Details
Micro-Mesoporous Metallosilicates
Synthesis, Characterization, and Catalytic Applications1. Aufl.
142,99 € |
|
Verlag: | Wiley-VCH (D) |
Format: | |
Veröffentl.: | 05.03.2024 |
ISBN/EAN: | 9783527839360 |
Sprache: | englisch |
Anzahl Seiten: | 496 |
DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.
Beschreibungen
<b>Micro-Mesoporous Metallosilicates</b> <p> <b>Up-to-date and in-depth text bridging the technology gap between fundamental research and industry-scale applications of porous materials for catalysis</b> <p><i>Micro-Mesoporous Metallosilicates: Synthesis, Characterization, and Catalytic Applications </i>comprehensively introduces the chemistry and catalytic technologies of metallosilicates, an important family of microporous crystalline zeolite and heteroatom-containing mesoporous materials, with a primary focus on design synthesis, characterization, theoretical studies, and catalytic applications of titanosilicates, tin-silicates, germanosilicates and Ti-mesosilica, and more. <p>The text covers recent advances in the synthesis of titanosilicates, including hydrothermal synthesis, dry-gel conversion, fluoride-assisted synthesis, and post-synthesis methods, along with the synthesis of metallosilicates with two-dimensional lamellar structures and their structural modifications as well as applications in selective oxidation reactions. <p>The text also discusses synthesis of germanosilicates with specially designed organic structure-directing agents, synthesis and catalytic applications of heteroatom-containing mesoporous silica, and dendritic mesoporous silica nanoparticles with unique wrinkled center-radial structures. <p>Overall, every important porous metallosilicate and its synthesis, characterization, pore engineering, catalytic application, and industrial technique and process are covered. <p>Specific sample topics discussed in <i>Micro-Mesoporous Metallosilicates </i>include: <ul><li>Chemical post-modifications of titanosilicates, in terms of the effects on transfer, adsorption/desorption, and surface reactions</li><li>X-Ray based techniques, ultraviolet-visible-near infrared spectroscopy, Raman spectroscopy, and solid-state NMR spectroscopy</li><li>Theoretical calculation as an effective tool and supplement to understand the catalytic active center, structural character, and Brønsted/Lewis acidity</li><li>Titanosilicates in the liquid-phase epoxidation reaction of propylene and propylene chloride to corresponding epoxides</li><li>Effects of particle sizes, oxidation state, and location sites of Au nanoparticles, and epoxidation performance of Ti-containing materials</li></ul> <p>Delivering cutting-edge research and bridging the technology gap between fundamental research and industrial applications, <i>Micro-Mesoporous Metallosilicates </i>is a valuable resource for chemists, materials scientists, chemical engineers, and experienced researchers in related fields.
