Details

Microconstituents in the Environment


Microconstituents in the Environment

Occurrence, Fate, Removal and Management
1. Aufl.

von: Rao Y. Surampalli, Tian C. Zhang, Chih-Ming Kao, Makarand M. Ghangrekar, Puspendu Bhunia, Manaswini Behera, Prangya R. Rout

178,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 19.05.2023
ISBN/EAN: 9781119825265
Sprache: englisch
Anzahl Seiten: 624

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>Microconstituents in the Environment</b> <p><b>Comprehensive introduction to managing novel pollutants commonly released into the environment through industrial and everyday processes</b> <p><i>Microconstituents in the Environment: Occurrence, Fate, Removal and Management</i> provides the readers with an understanding of the occurrence and fate of microconstituents, pollutants that have not previously been detected or regulated under current environmental laws or may cause known or suspected adverse ecological and/or human health effects even at insignificant levels, covering their presence in the environment and possible management strategies. The text is practice-oriented and evaluates a wide range of technologies for pollutant removal and how to implement them in the field. <p>In <i>Microconstituents in the Environment,</i> readers will find information on: <ul><li>Fundamental ideas regarding microconstituents, including their classification, major sources, and detection methods, and their removal via biological treatment techniques</li> <li>Fate and transport of microconstituents in various environmental domains, including mathematical modeling based on remote sensing techniques</li> <li>Physicochemical treatment techniques for microconstituents, including precipitation, absorption, filtration, membrane separation, and oxidation</li> <li>Sustainability and environmental management, including the regulatory framework and requirements for developing a new field application, plus an outlook on green design concepts</li></ul> <p>With its emphasis on management and remediation, <i>Microconstituents in the Environment</i> is a highly useful one-stop resource on the subject for environmental scientists, modelers, government agencies, and research scientists working in the field of environmental pollution.
<p>Preface xix</p> <p>List of Contributors xxi</p> <p>About the Editors xxix</p> <p><b>Part I Fundamental Ideas Regarding Microconstituents in the Environment 1</b></p> <p><b>1 Introduction to Microconstituents 3<br /> </b><i>Manaswini Behera, Prangya Ranjan Rout, Puspendu Bhunia, Rao Y. Surampalli, Tian C. Zhang, Chih-Ming Kao, and Makarand M. Ghangrekar</i></p> <p>1.1 Introduction 3</p> <p>1.2 Classification of Microconstituents 5</p> <p>1.2.1 Pharmaceuticals and Personal Care Products 5</p> <p>1.2.2 Pesticides 8</p> <p>1.2.3 Disinfection By-Products 8</p> <p>1.2.4 Industrial Chemicals 9</p> <p>1.2.5 Algal Toxins 9</p> <p>1.3 Source of Microconstituents 10</p> <p>1.3.1 Source of Pharmaceutical and Personal Care Products (PPCPs) in the Environment 10</p> <p>1.3.2 Source of Pesticides in the Environment 11</p> <p>1.3.3 Source of Disinfection By-Products in the Environment 13</p> <p>1.3.4 Source of Industrial Chemicals in the Environment 14</p> <p>1.3.5 Source of Algal Toxins in the Environment 16</p> <p>1.4 Physical and Chemical Properties of Microconstituents 17</p> <p>1.5 Impact on Human Society and Ecosystem 18</p> <p>1.5.1 Impact on Human Health 21</p> <p>1.5.2 Impact on the Ecosystem 21</p> <p>1.6 The Structure of the Book 24</p> <p>1.7 Conclusions 26</p> <p><b>2 Occurrence 37<br /> </b><i>Prangya Ranjan Rout, Manaswini Behera, Puspendu Bhunia, Tian C. Zhang, and Rao Y. Surampalli</i></p> <p>2.1 Introduction 37</p> <p>2.2 Goals of Occurrence Survey 40</p> <p>2.3 Environmental Occurrence of Microconstituents 40</p> <p>2.3.1 Occurrence of Microconstituents in Groundwater 41</p> <p>2.3.2 Occurrence of Microconstituents in Surface Water 43</p> <p>2.3.3 Occurrence of Microconstituents in Marine Water 44</p> <p>2.3.4 Occurrence