5.3.2 Effect of Phase Noise and the Signal Model on OFDM 110</p> <p>5.3.3 OFDM Link SINR Analysis under Phase Noise 113</p> <p>5.3.4 OFDM Link Capacity Analysis under Phase Noise 114</p> <p>5.4 Digital Phase Noise Suppression 118</p> <p>5.4.1 State of the Art in Phase Noise Estimation and Mitigation 119</p> <p>5.4.2 Recent Contributions to Phase Noise Estimation and Mitigation 122</p> <p>5.4.3 Performance of the Algorithms 128</p> <p>5.5 Conclusions 129</p> <p>Acknowledgements 131</p> <p>References 131</p> <p><b>6 A Pragmatic Approach to Cooperative Positioning in Wireless Sensor Networks 135</b></p> <p>6.1 Introduction 135</p> <p>6.2 Localization in Wireless Sensor Networks 136</p> <p>6.2.1 Range-Free Methods 136</p> <p>6.2.2 Range-Based Methods 139</p> <p>6.2.3 Cooperative versus Noncooperative 142</p> <p>6.3 Cooperative Positioning 142</p> <p>6.3.1 Centralized Algorithms 143</p> <p>6.3.2 Distributed Algorithms 144</p> <p>6.4 RSS-Based Cooperative Positioning 147</p> <p>6.4.1 Measurement Phase 147</p> <p>6.4.2 Location Update Phase 148</p> <p>6.5 Node Selection 150</p> <p>6.5.1 Energy Consumption Model 152</p> <p>6.5.2 Node Selection Mechanisms 153</p> <p>6.5.3 Joint Node Selection and Path Loss Exponent Estimation 156</p> <p>6.6 Numerical Results 160</p> <p>6.6.1 OLPL-NS-LS Performance 164</p> <p>6.6.2 Comparison with Existing Methods 164</p> <p>6.7 Experimental Results 166</p> <p>6.7.1 Scenario 1 166</p> <p>6.7.2 Scenario 2 169</p> <p>6.8 Conclusions 169</p> <p>References 170</p> <p><b>7 Modelling of Substrate Noise and Mitigation Schemes for UWB Systems 173</b></p> <p>7.1 Introduction 173</p> <p>7.1.1 Ultra Wideband Systems – Developments and Challenges 174</p> <p>7.1.2 Switching Noise – Origin and Coupling Mechanisms 175</p> <p>7.2 Impact Evaluation of Substrate Noise 176</p> <p>7.2.1 Experimental Impact Evaluation on a UWB LNA 177</p> <p>7.2.2 Results and Discussion 178</p> <p>7.2.3 Conclusion 181</p> <p>7.3 Analytical Modelling of Switching Noise in Lightly Doped Substrate 182</p> <p>7.3.1 Introduction 182</p> <p>7.3.2 The GAP Model 185</p> <p>7.3.3 The Statistic Model 192</p> <p>7.3.4 Conclusion 195</p> <p>7.4 Substrate Noise Suppression and Isolation for UWB Systems 195</p> <p>7.4.1 Introduction 195</p> <p>7.4.2 Active Suppression of Switching Noise in Mixed-Signal Integrated Circuits 196</p> <p>7.5 Summary 204</p> <p>References 205</p> <p><b>Part II APPLICATIONS</b></p> <p><b>8 Short-Range Tracking of Moving Targets by a Handheld UWB Radar System 209</b></p> <p>8.1 Introduction 209</p> <p>8.2 Handheld UWB Radar System 210</p> <p>8.3 UWB Radar Signal Processing 210</p> <p>8.3.1 Raw Radar Data Preprocessing 211</p> <p>8.3.2 Background Subtraction 212</p> <p>8.3.3 Weak Signal Enhancement 213</p> <p>8.3.4 Target Detection 214</p> <p>8.3.5 Time-of-Arrival Estimation 215</p> <p>8.3.6 Target Localization 217</p> <p>8.3.7 Target Tracking 217</p> <p>8.4 Short-Range Tracking Illustration 218</p> <p>8.5 Conclusions 223</p> <p>Acknowledgement 224</p> <p>References 224</p> <p><b>9 Advances in the Theory and Implementation of GNSS Antenna Array Receivers 227</b></p> <p>9.1 Introduction 227</p> <p>9.2 GNSS: Satellite-Based Navigation Systems 228</p> <p>9.3 Challenges in the Acquisition and Tracking of GNSS Signals 230</p> <p>9.3.1 Interferences 232</p> <p>9.3.2 Multipath Propagation 232</p> <p>9.4 Design of Antenna Arrays for GNSS 233</p> <p>9.4.1 Hardware Components Design 234</p> <p>9.4.2 Array Signal Processing in the Digital Domain 239</p> <p>9.5 Receiver Implementation Trade-Offs 244</p> <p>9.5.1 Computational Resources Required 244</p> <p>9.5.2 