<p>Preface xv</p> <p><b>1 Synthesis of Titanosilicates 1<br /> </b><i>Xinqing Lu</i></p> <p>1.1 Introduction 1</p> <p>1.2 Synthesis of Medium-Pore Titanosilicates 5</p> <p>1.2.1 TS-1 Synthesis 5</p> <p>1.2.2 Ti-MWW Synthesis 6</p> <p>1.2.3 TS-2 Synthesis 8</p> <p>1.2.4 Synthesis of Other Medium-Pore Titanosilicates 9</p> <p>1.3 Synthesis of Large-Pore Titanosilicates 9</p> <p>1.3.1 Ti-Beta Synthesis 9</p> <p>1.3.2 Ti-MOR Synthesis 10</p> <p>1.3.3 Ti-MSE Synthesis 12</p> <p>1.3.4 Synthesis of Other Large-Pore Titanosilicates 13</p> <p>1.4 Synthesis of Extra-Large-Pore Titanosilicates 14</p> <p>1.5 Synthesis of Mesoporous Titanosilicates 15</p> <p>1.6 Synthesis of ETSs 17</p> <p>1.7 Conclusions 18</p> <p>References 18</p> <p><b>2 Layered Heteroatom-Containing Zeolites 31<br /> </b><i>Hao Xu and Peng Wu</i></p> <p>2.1 Introduction 31</p> <p>2.2 Traditional Layered Heteroatom-Containing Zeolites 32</p> <p>2.2.1 Heteroatom-Containing MWW-Type Layered Zeolites and Their Derivative Zeolitic Materials 32</p> <p>2.2.2 Heteroatom-Containing Layered Zeolites Built from fer-Layers 36</p> <p>2.3 Novel Layered Heteroatom-Containing Zeolites 41</p> <p>2.3.1 Heteroatom-Containing MFI-Type Layered Zeolites 41</p> <p>2.3.2 Germanosilicate-Derived Heteroatom-Containing Zeolites 44</p> <p>2.4 Conclusions 45</p> <p>Acknowledgments 46</p> <p>References 46</p> <p><b>3 Synthesis and Catalytic Applications of Sn- and Zr-Zeolites 53<br /> </b><i>Zhiguo Zhu</i></p> <p>3.1 Introduction 53</p> <p>3.2 Synthesis of Sn- and Zr-Zeolites 55</p> <p>3.2.1 Bottom-up Approaches 56</p> <p>3.2.2 Top-Down Approaches 63</p> <p>3.3 General Remarks 66</p> <p>3.4 Catalytic Applications of Sn- and Zr-Zeolites 67</p> <p>3.4.1 Redox Catalysis 68</p> <p>3.4.2 Lewis Acid Catalysis 71</p> <p>3.4.3 Biomass Conversion 73</p> <p>3.5 General Remarks 78</p> <p>References 79</p> <p><b>4 Synthesis of Germanosilicates 87<br /> </b><i>Jiuxing Jiang</i></p> <p>4.1 Introduction 87</p> <p>4.1.1 General Property of Ge/Si Oxides 87</p> <p>4.1.2 Germanosilicate Glass 88</p> <p>4.2 Isomorphous Substitution in Germanosilicates 89</p> <p>4.2.1 Isomorphous Substitution Si in Germanate 89</p> <p>4.2.2 Isomorphous Substitution Ge in Silicates 92</p> <p>4.3 Inorganic Structure-Directing Effects 93</p> <p>4.3.1 Structure-Directing Effects of Ge 93</p> <p>4.3.2 Structure-Directing Effects of F<sup>−</sup> 94</p> <p>4.4 Organic Structure-Directing Agents in Germanosilicate Synthesis 94</p> <p>4.4.1 Organic Structure-Directing Agent Types and Revolutions 94</p> <p>4.4.2 Two Important Families of OSDA 95</p> <p>4.5 Structure Diversity of Germanosilicates/Silicogermanates 106</p> <p>4.5.1 Relationship Between Composition and Structure 106</p> <p>4.5.2 Pore Opening 106</p> <p>4.6 Possibility of Elimination of Ge and Catalytic Research of Germanosilicates 108</p> <p>4.6.1 The Price Concern of Ge 108</p> <p>4.6.2 Removal of Ge in Zeolite Synthesis 108</p> <p>4.6.3 Removal of Ge with Post-synthesis 109</p> <p>4.6.4 Catalytic Research of Germanosilicates 112</p> <p>4.7 Conclusions and Outlook 112</p> <p>References 112</p> <p><b>5 Structural Modifications on Germanosilicates 119<br /> </b><i>Ondřej Veselý, Maksym Opanasenko, and Jǐrí Čejka</i></p> <p>5.1 Introduction 119</p> <p>5.2 Germanosilicates to Layered Precursors 121</p> <p>5.2.1 UTL to IPC-1P 121</p> <p>5.3 ADOR Strategy for Developing New Zeolite Structures 125</p> <p>5.3.1 Assembly 