Details

Micro- and Nanophotonic Technologies


Micro- and Nanophotonic Technologies


Applications of Nanotechnology 1. Aufl.

von: Patrick Meyrueis, Kazuaki Sakoda, Marcel Van de Voorde

160,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 20.03.2017
ISBN/EAN: 9783527699933
Sprache: englisch
Anzahl Seiten: 571

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Edited and authored by leading experts from top institutions in Europe, the US and Asia, this comprehensive overview of micro- and nanophotonics covers the physical and chemical fundamentals, while clearly focusing on the technologies and applications in industrial R&D. <br> As such, the book reports on the four main areas of telecommunications and display technologies; light conversion and energy generation; light-based fabrication of materials; and micro- and nanophotonic devices in metrology and control.
<p>Foreword XXIII</p> <p>Preface XXV</p> <p>An Overview of Micro- and Nanophotonic Science and Technology XXVII</p> <p>Part One From Research to Application 1</p> <p><b>1 Nanophotonics: From Fundamental Research to Applications 3<br /></b><i>François Flory, Ludovic Escoubas, Judikael Le Rouzo, and Gérard Berginc</i></p> <p>1.1 Introduction 3</p> <p>1.2 Application of Photonic Crystals to Solar Cells 5</p> <p>1.3 Antireflecting Periodic Structures 8</p> <p>1.4 Black Silicon 10</p> <p>1.5 Metamaterials for Wide-Band Filtering 14</p> <p>1.6 Rough Surfaces with Controlled Statistics 16</p> <p>1.7 Enhancement of Absorption in Organic Solar Cells with Plasmonic Nano Particles 19</p> <p>1.8 Quantum Dot Solar Cells 20</p> <p>1.9 Conclusions 24</p> <p>Acknowledgments 24</p> <p>References 24</p> <p><b>2 Photonic Crystal and Plasmonic Microcavities 29<br /></b><i>Kazuaki Sakoda</i></p> <p>2.1 Introduction 29</p> <p>2.2 Photonic Crystal Microcavity 32</p> <p>2.3 Purcell Effect 38</p> <p>2.3.1 Purcell Factor 38</p> <p>2.3.2 GaAs Quantum Dots in PC Microcavity 39</p> <p>2.4 Plasmonic Microcavity 41</p> <p>2.4.1 Enhanced MD Radiation 42</p> <p>2.4.2 Enhanced ED Radiation 46</p> <p>2.4.3 Multimode Cavity 47</p> <p>References 50</p> <p><b>3 Unconventional Thermal Emission from Photonic Crystals 51</b><br /><i>Hideki T. Miyazaki</i></p> <p>3.1 Introduction 51</p> <p>3.2 3D Photonic Crystals 52</p> <p>3.3 2D Photonic Crystals 57</p> <p>3.4 1D Photonic Crystals 60</p> <p>3.5 Summary 61</p> <p>References 61</p> <p><b>4 Extremely Small Bending Loss of Organic Polaritonic Fibers 65<br /></b><i>Ken Takazawa, Hiroyuki Takeda, and Kazuaki Sakoda</i></p> <p>4.1 Introduction 65</p> <p>4.2 Exciton–Polariton Waveguiding in TC Nanofibers 66</p> <p>4.2.1 Synthesis and Characterization of TC Nanofibers 66</p> <p>4.2.2 Mechanism of Active Waveguiding in TC Nanofibers 67</p> <p>4.3 Miniaturized Photonic Circuit Components Constructed from TC Nanofibers 69</p> <p>4.3.1 Asymmetric Mach–Zehnder Interferometers 69</p> <p>4.3.2 Microring Resonators 