of Microconstituents in Drinking Water 45</p> <p>2.3.5 Occurrence of Microconstituents in WWTPs Effluent and Sludge 46</p> <p>2.3.6 Occurrence of Microconstituents in Soil 47</p> <p>2.3.7 Occurrence of Microconstituents in Foods and Vegetables 48</p> <p>2.4 Challenges and Future Prospective in Occurrence Survey 49</p> <p>2.5 Conclusions 49</p> <p><b>3 Sampling, Characterization, and Monitoring 55<br /> </b><i>Mansi Achhoda, Nirmalya Halder, Lavanya Adagadda, Sanjoy Gorai, Meena Kumari Sharma, Naresh Kumar Sahoo, Sasmita Chand, and Prangya Ranjan Rout</i></p> <p>3.1 Introduction 55</p> <p>3.2 Sampling Protocols of Different Microconstituents 56</p> <p>3.2.1 Sample Preparation 56</p> <p>3.2.1.1 Traditional Sampling Techniques 57</p> <p>3.2.1.2 Automatic Samplers and Pumps 58</p> <p>3.2.1.3 Pore-Water Sampling 58</p> <p>3.2.2 Extraction of Microconstituents 58</p> <p>3.2.3 Passive Sampling 60</p> <p>3.2.4 Quality Assurance and Quality Control 62</p> <p>3.2.5 Internal vs. External Quality Control 62</p> <p>3.3 Quantification and Analysis of Microconstituents 63</p> <p>3.3.1 Detection Techniques 63</p> <p>3.3.2 UV-Visible Optical Methods 64</p> <p>3.3.3 NMR Spectroscopy 65</p> <p>3.3.4 Chromatographic Methods Tandem Mass Spectrometry 67</p> <p>3.3.5 Biological Assay for Detection 67</p> <p>3.3.6 Sensors and Biosensors for Detection 72</p> <p>3.4 Source Tracking Techniques 73</p> <p>3.4.1 Performance Criteria 73</p> <p>3.4.2 Tracer Selection 73</p> <p>3.4.3 Different Source Tracking Methods 75</p> <p>3.4.4 Statistical Approaches in Source Tracking Modeling 76</p> <p>3.4.4.1 Principal Component Analysis (PCA) 76</p> <p>3.4.4.2 Multiple Linear Regression (MLR) 76</p> <p>3.5 Remote Sensing and GIS Applications for Monitoring 77</p> <p>3.5.1 Basic Concepts and Principles 77</p> <p>3.5.2 Measurement and Estimation Techniques 77</p> <p>3.5.3 Applications for Microconstituents Monitoring 78</p> <p>3.6 Conclusions 79</p> <p><b>4 Toxicity Assessment of Microconstituents in the Environment 89<br /> </b><i>Nagireddi Jagadeesh, Baranidharan Sundaram, and Brajesh Kumar Dubey</i></p> <p>4.1 Introduction 89</p> <p>4.2 Microplastics in the Environment 91</p> <p>4.3 Microplastics Pathways, Fate, and Behavior in the Environment 92</p> <p>4.4 Concentration of Microplastics in the Environment 94</p> <p>4.5 Influence of Microplastics on Microorganisms 94</p> <p>4.6 Toxicity Mechanisms 95</p> <p>4.6.1 Effect on Aquatic Ecosystem 95</p> <p>4.6.2 Effect on Human Health 96</p> <p>4.6.3 Toxicity Testing 96</p> <p>4.6.3.1 Test Without PE MPs 97</p> <p>4.6.3.2 With Microbeads 97</p> <p>4.6.3.3 Analysis Limitations 98</p> <p>4.7 Risk Assessment 98</p> <p>4.8 Future Challenges in Quantification of the Environment 99</p> <p>4.9 Conclusions 99</p> <p><b>Part II The Fate and Transportation of Microconstituents 107</b></p> <p><b>5 Mathematical Transport System of Microconstituents 109<br /> </b><i>Dwarikanath Ratha, Richa Babbar, K.S. Hariprasad, C.S.P. Ojha, Manoj Baranwal, Prangya Ranjan Rout, and Aditya Parihar</i></p> <p>5.1 Introduction 109</p> <p>5.2 Need for Mathematical Models 111</p> <p>5.3 Fundamentals of Pollutant Transport Modeling 112</p> <p>5.4 Development of Numerical Model 117</p> <p>5.4.1 Advective Transport 117</p> <p>5.4.2 Dispersive Transport 120</p> <p>5.4.3 Discretization in Space and Time 120</p> <p>5.5 Application of Models 123</p> <p>5.6 Softwares for Pollutant Transport 126</p> <p>5.6.1 Hydrus Model for Pollution Transport 126</p> <p>5.7 Mathematical and Computational Limitation 126</p> <p>5.8 Conclusions 129</p> <p><b>6 Groundwater Contamination by Microconstituents 133<br /> </b><i>Jiun-Hau Ou, Ku-Fan Chen, Rao Y. Surampalli, Tian C. Zhang, and Chih-Ming Kao</i></p> <p>6.1 Introduction 133</p> <p>6.2 Major Microconstituents in Groundwater 134</p> <p>6.3 Mechanisms for Groundwater Contamination By Microconstituents 135</p> <p>6.4 Modeling Transport of Microconstituents 136</p> <p>6.5 Limitations 139</p> <p>6.6 Concluding Remarks 139</p> <p><b>7 Microconstituents in Surface