126</p> <p>5.3.2 Disassembly 127</p> <p>5.3.3 Organization 127</p> <p>5.3.4 Reassembly 127</p> <p>5.3.5 Liquid-phase ADOR 128</p> <p>5.3.6 Vapor-phase ADOR 135</p> <p>5.3.7 Reductive Degermanation 136</p> <p>5.3.8 Solid-state Transformations 137</p> <p>5.4 Structure Stabilization 139</p> <p>5.4.1 Degermanation 139</p> <p>5.4.2 Functionalization With Catalytic Sites 140</p> <p>5.4.3 Slow Disassembly 141</p> <p>5.4.4 Reverse ADOR 141</p> <p>5.5 Germanosilicate-Derived Catalysts 142</p> <p>5.5.1 Summary and Perspectives 144</p> <p>Acknowledgements 146</p> <p>References 146</p> <p><b>6 Heteroatom-Containing Dendritic Mesoporous Silica Nanoparticles 153<br /> </b><i>Bo Peng, Jia-Feng Zhou, Meng Ding, Laurent Bonneviot, and Kun Zhang</i></p> <p>6.1 Introduction 153</p> <p>6.2 Main Synthetic Methods and Formation Mechanism of Pure Silica-Based Dendritic Mesoporous Silica Nanoparticles (DMSNs) 155</p> <p>6.2.1 Main Synthetic Methods of Dendritic Mesoporous Silica Nanoparticles (DMSNs) 155</p> <p>6.2.2 Unified Formation Mechanism of Dendritic Mesoporous Silica Nanoparticles 155</p> <p>6.3 Synthesis of Heteroatom-Containing DMSNs and Their Catalytic Applications 164</p> <p>6.3.1 One-Pot Doping Strategy for DMSNs Containing Heteroatoms (Al/Ti/V/Sn/Mn/Fe/Co) 165</p> <p>6.3.2 Post-grafting for Surface Metal Complexes 167</p> <p>6.3.3 Loading of Metal and/or Metal Oxide Nanoparticles Within the Nanopores 169</p> <p>6.4 Summary and Perspectives 173</p> <p>Acknowledgments 173</p> <p>References 173</p> <p><b>7 Chemical Post-Modifications of Titanosilicates 181<br /> </b><i>Fang Nan, Liu Dongxu, Yu Yunkai, and Liu Yueming</i></p> <p>7.1 Introduction 181</p> <p>7.2 Diffusion and Adsorption/Desorption 182</p> <p>7.2.1 Hierarchical Titanosilicates 182</p> <p>7.2.2 Surface Hydrophilicity and Hydrophobicity 183</p> <p>7.3 Surface Reaction 184</p> <p>7.3.1 Ti Active Sites Content 184</p> <p>7.3.2 Ti Active Sites Distribution 186</p> <p>7.3.3 Ti Active Sites Properties 187</p> <p>7.4 Solvent Effect 196</p> <p>7.4.1 Effect of Solvent on Diffusion 197</p> <p>7.4.2 Effect of Solvent on Adsorption/Desorption 199</p> <p>7.4.3 Effect of Solvent on Surface Reactions 200</p> <p>7.5 Conclusions and Prospects 204</p> <p>References 204</p> <p><b>8 Spectroscopic Characterization of Heteroatom-Containing Zeolites 217<br /> </b><i>Guodong Qi, Jun Xu, and Feng Deng</i></p> <p>8.1 X-Ray Technique 217</p> <p>8.1.1 XRD Determination of Framework Structure and Heteroatoms in Zeolites 217</p> <p>8.1.2 XAS Characterization of Metals in Zeolite 219</p> <p>8.1.3 XPS Analysis of the Chemical State of Metal Species 222</p> <p>8.2 Ultraviolet–Visible-Near Infrared (UV–VIS–NIR) Spectroscopy 224</p> <p>8.2.1 UV–VIS–NIR Characterization of Framework and Non-Framework Metal Species 224</p> <p>8.2.2 UV–VIS–NIR Characterization of Metal Species on Ion Exchange Sites of Zeolites 226</p> <p>8.3 Raman Spectroscopy 227</p> <p>8.3.1 Raman Study of Synthesis Mechanism and Assembly of Metal-Zeolites 228</p> <p>8.3.2 Raman Characterization of Active Metal-Oxygen Species in Zeolites 228</p> <p>8.4 Solid-State NMR Spectroscopy 230</p> <p>8.4.1 Solid-State NMR Characterization of Metal Elements