71</p> <p>4.3.3 Microring Resonator Channel Drop Filters 74</p> <p>4.4 Theoretical Analysis 76</p> <p>4.4.1 Dispersion Relation 76</p> <p>4.4.2 Bending Loss 78</p> <p>References 80</p> <p><b>5 Plasmon Color Filters and Phase Controllers 81<br /></b><i>Yoshimasa Sugimoto, Daisuke Inoue, and Takayuki Matsui</i></p> <p>5.1 Introduction 81</p> <p>5.2 Optical Filter Based on Surface Plasmon Resonance 82</p> <p>5.2.1 Light Transmission through Hole and Slit Arrays 83</p> <p>5.2.1.1 Hole Arrays 83</p> <p>5.2.1.2 Nanoslit Arrays 85</p> <p>5.2.2 Fabrication and Measurement 87</p> <p>5.2.3 Transmission Characteristics 89</p> <p>5.2.3.1 Hole Arrays 89</p> <p>5.2.3.2 Nanoslit Arrays 91</p> <p>5.3 Transmission Phase Control by Stacked Metal-Dielectric Hole Array 92</p> <p>5.3.1 Verification of Transmission Phase Control by a Uniform SHA 93</p> <p>5.3.2 Numerical Study of Transition SHA for Inclined Wavefront Formation 95</p> <p>5.3.3 Experimental Confirmation of Uniform SHA 95</p> <p>5.3.4 Experimental Confirmation of Transition SHA 97</p> <p>5.4 Summary 99</p> <p>References 100</p> <p><b>6 Entangled Photon Pair Generation in Naturally Symmetric Quantum Dots Grown by Droplet Epitaxy 103<br /></b><i>Takashi Kuroda</i></p> <p>6.1 Introduction 103</p> <p>6.2 Quantum Dot Photon-pair Source 105</p> <p>6.3 Natural Growth of Symmetric Quantum Dots 108</p> <p>6.4 Droplet Epitaxy of GaAs Quantum Dots on AlGaAs(1 1 1)A 109</p> <p>6.5 Characterization of Entanglement 112</p> <p>6.6 Violation of Bell’s Inequality 115</p> <p>6.7 Quantum-state Tomography and Other Entanglement Measures 118</p> <p>References 121</p> <p><b>7 Single-Photon Generation from Nitrogen Isoelectronic Traps in III–V Semiconductors 125<br /></b><i>Yoshiki Sakuma, Michio Ikezawa, and Liao Zhang</i></p> <p>7.1 Introduction 125</p> <p>7.2 What is Isoelectronic Trap? 126</p> <p>7.3 GaP:N Case 127</p> <p>7.3.1 Macro-PL from Bulk GaP:N 127</p> <p>7.3.2 μ-PL of NN Pairs in δ-Doped GaP:N 127</p> <p>7.3.3 Single-Photon Emission from δ-Doped GaP:N 130</p> <p>7.4 GaAs:N Case 131</p> <p>7.4.1 Overview of Isoelectronic Traps in GaAs 131</p> <p>7.4.2 NX Centers in δ-Doped GaAs:N 132</p> <p>7.4.2.1 Growth Conditions and Macro-PL 132</p> <p>7.4.2.2 μ-PL of NX Centers and Single-Photon Emission 132</p> <p>7.4.3 Energy-Defined N-Related Centers in δ-Doped GaAs:N 134</p> <p>7.4.3.1 Growth Conditions and Macro-PL 134</p> <p>7.4.3.2 μ-PL of NNA and Single-Photon Emission 135</p> <p>7.5 Summary 138</p> <p>References 138</p> <p><b>8 Parity–Time Symmetry in Free Space Optics 143<br /></b><i>Bernard Kress, PhD and Mykola Kulishov, PhD</i></p> <p>8.1 Parity–Time Symmetry in Diffractive Optics 143</p> <p>8.1.1 Spectral, Angular, and Polarization Selectivity 143</p> <p>8.1.2 Time Multiplexing: Dynamic Gratings and Holograms 144</p> <p>8.1.3 From Conventional Amplitude/Phase Modulations to Phase/Gain/Loss Modulations 145</p> <p>8.1.4 Implementation of Parity–Time