Water 143<br /> </b><i>Po-Jung Huang, Fang-Yu Liang, Thakshila Nadeeshani Dharmapriya, and Chih-Ming Kao</i></p> <p>7.1 Introduction 143</p> <p>7.2 Major Microconstituents in Surface Water 143</p> <p>7.2.1 Pharmaceuticals and Personal Care Products (PPCPs) 143</p> <p>7.2.2 Endocrine-Disrupting Chemicals 146</p> <p>7.2.3 Industrial Chemicals 149</p> <p>7.2.4 Pesticides 150</p> <p>7.3 Water Cycles, Sources, and Pathways of Microconstituents, and the Applicability of Mathematical Models 152</p> <p>7.3.1 Pharmaceutical and Personal Care Products (PPCPs) 152</p> <p>7.3.2 Pesticides in Surface Water 153</p> <p>7.3.3 The Applicability of Mathematical Models 155</p> <p>7.3.4 Advantages and Disadvantages of Mathematical Tools 155</p> <p>7.4 Fate and Transport of Microconstituents in Aquatic Environments 157</p> <p>7.4.1 Adsorption of Microconstituents 157</p> <p>7.4.2 Biodegradation and Biotransformation of Caffeine 158</p> <p>7.4.3 Biodegradation and Biotransformation of Steroidal Estrogen 158</p> <p>7.5 Modeling of Microconstituents in Aquatic Environments 161</p> <p>7.5.1 BASINS System Overview 162</p> <p>7.5.2 HSPF Model Evaluation (Hydrological Simulation Program Fortran Model) 164</p> <p>7.5.3 Fundamental Mechanisms of SWAT Pesticide Modeling 166</p> <p>7.5.3.1 SWAT Model Description 166</p> <p>7.5.3.2 SWAT Model Set-Up 167</p> <p>7.5.4 Model Sensitivity Analysis, Calibration, and Validation 168</p> <p>7.5.4.1 Coefficient of Determination, R 2 168</p> <p>7.5.4.2 Nash–Sutcliffe Efficiency Coefficient, NSE 169</p> <p>7.5.5 Basin Level Modeling (Pesticide Transport) 170</p> <p>7.6 Conclusions 172</p> <p><b>8 Fate and Transport of Microconstituents in Wastewater Treatment Plants 181<br /> </b><i>Zong-Han Yang, Po-Jung Huang, Ku-Fan Chen, and Chih-Ming Kao</i></p> <p>8.1 Introduction 181</p> <p>8.1.1 The Sources of Microconstituents in Wastewater Treatment Plants 181</p> <p>8.1.2 The Behavior of Microconstituents 183</p> <p>8.2 The Fate of Microconstituents in WWTPs 183</p> <p>8.2.1 Traditional Wastewater Treatment Process 183</p> <p>8.2.2 The Fate of MCs in WWTPs 185</p> <p>8.2.3 Biodegradation of Microconstituents 186</p> <p>8.2.4 Sorption Onto Sludge Solids in WWTPs 188</p> <p>8.3 Treatment Methods for Microconstituents Removal 189</p> <p>8.3.1 Activated Sludge Process (ASP) 189</p> <p>8.3.2 Membrane Bioreactor (MBR) 190</p> <p>8.3.3 Moving Bed Biofilm Reactor (MBBR) 191</p> <p>8.3.4 Trickling Filter 191</p> <p>8.4 Critical Parameters in WWTP Operation for MCs 191</p> <p>8.4.1 ASP Operation 191</p> <p>8.4.2 MBR Operation 193</p> <p>8.4.3 MBBR Operation 193</p> <p>8.4.4 TF Operation 194</p> <p>8.5 Conclusions 194</p> <p><b>9 Various Perspectives on Occurrence, Sources, Measurement Techniques, Transport, and Insights Into Future Scope for Research of Atmospheric Microplastics 203<br /> </b><i>Sailesh N. Behera, Mudit Yadav, Vishnu Kumar, and Prangya Ranjan Rout</i></p> <p>9.1 Introduction 203</p> <p>9.2 Classification and Properties of Microplastics 206</p> <p>9.2.1 Classification of Atmospheric Microplastics 206</p> <p>9.2.2 Characteristics of Atmospheric Microplastics 206</p> <p>9.2.3 Qualitative Assessment to Identify Microplastics 208</p> <p>9.3 Sources of Atmospheric Microplastics 209</p> <p>9.4 Measurement of Atmospheric Microplastics 210</p> <p>9.5 Occurrence and Ambient Concentration of Microplastics 211</p> <p>9.6 Factors Affecting Pollutant Concentration 213</p> <p>9.7 Transport of Atmospheric Microplastics 214</p> <p>9.8 Modeling Techniques in Prediction of Fate in the Atmosphere 215</p> <p>9.9 Control Technologies in Contaminant Treatment 216</p> <p>9.10 Challenges in Future Climate Conditions 217</p> <p>9.11 Future Scope of Research 218</p> <p>9.12 Conclusions 219</p> <p><b>10 Modeling Microconstituents Based on Remote Sensing and GIS Techniques 227<br /> </b><i>Anoop Kumar Shukla, Satyavati Shukla, Rao Y. Surampalli, Tian C. Zhang, Ying-Liang Yu, and Chih-Ming Kao</i></p> <p>10.1 Basic Components of Remote Sensing and GIS-Based Models 227</p> <p>10.1.1 Source of