in Zeolites 231</p> <p>8.4.2 Solid-State Correlation NMR Measurement of Active Site Proximity and Host–Guest Interactions 233</p> <p>8.4.3 In Situ Solid-State NMR for the Study of Reaction Mechanisms 235</p> <p>8.5 Conclusions 238</p> <p>Acknowledgments 239</p> <p>References 239</p> <p><b>9 Theoretical Calculations of Heteroatom Substituted Zeolites 253<br /> </b><i>Xin Yu, Wenjun Dong, Wei Chen, and Anmin Zheng</i></p> <p>9.1 Introduction 253</p> <p>9.2 Ti-Doped Zeolites 254</p> <p>9.2.1 Preferred Tetrahedral (T) Sites for Substitution 255</p> <p>9.2.2 Lewis Acid 257</p> <p>9.2.3 Active Site with H<sub>2</sub>O<sub>2</sub> 258</p> <p>9.2.4 Reaction Mechanism 261</p> <p>9.3 Sn-Doped Zeolites 267</p> <p>9.3.1 Preferred Substitution T Sites and Acidity 267</p> <p>9.3.2 Reaction Mechanism 268</p> <p>9.3.3 Other Catalytic Reactions 272</p> <p>9.4 Other Metal-Substituted Zeolites 273</p> <p>9.5 Summary and Outlook 276</p> <p>Acknowledgments 276</p> <p>References 277</p> <p><b>10 Catalytic Ammoximation of Ketones or Aldehydes Using Titanosilicates 283<br /> </b><i>Rusi Peng, Hao Xu, Chengwei Zhai, Mingyuan He, and Peng Wu</i></p> <p>10.1 Introduction 283</p> <p>10.2 The Development of Titanosilicates in Ammoximation of Ketones and Aldehydes 284</p> <p>10.3 Ammoximation Mechanism and Product Distributions of Representative Ketones and Aldehydes 288</p> <p>10.3.1 Titanosilicate-Catalyzed Ammoximation Mechanism 288</p> <p>10.3.2 Product Distributions for Ammoximation of Representative Carbonyl Compounds 290</p> <p>10.4 Enhancing Ammoximation Performances in Titanosilicate/H<sub>2</sub>O<sub>2</sub> System 295</p> <p>10.4.1 Improvement of Catalytic Ammoximation Activity 296</p> <p>10.4.2 Improvement of Catalytic Ammoximation Stability 300</p> <p>10.5 Ketone Ammoximation Technology for Industrial Processes 302</p> <p>10.6 Titanosilicate-Based Bifunctional Catalysts for Process Intensified or Tandem Ammoximation Reactions 306</p> <p>10.7 Conclusions and Perspectives 310</p> <p>Acknowledgments 311</p> <p>References 311</p> <p><b>11 Titanosilicate-Based Alkene Epoxidation Catalysis 323<br /> </b><i>Changjiu Xia and Xiang Feng</i></p> <p>11.1 Introduction 323</p> <p>11.2 Reaction Chemistry of Alkene Epoxidation Catalyzed by Titanosilicate Zeolites 326</p> <p>11.3 Typical Alkene Epoxidation Cases 329</p> <p>11.3.1 Propylene Epoxidation for PO Production 329</p> <p>11.3.2 Propylene Chloride Epoxidation 331</p> <p>11.3.3 Ethylene Epoxidation to EO, EG, and Ethers 334</p> <p>11.4 Industrial Propylene Epoxidation Techniques and Processes 336</p> <p>11.5 Conclusion and Outlook 339</p> <p>Acknowledgments 339</p> <p>References 340</p> <p><b>12 Propylene Epoxidation with Cumene Hydroperoxide/Titanosilicates 345<br /> </b><i>Le Xu and Hailang Liu</i></p> <p>12.1 Introduction 345</p> <p>12.2 Traditional Route for PO Production (Chlorohydrin Process) 347</p> <p>12.3 Co-production Route for PO Production (PO/TBA and PO/SM Processes) 347</p> <p>12.4 PO-Only Production Routes (HPPO and CMHPPO Routes) 349</p> <p>12.5 Catalyst Design for PO-Only Routes 350</p> <p>12.5.1 Mesoporous Ti-Doped Catalysts for CMHPPO Process 352</p> <p>12.5.2 Hierarchical