Symmetry in Optics 145</p> <p>8.1.4.1 Thick and Thin Gratings 147</p> <p>8.2 Free Space Diffraction on Active Gratings with Balanced Phase and Gain/Loss Modulations 148</p> <p>8.2.1 Raman–Nath PT-Symmetric Diffraction 148</p> <p>8.2.1.1 Raman–Nath Diffraction Regime 150</p> <p>8.2.1.2 Intermediate and Bragg Diffraction Regimes 151</p> <p>8.2.1.3 Summary 155</p> <p>8.3 PT-Symmetric Volume Holograms in Transmission Mode 156</p> <p>8.3.1 Second-Order Coupled Mode Equations 157</p> <p>8.3.2 Two-Mode Solution for θ ˆ θB 160</p> <p>8.3.3 Analytic Solution for Balanced PT-Symmetric Grating for Arbitrary Angle of Incidence 162</p> <p>8.3.4 Filled Space PT-Symmetric Grating 166</p> <p>8.3.5 Symmetric Slab Configuration 167</p> <p>8.3.6 Asymmetric Slab Configurations 168</p> <p>8.3.6.1 Light Incident from the Substrate Side: ε3 =1 168</p> <p>8.3.6.2 Light Incident from the Air: ε1 =1 170</p> <p>8.3.6.3 Reflective Setup 170</p> <p>8.3.7 Discussion 171</p> <p>8.4 Analysis of Unidirectional Nonparaxial Invisibility of Purely Reflective PT-Symmetric Volume Gratings 174</p> <p>8.4.1 Introduction 174</p> <p>8.4.2 Analytic Solution for First Three Bragg Orders for a Balanced PT-Symmetric Grating 174</p> <p>8.4.3 Zeroth Diffractive Orders in Transmission and Reflection 177</p> <p>8.4.4 Higher Diffractive Orders 178</p> <p>8.4.4.1 First Diffraction Orders 178</p> <p>8.4.4.2 Second Diffraction Orders 179</p> <p>8.4.5 Filled Space PT-Symmetric Gratings 180</p> <p>8.4.5.1 Filled Space PT-Symmetric Grating Implies ε1 ˆ ε2 ˆ ε3 180</p> <p>8.4.6 Reflective PT-Symmetric Gratings with Fresnel Reflections 185</p> <p>8.4.6.1 Symmetric Geometry ε1 ˆ ε3 ˆ 1; ε2 ˆ 2:4 185</p> <p>8.4.6.2 Asymmetric Slab Configuration 186</p> <p>8.5 Summary and Conclusions 189</p> <p>References 191</p> <p><b>9 Parity–Time Symmetric Cavities: Intrinsically Single-Mode Lasing 193<br /></b><i>Mykola Kulishov and Bernard Kress</i></p> <p>9.1 Introduction 193</p> <p>9.2 Resonant Cavities Based on two PT-Symmetric Diffractive Gratings 194</p> <p>9.2.1 PT-Symmetric Bragg Grating 194</p> <p>9.2.2 Concatenation of Two Gratings 195</p> <p>9.2.3 Temporal Characteristics 202</p> <p>9.2.4 Summary 204</p> <p>9.3 Distributed Bragg Reflector Structures Based on PT-Symmetric Coupling with Lowest Possible Lasing Threshold 204</p> <p>9.3.1 Grating-Assisted Codirectional Coupler with PT Symmetry 205</p> <p>9.3.2 Threshold Condition in DBR Lasers 208</p> <p>9.3.3 DBR Lasers with PT-Symmetrical GACC Output 209</p> <p>9.3.4 Transfer Matrix Description of the DBR Structure with PT-Symmetrical GACC Output 210</p> <p>9.4 Unique Optical Characteristics of a Fabry–Perot Resonator with Embedded PT-Symmetrical Grating 215</p> <p>9.4.1 Transfer Matrix for Fabry–Perot Cavity with a Single PT-SBG 216</p> <p>9.4.2 Absorption and Amplification Modes along with Lasing Characteristics 220</p> <p>9.4.2.1 Fully Constructive Cavity Interaction 220</p> <p>9.4.2.2 