Light or Energy 228</p> <p>10.1.2 Radiation and the Atmosphere 229</p> <p>10.1.3 Interaction With the Subject Target 229</p> <p>10.1.4 Sensing Systems 229</p> <p>10.1.5 Data Collection 229</p> <p>10.1.6 Interpretation and Analysis 229</p> <p>10.2 Coupling GIS With 3D Model Analysis and Visualization 230</p> <p>10.2.1 Modeling and Simulation Approaches 231</p> <p>10.2.1.1 Deterministic Models 231</p> <p>10.2.1.2 Stochastic Models 231</p> <p>10.2.1.3 Rule-Based Models 232</p> <p>10.2.1.4 Multi-Agent Simulation of Complex Systems 232</p> <p>10.2.2 GIS Implementation 232</p> <p>10.2.2.1 Full Integration–Embedded Coupling 232</p> <p>10.2.2.2 Integration Under a Common Interface–Tight Coupling 233</p> <p>10.2.2.3 Loose Coupling 233</p> <p>10.2.2.4 Modeling Environment Linked to GIS 233</p> <p>10.3 Emerging and Application 233</p> <p>10.3.1 Multispectral Remote Sensing 233</p> <p>10.3.2 Hyperspectral Remote Sensing 234</p> <p>10.3.3 Geographic Information System (GIS) 234</p> <p>10.3.4 Applications 234</p> <p>10.3.4.1 Urban Environment Management 234</p> <p>10.3.4.2 Wasteland Environment 235</p> <p>10.3.4.3 Coastal and Marine Environment 236</p> <p>10.4 Uncertainty in Environmental Modeling 236</p> <p>10.5 Future of Remote Sensing and GIS Application in Pollutant Monitoring 237</p> <p>10.5.1 Types of Satellite-Based Environmental Monitoring 239</p> <p>10.5.1.1 Atmosphere Monitoring 239</p> <p>10.5.1.2 Air Quality Monitoring 239</p> <p>10.5.1.3 Land Use/Land Cover (LULC) 240</p> <p>10.5.1.4 Hazard Monitoring 240</p> <p>10.5.1.5 Marine and Phytoplankton Studies 240</p> <p>10.6 Identification of Microconstituents Using Remote Sensing and GIS Techniques 241</p> <p>10.7 Conclusions 242</p> <p><b>Part III Various Physicochemical Treatment Techniques of Microconstituents 247</b></p> <p><b>11 Process Feasibility and Sustainability of Struvite Crystallization From Wastewater Through Electrocoagulation 249<br /> </b><i>Alisha Zaffar, Nageshwari Krishnamoorthy, Chinmayee Sahoo, Sivaraman Jayaraman, and Balasubramanian Paramasivan 249</i></p> <p>11.1 Introduction 249</p> <p>11.2 Struvite Crystallization Through Electrocoagulation 251</p> <p>11.2.1 Working Principle 251</p> <p>11.2.2 Types of Electrocoagulation 252</p> <p>11.2.2.1 Batch Electrocoagulation 252</p> <p>11.2.2.2 Continuous Electrocoagulation 254</p> <p>11.2.2.3 Advantages of Electrocoagulation Over Other Methods for Struvite Precipitation 256</p> <p>11.3 Influential Parameters Affecting Struvite Crystallization 257</p> <p>11.3.1 pH of the Medium 257</p> <p>11.3.2 Magnesium Source and Mg 2+ : PO 3– 4 Molar Ratio 258</p> <p>11.3.3 Current Density 259</p> <p>11.3.4 Voltage and Current Efficiency 260</p> <p>11.3.5 Electrode Type and Interelectrode Distance 261</p> <p>11.3.6 Stirring Speed, Reaction Time, and Seeding 262</p> <p>11.3.7 Presence of Competitive Ions and Purity of Struvite Crystals 263</p> <p>11.4 Energy, Economy, and Environmental Contribution of Struvite Precipitation by Electrocoagulation 264</p> <p>11.5 Summary and Future Perspectives 266</p> <p><b>12 Adsorption of Microconstituents 273<br /> </b><i>Challa Mallikarjuna, Rajat Pundlik, Rajesh Roshan Dash, and Puspendu Bhunia</i></p> <p>12.1 Introduction 273</p> <p>12.2 Adsorption Mechanism 274</p> <p>12.3 Adsorption Isotherms and Kinetics 276</p> <p>12.3.1 Adsorption Isotherms 276</p> <p>12.3.1.1 Langmuir Isotherm 276</p> <p>12.3.1.2 Freundlich Isotherm 276</p> <p>12.3.1.3 Dubinin–Radushkevich Isotherm 277</p> <p>12.3.1.4 Redlich–Peterson Isotherm 277</p> <p>12.3.1.5 Brunauer–Emmett–Teller (BET) Isotherm 278</p> <p>12.3.2 Adsorption Kinetics 278</p> <p>12.3.2.1 Pseudo-First-Order Equation 278</p> <p>12.3.2.2 Pseudo-Second-Order Equation 279</p> <p>12.3.2.3 Elovich Model 279</p> <p>12.3.2.4 Intraparticle Diffusion Model 279</p> <p>12.4 Factors Affecting Adsorption Processes 280</p> <p>12.4.1 Surface Area 280</p> <p>12.4.2 Contact Time 280</p> <p>12.4.3 Nature and Initial Concentration of Adsorbate 280</p> <p>12.4.4 pH 280</p> <p>12.4.5 Nature and Dose of Adsorbent 