Titanosilicates for CMHPPO Process 357</p> <p>12.6 Industrial CMHPPO Process 362</p> <p>12.7 Conclusions and Outlooks 363</p> <p>References 364</p> <p><b>13 Hydroxylation of Benzene and Phenol on Zeolite Catalysts 367<br /> </b><i>Shiying Li, Shanhui Zhu, Sen Wang, Mei Dong, and Weibin Fan</i></p> <p>13.1 Introduction 367</p> <p>13.2 Hydroxylation of Benzene to Phenol 368</p> <p>13.2.1 Gas-Phase Reactions 368</p> <p>13.2.2 Liquid-Phase Reactions 378</p> <p>13.3 Hydroxylation of Phenol to DHB 381</p> <p>13.3.1 Fe-Containing Molecular Sieves as Catalysts 382</p> <p>13.3.2 Titanosilicate Molecular Sieves as Catalysts 387</p> <p>13.3.3 Transition Metal Complexes Encapsulated in Zeolite Y as Catalysts 393</p> <p>13.4 Summary 394</p> <p>Acknowledgments 395</p> <p>References 395</p> <p><b>14 Bifunctional Titanosilicate Systems for the Gas-Phase Catalytic Propylene Epoxidation with Hydrogen and Oxygen 403<br /> </b><i>Gang Wang, Qianhong Wang, Zhihua Zhang, Xuezhi Duan, and Xinggui Zhou</i></p> <p>14.1 Introduction 403</p> <p>14.2 Advances in the Catalytic Propylene Epoxidation with H<sub>2</sub> and O<sub>2</sub> 404</p> <p>14.2.1 Mechanistic Insights into Au-Ti Synergy 404</p> <p>14.2.2 Effects of Au Particle Properties 406</p> <p>14.2.3 Effects of Materials’ Properties for Immobilizing Au Particles 408</p> <p>14.2.4 Effect of Promoters 413</p> <p>14.3 Conclusions and Outlook 415</p> <p>Conflicts of Interest 416</p> <p>References 416</p> <p><b>15 Zeolites Containing Heteroatoms/Metal Nanoparticles for Catalytic Conversion of Light Alkanes 423<br /> </b><i>Hang Zhou, Liang Wang, and Feng-Shou Xiao</i></p> <p>15.1 Introduction 423</p> <p>15.2 Metal Nanoclusters and Heteroatoms in Zeolite for Propane Dehydrogenation 424</p> <p>15.2.1 Zeolite-Based Catalysts for Non-Oxidative PDH 425</p> <p>15.2.2 Zeolite-Based Catalysts for Oxidative PDH 426</p> <p>15.3 Metallosilicates for Ethane Dehydrogenation 430</p> <p>15.3.1 Metallosilicates for Non-Oxidative Dehydrogenation of Ethane 430</p> <p>15.3.2 Metallosilicates for Oxidative Dehydrogenation of Ethane 431</p> <p>15.4 Zeolite Catalysts for Selective Oxidation of Methane 432</p> <p>15.4.1 Bionic Catalysis of Methane to Methanol Using Metallosilicates 434</p> <p>15.4.2 In situ Synthesizing Hydrogen Peroxide for Low-Temperature Methane Oxidation Using Metal@zeolite 435</p> <p>15.4.3 Direct Metal Oxidation with Oxygen by Zeolite-Supported Nanoparticle Catalysts 436</p> <p>15.5 Summary and Outlook 439</p> <p>Acknowledgments 440</p> <p>References 440</p> <p><b>16 Design and Applications of Single-Site Photocatalysis Using Metallosilicates 447<br /> </b><i>Priyanka Verma and Hiromi Yamashita</i></p> <p>16.1 Introduction 447</p> <p>16.2 Ti-Based Single-Site Photocatalysis Within Zeolites and Mesoporous Silica 449</p> <p>16.3 Single-Site Photocatalysis Based Thin Films 450</p> <p>16.3.1 Thin Films with Ti-Oxide Species 450</p> <p>16.3.2 Thin Films with Various Metal Oxide Species (Mo, V, Cr, and W) 452</p> <p>16.4 Visible-Light Sensitive Single-Site Photocatalysis 454</p> <p>16.5 Nano-Sized Metal Preparation Using Single-Site Photocatalyst 456</p> <p>16.5.1 Preparation of Monometallic NPs 456</p> <p>16.5.2 Preparation of Bimetallic Metal NPs 457</p> <p>16.6 Conclusions 458</p> <p>Acknowledgments 461</p> <p>References 461</p> <p>Index 465</p>