Partially Constructive Cavity Interaction 223</p> <p>9.4.2.3 Partially Destructive Cavity Interaction 228</p> <p>9.4.2.4 Fully Destructive Cavity Interaction 230</p> <p>9.5 Summary and Conclusions 230</p> <p>References 231</p> <p><b>10 Silicon Quantum Dot Composites for Nanophotonics 233<br /></b><i>Hiroshi Sugimoto and Minoru Fujii</i></p> <p>10.1 Introduction 233</p> <p>10.2 Core–Shell Type Nanocomposites 234</p> <p>10.3 Polymer Encapsulation 239</p> <p>10.4 Micelle Encapsulation 241</p> <p>10.5 Summary 243</p> <p>Acknowledgments 243</p> <p>References 243</p> <p>Part Two Breakthrough Applications 247</p> <p><b>11 Ultrathin Polarizers and Waveplates Made of Metamaterials 249<br /></b><i>Masanobu Iwanaga</i></p> <p>11.1 Concept and Practice of Subwavelength Optical Devices 249</p> <p>11.1.1 Conceptual Classification of Polarization-Controlling Optical Devices 249</p> <p>11.1.2 Construction of Optical Devices Using Jones Matrices 250</p> <p>11.1.3 UV NIL 252</p> <p>11.2 Ultrathin Polarizers 254</p> <p>11.3 Ultrathin Waveplates 258</p> <p>11.3.1 Ultrathin Waveplates Made of Stratified Metal–Dielectric MMs 259</p> <p>11.3.2 Ultrathin Waveplates of Other Structures 262</p> <p>11.4 Constructions of Functional Subwavelength Devices 264</p> <p>11.5 Summary and Prospects 267</p> <p>Acknowledgments 267</p> <p>References 267</p> <p><b>12 Nanoimprint Lithography for the Fabrication of Metallic Metasurfaces 269<br /></b><i>Yoshimasa Sugimoto, Masanobu Iwanaga, and Hideki T. Miyazaki</i></p> <p>12.1 Introduction 269</p> <p>12.2 UV-NIL 270</p> <p>12.3 Large-Area SP-RGB Color Filter Using UV-NIL 273</p> <p>12.3.1 Introduction 273</p> <p>12.3.2 Device Design 274</p> <p>12.3.3 Device Fabrication and Transmission Characteristics 275</p> <p>12.4 Emission-Enhanced Plasmonic Metasurfaces Fabricated by NIL 278</p> <p>12.4.1 Introduction 278</p> <p>12.4.2 SC-PlC Structure 279</p> <p>12.4.3 Fabrication and Optical Characterization of SC-PlC 279</p> <p>12.5 Metasurface Thermal Emitters for Infrared CO2 Detection by UV-NIL 282</p> <p>12.5.1 Introduction 282</p> <p>12.5.2 Metasurface Design 282</p> <p>12.5.3 Device Fabrication and Optical Properties 283</p> <p>12.6 Summary 285</p> <p>References 287</p> <p><b>13 Applications to Optical Communication 291<br /></b><i>Philippe Gallion</i></p> <p>13.1 Introduction 291</p> <p>13.2 Optical Fiber and Propagation Impairments 294</p> <p>13.2.1 Guiding Necessity 294</p> <p>13.2.2 Multimode and Single-Mode Fibers 295</p> <p>13.2.3 Rayleigh Diffusion as the Limiting Factor for Optical Fiber Attenuation 297</p> <p>13.2.4 A Huge Available Bandwidth Resource 298</p> <p>13.2.5 dispersions as the bit-rate limitations 299</p> <p>13.2.5.1 Group Velocity Dispersion 299</p> <p>13.2.5.2 Polarization Mode Dispersion 299</p> <p>13.2.5.3 bit-rate limitations 301</p> <p>13.2.5.4 Overcoming the Dispersion Limitations 302</p> <p>13.2.6 Fiber Nonlinearity 302</p> <p>13.2.7 New Fiber