281</p> <p>12.4.6 Interfering Substance 281</p> <p>12.5 Multi-Component Preference Analysis 281</p> <p>12.6 Conventional and Emerging Adsorbents 282</p> <p>12.6.1 Conventional Adsorbents 282</p> <p>12.6.2 Commercial Activated Carbons 282</p> <p>12.6.3 Inorganic Material 284</p> <p>12.6.4 Ion-Exchange Resins 285</p> <p>12.6.5 Emerging/Non-Conventional Adsorbents 285</p> <p>12.6.5.1 Natural Adsorbents 286</p> <p>12.6.5.2 Agricultural Wastes 287</p> <p>12.6.5.3 Industrial By-Product (Industrial Solid Wastes) 287</p> <p>12.6.5.4 Solid Waste-Based Activated Carbons 288</p> <p>12.6.5.5 Bio-Sorbents 288</p> <p>12.6.5.6 Miscellaneous Adsorbents 289</p> <p>12.7 Desirable Properties and Surface Modification of Adsorbents 290</p> <p>12.7.1 Desorption/Regeneration Studies 290</p> <p>12.7.2 Column Studies 291</p> <p>12.7.2.1 Surface Modification of Adsorbents 293</p> <p>12.8 Disposal Methods of Adsorbents and Concentrate 295</p> <p>12.9 Advantages and Disadvantages of Adsorption 296</p> <p>12.9.1 Advantages 296</p> <p>12.9.2 Disadvantages 297</p> <p>12.10 Conclusions 297</p> <p><b>13 Ion Exchange Process for Removal of Microconstituents From Water and Wastewater 303<br /> </b><i>Muhammad Kashif Shahid, H.N.P. Dayarathne, Bandita Mainali, Jun Wei Lim, and Younggyun Choi</i></p> <p>13.1 Introduction 303</p> <p>13.2 Properties of Different Ion Exchange Resin 304</p> <p>13.3 Functionalities of Polymeric Resins 306</p> <p>13.4 Ion Exchange Mechanism 310</p> <p>13.5 Ion Exchange Kinetics 312</p> <p>13.6 Application of Ion Exchange for Treatment of Microconstituents 313</p> <p>13.7 Summary 316</p> <p><b>14 Membrane-Based Separation Technologies for Removal of Microconstituents 321<br /> </b><i>Sanket Dey Chowdhury, Rao Y. Surampalli, and Puspendu Bhunia</i></p> <p>14.1 Introduction 321</p> <p>14.2 Classification of Available MBSTs 323</p> <p>14.3 Classification of Membranes and Membrane Materials and Their Properties 323</p> <p>14.3.1 Classification of Membranes 323</p> <p>14.3.2 Classification and Properties of Membrane Materials 329</p> <p>14.3.2.1 Membrane Classification 329</p> <p>14.3.2.1.1 Cellulose Derivatives 330</p> <p>14.3.2.1.2 Aromatic Polyamides 330</p> <p>14.3.2.1.3 Polysulphone 330</p> <p>14.3.2.1.4 Polyimides 330</p> <p>14.3.2.1.5 Polytetrafluoroethylene 331</p> <p>14.3.2.1.6 Polycarbonates 331</p> <p>14.3.2.1.7 Polypropylene 331</p> <p>14.3.2.2 Cutting-Edge Membranes 331</p> <p>14.4 Fundamental Principles and Hydraulics of Microconstituents Removal via Different MBSTs 332</p> <p>14.4.1 Fundamental Principles 332</p> <p>14.4.2 Hydraulics of Microconstituents Removal 351</p> <p>14.4.2.1 Modes of Operation 352</p> <p>14.4.2.2 Definitions of Some Frequently Used Terms in MBSTs 353</p> <p>14.5 Application of the MBSTs for Removing Microconstituents From Aqueous Matrices 354</p> <p>14.6 Membrane Fouling 355</p> <p>14.6.1 Classification of Membrane Fouling 355</p> <p>14.6.1.1 Particulate or Colloidal Fouling 356</p> <p>14.6.1.2 Biological or Microbial Fouling 356</p> <p>14.6.1.3 Scaling or Precipitation Fouling 356</p> <p>14.6.1.4 Organic Fouling 356</p> <p>14.6.2 Mechanisms of Membrane Fouling 356</p> <p>14.6.3 Control of Membrane Fouling 357</p> <p>14.7 Future Perspectives 358</p> <p>14.8 Conclusions 358</p> <p><b>15 Advanced Oxidation Processes for Microconstituents Removal in Aquatic Environments 367<br /> </b><i>Sanket Dey Chowdhury, Rao Y. Surampalli, and Puspendu Bhunia</i></p> <p>15.1 Introduction 367</p> <p>15.2 Classification of AOPs 369</p> <p>15.3 Fundamentals of Different AOPs 370</p> <p>15.4 Fundamentals of Individual AOPs 370</p> <p>15.4.1 Fundamentals of Microconstituents Degradation by Ozonation Process 370</p> <p>15.4.2 Fundamentals of Microconstituents Degradation by UV-Irradiation 371</p> <p>15.4.3 Fundamentals of Microconstituents Degradation by Photocatalysis 371</p> <p>15.4.4 Fundamentals of Microconstituents Degradation by Electrochemical Oxidation (EO) or Anodic Oxidation (AO) and Sonolysis 373</p> <p>15.4.5 Fundamentals of Microconstituents Degradation