Clock Domain Crossing in FPGAs/Synchronization Issues 247</p> <p>9.6 Practical Examples of Experimentation Systems 248</p> <p>9.6.1 L1 Array Receiver of CTTC, Spain 248</p> <p>9.6.2 GALANT, a Multifrequency GPS/Galileo Array Receiver of DLR, Germany 253</p> <p>References 272</p> <p><b>10 Multiband RF Front-Ends for Radar and Communications Applications 275</b></p> <p>10.1 Introduction 275</p> <p>10.1.1 Standard Approaches for RF Front-Ends 275</p> <p>10.1.2 Acquisition of Multiband Signals 276</p> <p>10.1.3 The Direct-Sampling Architecture 277</p> <p>10.2 Minimum Sub-Nyquist Sampling 278</p> <p>10.2.1 Mathematical Approach 278</p> <p>10.2.2 Acquisition of Dual-Band Signals 279</p> <p>10.2.3 Acquisition of Evenly Spaced Equal-Bandwidth Multiband Signals 282</p> <p>10.3 Simulation Results 284</p> <p>10.3.1 Symmetrical and Asymmetrical Cases 284</p> <p>10.3.2 Verification of the Mathematical Framework 285</p> <p>10.4 Design of Signal-Interference Multiband Bandpass Filters 287</p> <p>10.4.1 Evenly Spaced Equal-Bandwidth Multiband Bandpass Filters 288</p> <p>10.4.2 Stepped-Impedance Line Asymmetrical Multiband Bandpass Filters 289</p> <p>10.5 Building and Testing of Direct-Sampling RF Front-Ends 290</p> <p>10.5.1 Quad-Band Bandpass Filter 290</p> <p>10.5.2 Asymmetrical Dual-Band Bandpass Filter 291</p> <p>10.6 Conclusions 293</p> <p>References 294</p> <p><b>11 Mm-Wave Broadband Wireless Systems and Enabling MMIC Technologies 295</b></p> <p>11.1 Introduction 295</p> <p>11.2 V-Band Standards and Applications 297</p> <p>11.2.1 IEEE 802.15.3c Standard 297</p> <p>11.2.2 ECMA-387 Standard 299</p> <p>11.2.3 WirelessHD 300</p> <p>11.2.4 WiGig Standard 301</p> <p>11.3 V-Band System Architectures 302</p> <p>11.3.1 Super-Heterodyne Architecture 302</p> <p>11.3.2 Direct Conversion Architecture 303</p> <p>11.3.3 Bits to RF and RF to Bits Radio Architectures 305</p> <p>11.4 SiGeV-Band MMIC 306</p> <p>11.4.1 Voltage Controlled Oscillator 307</p> <p>11.4.2 Active Receive Balun 310</p> <p>11.4.3 On-Chip Butler Matrix 313</p> <p>11.4.4 High GBPsSiGeV-Band SPST Switch Design Considerations 317</p> <p>11.5 Outlook 320</p> <p>References 322</p> <p><b>12 Reconfigurable RF Circuits and RF-MEMS 325</b></p> <p>12.1 Introduction 325</p> <p>12.2 Reconfigurable RF Circuits – Transistor-Based Solutions 326</p> <p>12.2.1 Programmable Microwave Function Arrays 326</p> <p>12.2.2 PROMFA Concept 327</p> <p>12.2.3 Design Example: Tunable Band Passfilter 331</p> <p>12.2.4 Design Examples: Beamforming Network, LNA and VCO 333</p> <p>12.3 Reconfigurable RF Circuits Using RF-MEMS 335</p> <p>12.3.1 Integration of RF-MEMS and Active RF Devices 336</p> <p>12.3.2 Monolithic Integration of RF-MEMS in GaAs/GaN MMIC Processes 337</p> <p>12.3.3 Monolithic Integration of RF-MEMS in SiGeBiCMOS Process 342</p> <p>12.3.4 Design Example: RF-MEMS Reconfigurable LNA 344</p> <p>12.3.5 RF-MEMS-Based Phase Shifters for Electronic Beam Steering 348</p> <p>12.4 Conclusions 353</p> <p>References 353</p> <p><b>13 MIOS: Millimeter Wave Radiometers for the Space-Based Observation of the Sun 357</b></p> <p>13.1 Introduction 357</p> <p>13.2 Scientific Background 358</p> <p>13.3 Quiet-Sun Spectral Flux Density 359</p> <p>13.4 Radiation Mechanism in Flares 361</p> <p>13.5 Open Problems 361</p> <p>13.6 Solar Flares Spectral Flux Density 363</p> <p>13.7 Solar Flares Peak Flux Distribution 364</p> <p>13.8 Atmospheric Variability 365</p> <p>13.9 Ionospheric Variability 366</p> <p>13.10 Antenna Design 369</p> <p>13.11 Antenna Noise Temperature 371</p> <p>13.12 Antenna Pointing and Radiometric Background 373</p> <p>13.13 