Materials and Structures 304</p> <p>13.3 Basics of Functional Devices 305</p> <p>13.3.1 Optical Sources 305</p> <p>13.3.1.1 Light Emission in Semiconductor 305</p> <p>13.3.1.2 Semiconductor Laser Single-Mode Operation 306</p> <p>13.3.1.3 Interband Dynamics as Direct Modulation Limitation 308</p> <p>13.3.1.4 Optical Frequency Chirping 308</p> <p>13.3.1.5 Optical Frequency Tuning 309</p> <p>13.3.1.6 Quantum Phase Diffusion and Linewidth 309</p> <p>13.3.2 External Modulation 310</p> <p>13.3.2.1 Electroabsorption Modulation 310</p> <p>13.3.2.2 Electro-Optic Modulation 310</p> <p>13.3.3 Optical Amplification 311</p> <p>13.3.3.1 Needs of Optical Amplification 311</p> <p>13.3.3.2 Today’s Optical Amplifier Technologies 311</p> <p>13.3.3.3 Heisenberg Indetermination and Quantum Noise 312</p> <p>13.3.3.4 Spontaneous Emission Noise Description 313</p> <p>13.3.3.5 Optical Amplifier Noise Figure 313</p> <p>13.3.3.6 Noise in Cascaded Amplifications 313</p> <p>13.3.4 Interfacing the Optical and the Electronics Domains 314</p> <p>13.3.5 Module Packaging 314</p> <p>13.4 Advanced Optical Communication Techniques 315</p> <p>13.4.1 Managing the Color and Wavelength Division Multiplexing 315</p> <p>13.4.2 Coherent Optical Communication 316</p> <p>13.4.2.1 Coherent Optical Receiver 316</p> <p>13.4.2.2 Quadrature Amplitude Modulations 317</p> <p>13.4.3 Digital Communication and Signal Processing Techniques 318</p> <p>13.5 Today’s Optical Communication Systems 319</p> <p>13.5.1 The Conquest of Submarine and Terrestrial Communication Infrastructures 319</p> <p>13.5.2 Optical Fiber at Our Door 320</p> <p>13.5.2.1 The Last-Mile Problem 320</p> <p>13.5.2.2 Optical Connection to the End Users 320</p> <p>13.5.3 Optical Wireless and Free Space Communications 322</p> <p>13.5.4 Quantum Cryptography 322</p> <p>13.6 Conclusions: Today’s Challenges and Perspectives 323</p> <p>Acknowledgments 326</p> <p>List of Acronyms and Abbreviations 326</p> <p>References 328</p> <p><b>14 Advanced Concepts for Solar Energy 333<br /></b><i>Mikaël Hosatte</i></p> <p>14.1 Introduction 333</p> <p>14.2 Photon Management 334</p> <p>14.2.1 Antireflection Techniques 334</p> <p>14.2.2 Light Trapping 337</p> <p>14.3 Spectral Optimization 339</p> <p>14.3.1 Upconversion/Downconversion 339</p> <p>14.3.2 Tandem Cells 340</p> <p>14.4 Advanced Concepts 343</p> <p>14.4.1 Third-Generation Concepts 343</p> <p>14.4.2 Multiple Energy Level Solar Cells 344</p> <p>14.4.3 Multiple Exciton Generation 345</p> <p>14.4.4 Hot Carrier Solar Cells 348</p> <p>14.4.5 Comparison of the Approaches 349</p> <p>14.5 Conclusions 349</p> <p>References 350</p> <p><b>15 The Micro- and Nanoinvestigation and Control of Physical Processes Using Optical Fiber Sensors and Numerical Simulations: a Mathematical Approach 355<br /></b><i>Adrian Neculae and Dan Curticapean</i></p> <p>15.1 Introduction 355</p> <p>15.2 Temperature Measurement and Heat Transfer Evaluation in a Circular