by the Fenton Process 373</p> <p>15.5 Fundamentals of Integrated AOPs 374</p> <p>15.6 Fundamentals of UV-Irradiation-Based Integrated AOPs 374</p> <p>15.6.1 Uv/h 2 O 2 374</p> <p>15.6.2 UV Photocatalysis/Ozonation 374</p> <p>15.6.3 UV/Fenton Process 375</p> <p>15.6.4 UV/Persulfate (PS) or Permonosulfate (PMS) 375</p> <p>15.6.5 UV/Cl 2 376</p> <p>15.7 Fundamentals of Ozonation-Based Integrated AOPs 376</p> <p>15.7.1 Ozonation/H 2 O 2 376</p> <p>15.7.2 Ozonation/PS or PMS 376</p> <p>15.8 Fundamentals of Fenton Process-Based Integrated AOPs 376</p> <p>15.8.1 Heterogeneous Fenton Process 376</p> <p>15.8.2 Photo-Fenton Process 377</p> <p>15.8.3 Sono-Fenton Process 377</p> <p>15.9 Fundamentals of Electrochemical-Based Integrated AOPs 377</p> <p>15.9.1 Electro-Fenton Process 377</p> <p>15.9.2 Sono-Electro-Fenton Process 378</p> <p>15.9.3 Photo-Electro-Fenton Process 378</p> <p>15.10 Application of Individual/Integrated AOPs for Microconstituents Removal 378</p> <p>15.10.1 PPCP Removal 378</p> <p>15.10.2 Pesticide Removal 389</p> <p>15.10.3 Surfactant Removal 390</p> <p>15.10.4 PFAS Removal 390</p> <p>15.11 Future Perspectives 390</p> <p>15.12 Conclusions 392</p> <p><b>Part IV Various Physico-Chemical Treatment Techniques of Microconstituents 405</b></p> <p><b>16 Aerobic Biological Treatment of Microconstituents 407<br /> </b><i>Hung-Hsiang Chen, Thi-Manh Nguyen, Ku-Fan Chen, Chih-Ming Kao, Rao Y. Surampalli, and Tian C. Zhang</i></p> <p>16.1 Introduction 407</p> <p>16.2 Aerobic Biological Systems/Processes 408</p> <p>16.2.1 High-Rate Systems 408</p> <p>16.2.1.1 Suspended Growth Processes 408</p> <p>16.2.1.2 Attached Growth Processes 410</p> <p>16.2.2 Low-Rate Systems 411</p> <p>16.3 Removal of CECs By Different Aerobic/Anoxic Treatment Processes 411</p> <p>16.3.1 ASPs 412</p> <p>16.3.2 Removal of CECs By Different Aerobic/Anoxic Treatment Processes 412</p> <p>16.3.3 MBR and Membranes Technology 413</p> <p>16.3.4 ASPs and/or Trickling Filters 413</p> <p>16.3.5 Lagoons and Constructed Wetlands 413</p> <p>16.3.6 Mixed Technologies 414</p> <p>16.4 Aerobic Biodegradation of Selected CECs 415</p> <p>16.4.1 Hormones and Their Conjugates 415</p> <p>16.4.2 Nanoparticles (NPs) and Nanomaterials (NMs) 417</p> <p>16.4.3 Microplastics 417</p> <p>16.5 Challenges and Future Perspectives 418</p> <p>16.6 Conclusions 419</p> <p><b>17 Anaerobic Biological Treatment of Microconstituents 427<br /> </b><i>Thi-Manh Nguyen, Hung-Hsiang Chen, Ku-Fan Chen, Chih-Ming Kao, Rao Y. Surampalli, and Tian C. Zhang</i></p> <p>17.1 Introduction 427</p> <p>17.2 Types of AD Reactors and Current Status of AD Technology 428</p> <p>17.2.1 Suspended Growth Process 428</p> <p>17.2.1.1 Anaerobic Contact Reactor (ACR) 429</p> <p>17.2.1.2 Upflow Anaerobic Sludge Blanket (UASB) Reactor 429</p> <p>17.2.2 Attached Growth Process 430</p> <p>17.2.3 AnMBRs 431</p> <p>17.2.4 Current Status of AD Technology 432</p> <p>17.3 Mechanisms of Pollutant Removal in AD Processes 433</p> <p>17.3.1 The Hydrolysis Stage 433</p> <p>17.3.2 The Acidogenesis Stage 434</p> <p>17.3.3 The Acetogenesis Stage 434</p> <p>17.3.4 The Methanogenesis Stage 435</p> <p>17.4 AD Technology for Treatment of MCs 436</p> <p>17.4.1 Key Characteristics of Selected AD Systems for MCs Removal 436</p> <p>17.4.1.1 Reactor Configurations and Combinations of Different Methods 436</p> <p>17.4.1.2 Removal of Different MCs and Associated Mechanisms 441</p> <p>17.4.2 Biodegradation of Selected MCs in AD Processes 442</p> <p>17.4.2.1 MPs 442</p> <p>17.4.2.2 NMs/NPs 444</p> <p>17.5 Challenges and Future Perspectives 445</p> <p>17.6 Conclusions 446</p> <p><b>18 Bio-Electrochemical Systems for Micropollutant Removal 455<br /> </b><i>Rishabh Raj, Sovik Das, Manaswini Behera, and Makarand M. Ghangrekar</i></p> <p>18.1 The Concept of Bio-Electrochemical Systems 455</p> <p>18.2 Bio-Electrochemical Systems: Materials and Configurations 457</p> <p>18.2.1 Electrodes 457</p> <p>18.2.2 Separators 460</p> <p>18.3 Different Types of Bio-Electrochemical Systems 461</p> <p>18.3.1 