Instrument Resolution 373</p> <p>13.14 System Overview 374</p> <p>13.15 System Design 376</p> <p>13.16 Calibration Circuitry 378</p> <p>13.17 Retrieval Equations 381</p> <p>13.18 Periodicity of the Calibrations 381</p> <p>13.19 Conclusions 384</p> <p>References 384</p> <p><b>14 Active Antennas in Substrate Integrated Waveguide (SIW) Technology 387</b></p> <p>14.1 Introduction 387</p> <p>14.2 Substrate Integrated Waveguide Technology 388</p> <p>14.3 Passive SIW Cavity-Backed Antennas 388</p> <p>14.3.1 Passive SIW Patch Cavity-Backed Antenna 389</p> <p>14.3.2 Passive SIW Slot Cavity-Backed Antenna 391</p> <p>14.4 SIW Cavity-Backed Antenna Oscillators 395</p> <p>14.4.1 SIW Cavity-Backed Patch Antenna Oscillator 395</p> <p>14.4.2 SIW Cavity-Backed Slot Antenna Oscillator with Frequency Tuning 397</p> <p>14.4.3 Compact SIW Patch Antenna Oscillator with Frequency Tuning 401</p> <p>14.5 SIW-Based Coupled Oscillator Arrays 406</p> <p>14.5.1 Design of Coupled Oscillator Systems for Power Combining 407</p> <p>14.5.2 Coupled Oscillator Array with Beam-Scanning Capabilities 412</p> <p>14.6 Conclusions 414</p> <p>References 415</p> <p><b>15 Active Wearable Antenna Modules 417</b></p> <p>15.1 Introduction 417</p> <p>15.2 Electromagnetic Characterization of Fabrics and Flexible Foam Materials 419</p> <p>15.2.1 Electromagnetic Property Considerations for Wearable Antenna Materials 419</p> <p>15.2.2 Characterization Techniques Applied to Wearable Antenna Materials 419</p> <p>15.2.3 Matrix-Pencil Two-Line Method 420</p> <p>15.2.4 Small-Band Inverse Planar Antenna Resonator Method 427</p> <p>15.3 Active Antenna Modules for Wearable Textile Systems 436</p> <p>15.3.1 Active Wearable Antenna with Optimized Noise Characteristics 436</p> <p>15.3.2 Solar Cell Integration with Wearable Textile Antennas 445</p> <p>15.4 Conclusions 451</p> <p>References 452</p> <p><b>16 Novel Wearable Sensors for Body Area Network Applications 455</b></p> <p>16.1 Body Area Networks 455</p> <p>16.1.1 Potential Sheet-Shaped Communication Surface Configurations 456</p> <p>16.1.2 Wireless Body Area Network 460</p> <p>16.1.3 Chapter Flow Summary 460</p> <p>16.2 Design of a 2-D Array Free Access Mat 460</p> <p>16.2.1 Coupling of External Antennas 462</p> <p>16.2.2 2-D Array Performance Characterization by Measurement 464</p> <p>16.2.3 Accessible Range of External Antennas on the 2-D Array 467</p> <p>16.3 Textile-Based Free Access Mat: Flexible Interface for Body-Centric Wireless Communications 467</p> <p>16.3.1 Wearable Waveguide 470</p> <p>16.3.2 Summary on the Proposed Wearable Waveguide 475</p> <p>16.4 Proposed WBAN Application 476</p> <p>16.4.1 Concept 476</p> <p>16.5 Summary 478</p> <p>Acknowledgment 478</p> <p>References 478</p> <p><b>17 Wideband Antennas for Wireless Technologies: Trends and Applications 481</b></p> <p>17.1 Introduction 481</p> <p>17.1.1 Antenna Concept 482</p> <p>17.2 Wideband Antennas 483</p> <p>17.2.1 Travelling Wave Antennas 483</p> <p>17.2.2 Frequency Independent Antennas 484</p> <p>17.2.3 Self-Complementary Antennas 485</p> <p>17.2.4 Applications 486</p> <p>17.2.5 Ultra Wideband (UWB) Arrays: Vivaldi Antenna Arrays 489</p> <p>17.2.6 Wideband Microstrip Antennas: Stacked Patch Antennas 495</p> <p>17.3 Antenna Measurements 496</p> <p>17.4 Antenna Trends and Applications 498</p> <p>17.4.1 Phase Arrays and Smart Antennas 499</p> <p>17.4.2 Wearable Antennas 502</p> <p>17.4.3 Capsule Antennas for Medical Monitoring 503</p> <p>17.4.4 RF Hyperthermia 503</p> <p>17.4.5 Wireless Energy Transfer 503</p> <p>17.4.6 Implantable Antennas 503</p> <p>Acknowledgements 504</p> <p>References 504</p> <p><b>18 Concluding Remarks 509</b></p> <p>Index 511</p>