Cylinder by Considering a High Accurate Numerical Solution 360</p> <p>15.2.1 Theoretical Background 361</p> <p>15.2.2 Numerical Results for Conductive Transport 366</p> <p>15.2.3 The SP1 Approximation Model 370</p> <p>15.2.4 Numerical Results for the SP1 Model 370</p> <p>15.3 Numerical Analysis of the Diffusive Mass Transport in Brain Tissues with Applications to Optical Sensors 372</p> <p>15.3.1 Theoretical Background 373</p> <p>15.3.2 Numerical Results 375</p> <p>Acknowledgment 380</p> <p>References 380</p> <p><b>16 Laser Micronanofabrication 383</b><br /><i>Sylvain Lecler, Joël J. Fontaine, and Frédéric Mermet</i></p> <p>16.1 Introduction 383</p> <p>16.2 Physical Issues 384</p> <p>16.2.1 The Laser Mean Power 385</p> <p>16.2.2 The Wavelength 385</p> <p>16.2.3 Pulse Duration and Repetition Rate 385</p> <p>16.2.4 Spatial Concentration and Beam Shaping 385</p> <p>16.2.5 Material Response 386</p> <p>16.3 Recent Technological Advances 387</p> <p>16.3.1 Femtosecond Laser 387</p> <p>16.3.2 Nondivergent Subwavelength Beams 388</p> <p>16.3.3 Subwavelength Focusing of Light with Photonic Nanojet 389</p> <p>16.3.4 Subwavelength Deposition by LIFT Technique 389</p> <p>16.4 Laser Microprocesses 392</p> <p>16.4.1 Material Deposition and Thin-Layer Control 392</p> <p>16.4.2 Nanoparticle Fabrication 392</p> <p>16.4.3 Microdrilling 393</p> <p>16.4.4 Microcutting 393</p> <p>16.4.5 Laser Microwelding 395</p> <p>16.4.6 Surface Texturing 396</p> <p>16.4.7 Additive Manufacturing 397</p> <p>16.4.8 Waveguide Writing 399</p> <p>16.5 Conclusions 399</p> <p>References 400</p> <p><b>17 Ultrarealistic Imaging Based on Nanoparticle Recording Materials 403<br /></b><i>Hans I. Bjelkhagen</i></p> <p>17.1 Introduction 403</p> <p>17.1.1 Demands on a Holographic Emulsion 404</p> <p>17.1.2 Silver Halide Emulsion Light Scattering 405</p> <p>17.1.3 History of Ultrafine-grain Silver Halide Emulsions 406</p> <p>17.2 Preperation of Silver Hailde Emulsions: Principle 407</p> <p>17.2.1 General Description of the Photographic Emulsion Making Process 407</p> <p>17.2.2 The Specification for the SilverCross Ultrafine-grain Emulsion 408</p> <p>17.2.3 The Fabrication of a Basic Ultrafine-Grain Emulsion 409</p> <p>17.2.3.1 Gelatin Concentration 410</p> <p>17.2.3.2 Silver and Halide Concentrations 410</p> <p>17.2.3.3 Silver to Halide Ratio 410</p> <p>17.2.3.4 Jetting Methods and Jetting Time 410</p> <p>17.2.3.5 Solution Temperatures 411</p> <p>17.2.3.6 Concentration and Removal of Reaction By-products 411</p> <p>17.2.3.7 Coating 412</p> <p>17.3 Testing of the Emulsion 413</p> <p>17.3.1 Sensitometric Tests 413</p> <p>17.3.2 Color Holography Tests 414</p> <p>17.4 Recording Museum Artifacts with Color Holography 417</p> <p>17.4.1 Recording Holograms of Museum Artifacts 418</p> <p>17.4.2 Holographic Recordings with Mobile Equipment 418</p> <p>17.5 Conclusions 421</p> <p>Acknowledgments 421</p> <p>References 422</p> <p><b>18 An