Microbial Fuel Cell 462</p> <p>18.3.2 Microbial Electrolysis Cell 463</p> <p>18.3.3 Microbial Desalination Cell 464</p> <p>18.4 Performance Assessment of Bio-Electrochemical Systems 466</p> <p>18.5 Pollutant Removal in Bio-Electrochemical Systems 469</p> <p>18.5.1 Treatment of Different Wastewaters in Bio-Electrochemical Systems 469</p> <p>18.5.2 Micropollutant Remediation 473</p> <p>18.6 Scale-Up of BES 474</p> <p>18.7 Challenges and Future Outlook 476</p> <p>18.8 Summary 478</p> <p><b>19 Hybrid Treatment Solutions for Removal of Micropollutant From Wastewaters 491<br /> </b><i>Monali Priyadarshini, S. M. Sathe, and Makarand M. Ghangrekar</i></p> <p>19.1 Background of Hybrid Treatment Processes 491</p> <p>19.2 Types of Hybrid Processes for Microconstituents Removal 492</p> <p>19.2.1 Constructed Wetlands 493</p> <p>19.2.1.1 Applications 494</p> <p>19.2.1.2 Constructed Wetland Coupled With Microbial Fuel Cell 494</p> <p>19.2.2 Combined Biological and Advanced Oxidation Processes 495</p> <p>19.2.2.1 Activated Sludge Process Coupled With Advanced Oxidation Process 496</p> <p>19.2.2.2 Moving Bed Biofilm Reactor Coupled With Advanced Oxidation Process 496</p> <p>19.2.2.3 Bio-Electrochemical Systems and Advanced Oxidation Processes 497</p> <p>19.2.2.4 Bio-Electro Fenton-Based Advanced Oxidation Processes 499</p> <p>19.2.2.5 Photo-Electrocatalyst-Based Advanced Oxidation Process 500</p> <p>19.2.3 Membrane Bioreactor 501</p> <p>19.2.3.1 Granular Sludge Membrane Bioreactor 502</p> <p>19.2.3.2 Advanced Oxidation Process Coupled Membrane Bioreactor 502</p> <p>19.2.3.3 Membrane Bioreactor Coupled With Microbial Fuel Cell 503</p> <p>19.2.4 Electrocoagulation 504</p> <p>19.3 Comparative Performance Evaluation of Hybrid Systems for Microconstituents Removal 506</p> <p>19.4 Conclusions and Future Directions 507</p> <p><b>Part V Aspects of Sustainability and Environmental Management 513</b></p> <p><b>20 Regulatory Framework of Microconstituents 515<br /> </b><i>Wei-Han Lin, Jiun-Hau Ou, Ying-Liang Yu, Pu-Fong Liu, Rao Y. Surampalli, and Chih-Ming Kao</i></p> <p>20.1 Introduction 515</p> <p>20.2 Management and Regulatory Framework of Microconstituents 515</p> <p>20.3 Regulations on Microconstituents 516</p> <p>20.3.1 Pharmaceuticals and Personal Care Products (PPCPs) 516</p> <p>20.3.2 Microplastics 517</p> <p>20.3.3 Persistent Organic Pollutants (POPs) and Persistent Bioaccumulated Toxics (PBTs) 519</p> <p>20.3.4 Endocrine-Disrupting Chemicals (EDCs) 520</p> <p>20.4 Concluding Remarks 520</p> <p><b>21 Laboratory to Field Application of Technologies for Effective Removal of Microconstituents From Wastewaters 525<br /> </b><i>Indrajit Chakraborty, Manikanta M. Doki, and Makarand M. Ghangrekar 525</i></p> <p>21.1 Introduction 525</p> <p>21.1.1 Microconstituent Origin and Type 526</p> <p>21.1.2 Refractory Nature and Corresponding Degradation Barriers of Microconstituents 527</p> <p>21.2 Case Studies for Lab to Field Applications 530</p> <p>21.2.1 Conventional Treatment Methods 530</p> <p>21.2.2 Hybrid Treatment Methods 533</p> <p>21.2.2.1 Hybrid Biochemical Processes 533</p> <p>21.2.2.2 Hybrid Advanced Oxidation Processes 536</p> <p>21.3 Future Outlook 540</p> <p>21.4 Conclusions 540</p> <p><b>22 Sustainability Outlook: Green Design, Consumption, and Innovative Business Model 545<br /> </b><i>Tsai Chi Kuo</i></p> <p>22.1 Introduction 545</p> <p>22.2 Sustainable/Green Supply Chain 547</p> <p>22.2.1 Collaboration 547</p> <p>22.2.2 System Improvements 547</p> <p>22.2.3 Supplier Evaluations 548</p> <p>22.2.4 Performance and Uncertainty 548</p> <p>22.3 Environmental Sustainability: Innovative Design and Manufacturing 549</p> <p>22.3.1 Design Improvements 549</p> <p>22.3.1.1 Disassembly and Recyclability 549</p> <p>22.3.1.2 Modularity Design 549</p> <p>22.3.1.3 Life-Cycle Design 550</p> <p>22.3.2 Green Manufacturing 550</p> <p>22.3.2.1 Green Manufacturing Process and System Development 550</p> <p>22.3.2.2 Recycling Technology 551</p> <p>22.3.2.3 Hazard Material Control 551</p> <p>22.3.2.4 