<p><b>Dr. Apostolos Geogiadis, CTTC, Spain</b><br />Apostolos Georgiadis received his PhD in electrical engineering from University of Massachusetts, USA. He worked as a systems engineer involved with CMOS transceivers for WiFi applications before returning to academia. His current research interests include active antennas and radio frequency identification technology and energy harvesting.</p> <p><b>Professor Hendrik Rogier, Ghent University, Belgium</b><br />Hendrik Rogier is a Senior Member of the IEEE. His research interests include the analysis of electromagnetic waveguides, signal integrity (SI) problems and smart antenna systems for wireless networks.</p> <p><b>Professor Luca Roselli, University of Perugia, Italy</b><br />Luca Roselli is Director of the Science & Technology Committee of the research center 'Pischiello' for the development of automotive and communication technologies. His scientific interests include the design of high-frequency electronic circuits, systems and RFID sensors.</p> <p><b>Professor Paolo Arcioni, University of Pavia, Italy</b><br />Paolo Arcioni is a reviewer for the <i>IEEE Transactions on Microwave Theory and Techniques</i>. He is a Senior Member of the IEEE, a member of the European Microwave Association, and of the Societa Italiana di Elettromagnetismo.</p>
<p><i>Microwave and Millimeter Wave Circuits and Systems: Emerging Design, Technologies and Applications</i> provides a wide spectrum of current trends in the design of microwave and millimeter circuits and systems. In addition, the book identifies the state-of-the art challenges in microwave and millimeter wave circuits systems design such as behavioral modeling of circuit components, software radio and digitally enhanced front-ends, new and promising technologies such as substrate-integrated-waveguide (SIW) and wearable electronic systems, and emerging applications such as tracking of moving targets using ultra-wideband radar, and new generation satellite navigation systems. Each chapter treats a selected problem and challenge within the field of Microwave and Millimeter wave circuits, and contains case studies and examples where appropriate. </p> <p>Key Features: </p> <ul> <li>Discusses modeling and design strategies for new appealing applications in the domain of microwave and millimeter wave circuits and systems</li> <li>Written by experts active in the Microwave and Millimeter Wave frequency range (industry and academia)</li> <li>Addresses modeling/design/applications both from the circuit as from the system perspective</li> <li>Covers the latest innovations in the respective fields</li> <li>Each chapter treats a selected problem and challenge within the field of Microwave and Millimeter wave circuits, and contains case studies and examples where appropriate </li> </ul> <p>This book serves as an excellent reference for engineers, researchers, research project managers and engineers working in R&D, professors, and post-graduates studying related courses. It will also be of interest to professionals working in product development and PhD students.</p>

Diese Produkte könnten Sie auch interessieren:

Foundations of Electromagnetic Compatibility
Foundations of Electromagnetic Compatibility
von: Bogdan Adamczyk
PDF ebook
117,99 €
Human Bond Communication
Human Bond Communication
von: Sudhir Dixit, Ramjee Prasad
EPUB ebook
105,99 €
Computer Vision in Vehicle Technology
Computer Vision in Vehicle Technology
von: Antonio M. López, Atsushi Imiya, Tomas Pajdla, Jose M. Álvarez
PDF ebook
81,99 €