<p><i><b>Peng Wu, PhD, </b>is a Professor in School of Chemistry and Molecular Engineering at East China Normal University. His research interests focus on design, functionalization, and catalytic applications of novel zeolites.</i> <p><i><b>Hao Xu, PhD, </b>is a Professor in School of Chemistry and Molecular Engineering at East China Normal University. Her research interests focus on the design and synthesis of novel zeolite catalysts via post modifications</i>
<p> <b>Up-to-date and in-depth text bridging the technology gap between fundamental research and industry-scale applications of porous materials for catalysis</b> <p><i>Micro-Mesoporous Metallosilicates: Synthesis, Characterization, and Catalytic Applications </i>comprehensively introduces the chemistry and catalytic technologies of metallosilicates, an important family of microporous crystalline zeolite and heteroatom-containing mesoporous materials, with a primary focus on design synthesis, characterization, theoretical studies, and catalytic applications of titanosilicates, tin-silicates, germanosilicates and Ti-mesosilica, and more. <p>The text covers recent advances in the synthesis of titanosilicates, including hydrothermal synthesis, dry-gel conversion, fluoride-assisted synthesis, and post-synthesis methods, along with the synthesis of metallosilicates with two-dimensional lamellar structures and their structural modifications as well as applications in selective oxidation reactions. <p>The text also discusses synthesis of germanosilicates with specially designed organic structure-directing agents, synthesis and catalytic applications of heteroatom-containing mesoporous silica, and dendritic mesoporous silica nanoparticles with unique wrinkled center-radial structures. <p>Overall, every important porous metallosilicate and its synthesis, characterization, pore engineering, catalytic application, and industrial technique and process are covered. <p>Specific sample topics discussed in <i>Micro-Mesoporous Metallosilicates </i>include: <ul><li>Chemical post-modifications of titanosilicates, in terms of the effects on transfer, adsorption/desorption, and surface reactions</li><li>X-Ray based techniques, ultraviolet-visible-near infrared spectroscopy, Raman spectroscopy, and solid-state NMR spectroscopy</li><li>Theoretical calculation as an effective tool and supplement to understand the catalytic active center, structural character, and Brønsted/Lewis acidity</li><li>Titanosilicates in the liquid-phase epoxidation reaction of propylene and propylene chloride to corresponding epoxides</li><li>Effects of particle sizes, oxidation state, and location sites of Au nanoparticles, and epoxidation performance of Ti-containing materials</li></ul> <p>Delivering cutting-edge research and bridging the technology gap between fundamental research and industrial applications, <i>Micro-Mesoporous Metallosilicates </i>is a valuable resource for chemists, materials scientists, chemical engineers, and experienced researchers in related fields.