Remanufacturing and Inventory Model 551</p> <p>22.3.3 Summary of Environmental Sustainability 551</p> <p>22.4 Economical Sustainability: Innovation Business Model 552</p> <p>22.4.1 Business Model and Performance 552</p> <p>22.4.2 Summary of Economic Sustainability 553</p> <p>22.5 Social Sustainability 553</p> <p>22.5.1 Corporate Social Responsibility 553</p> <p>22.5.2 Sustainable Consumption 554</p> <p>22.5.3 Brief Summary of Social Sustainability 554</p> <p>22.6 Conclusions and Future Research Development 554</p> <p>22.6.1 Future Research Development 555</p> <p>22.6.2 Industry 4.0 in Sustainable Life 555</p> <p>22.6.3 Conclusions 555</p> <p>List of Abbreviations 565</p> <p>Index 577</p>
<p><b>Rao Y. Surampalli</b> is President and Chief Executive Officer of the Global Institute for Energy, Environment and Sustainability (GIEES) in Lenexa, USA and Distinghished Visiting Professor at several universities across the world. <p><b>Tian C. Zhang</b> is Professor in the department of Civil and Environmental Engineering at the University of Nebraska, Lincoln (UNL), USA. <p><b>Chih-Ming Kao</b> is Distinguished Chair Professor in the Institute of Environmental Engineering at the National Sun Yat-sen University in Kaohsiung, Taiwan. <p><b>Makarand M. Ghangrekar</b> is Institute Chair Professor in the Department of Civil Engineering at the Indian Institute of Technology Kharagpur, India. <p><b>Puspendu Bhunia</b> is Professor of Environmental Engineering in the School of Infrastructure, Indian Institute of Technology Bhubaneswar, India. <p><b>Manaswini Behera</b> is Associate Professor of Environmental Engineering in the School of Infrastructure, Indian Institute of Technology, Bhubaneswar, India.<p><b>Prangya R. Rout</b> is Assistant Professor in the Department of Biotechnology, National Institute of Technology, Jalandhar, India.
<p><b>Comprehensive introduction to managing novel pollutants commonly released into the environment through industrial and everyday processes</b> <p><i>Microconstituents in the Environment: Occurrence, Fate, Removal and Management</i> provides the readers with an understanding of the occurrence and fate of microconstituents, pollutants that have not previously been detected or regulated under current environmental laws or may cause known or suspected adverse ecological and/or human health effects even at insignificant levels, covering their presence in the environment and possible management strategies. The text is practice-oriented and evaluates a wide range of technologies for pollutant removal and how to implement them in the field. <p>In <i>Microconstituents in the Environment,</i> readers will find information on: <ul><li>Fundamental ideas regarding microconstituents, including their classification, major sources, and detection methods, and their removal via biological treatment techniques</li> <li>Fate and transport of microconstituents in various environmental domains, including mathematical modeling based on remote sensing techniques</li> <li>Physicochemical treatment techniques for microconstituents, including precipitation, absorption, filtration, membrane separation, and oxidation</li> <li>Sustainability and environmental management, including the regulatory framework and requirements for developing a new field application, plus an outlook on green design concepts</li></ul> <p>With its emphasis on management and remediation, <i>Microconstituents in the Environment</i> is a highly useful one-stop resource on the subject for environmental scientists, modelers, government agencies, and research scientists working in the field of environmental pollution.

Diese Produkte könnten Sie auch interessieren:

Die Entwicklung von Wald-Biozönosen nach Sturmwurf
Die Entwicklung von Wald-Biozönosen nach Sturmwurf
von: Anton Fischer
Preis: 36,99 €
Reclamation of Contaminated Land
Reclamation of Contaminated Land
von: C. Paul Nathanail, R. Paul Bardos
Preis: 59,99 €
Waste Treatment and Disposal
Waste Treatment and Disposal
von: Paul T. Williams
Preis: 68,99 €