Introduction to Tomographic Diffractive Microscopy: Toward High-Speed Quantitative Imaging Beyond the Abbe Limit 425<br /></b><i>Jonathan Bailleul, Bertrand Simon, Matthieu Debailleul, and Olivier Haeberlé</i></p> <p>18.1 Introduction 425</p> <p>18.2 Conventional Transmission Microscopy 426</p> <p>18.2.1 Transmission Microscopy and Köhler Illumination 426</p> <p>18.2.2 Dark-Field Microscopy 428</p> <p>18.2.3 Phase-Contrast Microscopy 429</p> <p>18.3 Phase Amplitude Microscopy 431</p> <p>18.3.1 Digital Holography 432</p> <p>18.3.2 Wavefront Analyzer 433</p> <p>18.4 Tomographic Diffractive Microscopy for True 3D Imaging 433</p> <p>18.4.1 Limits of Phase Microscopy 433</p> <p>18.4.2 Tomography by Illumination Variation 434</p> <p>18.4.3 Tomography by Specimen Rotation 436</p> <p>18.5 Biological Applications 438</p> <p>18.6 Conclusions 439</p> <p>References 439</p> <p><b>19 Nanoplasmonic Guided Optic Hydrogen Sensor 443<br /></b><i>Nicolas Javahiraly and Cédric Perrotton</i></p> <p>19.1 Introduction 443</p> <p>19.2 Fiber Optic Sensor 448</p> <p>19.3 Pd Hydrogen Sensing Systems 451</p> <p>19.3.1 Bulk Palladium Film 451</p> <p>19.3.2 Thin Pd Film 453</p> <p>19.3.3 Metal Properties upon Hydrogenation 454</p> <p>19.4 Fiber Optic Hydrogen Sensors 455</p> <p>19.5 Fiber Surface Plasmon Resonance Sensor 457</p> <p>19.6 Sensitive Material for Hydrogen Sensing 460</p> <p>19.6.1 Pd Alloys 460</p> <p>19.6.2 Metal Hydrides and Rare-Earth Materials 461</p> <p>19.6.3 Tungsten Oxide 462</p> <p>19.7 Conclusions 464</p> <p>Acknowledgment 466</p> <p>References 466</p> <p><b>20 Fiber Optic Liquid-Level Sensor System for Aerospace Applications 471<br /></b><i>Alex A. Kazemi, Chengning Yang, and Shiping Chen</i></p> <p>20.1 Introduction 471</p> <p>20.2 The Operation Principle and System Design 472</p> <p>20.2.1 Optical Fiber Long-Period Gratings 472</p> <p>20.2.2 Optical Time Domain Reflectometer 474</p> <p>20.2.3 Total Internal Reflection 474</p> <p>20.2.4 LPG Sensor Liquid-Level System 475</p> <p>20.2.5 TIR-Based Liquid-Level Detection System 476</p> <p>20.3 Experimental Results 478</p> <p>20.4 Liquid-Level Sensor Performance 485</p> <p>20.5 Conclusions 486</p> <p>References 487</p> <p><b>21 Tunable Micropatterned Colloid Crystal Lasers 489<br /></b><i>Seiichi Furumi, Hiroshi Fudouzi, and Tsutomu Sawada</i></p> <p>21.1 Introduction 489</p> <p>21.2 Synthesis of Colloidal Microparticles and Reflection Features of CCs 493</p> <p>21.3 Laser Action from CCs with Light-Emitting Planar Defects 495</p> <p>21.4 Micropatterned Laser Action from CCs by Photochromic Reaction 498</p> <p>21.5 Tunable Laser Action from CC Gel Films Stabilized by Ionic Liquid 498</p> <p>21.6 Conclusions and Outlook 503</p> <p>Acknowledgments 504</p> <p>References 504</p> <p><b>22 Colloidal Photonic Crystals Made of Soft Materials: Gels and Elastomers 507<br /></b><i>Hiroshi Fudouzi and Tsutomu Sawada</i></p> <p>22.1 Introduction 507</p> <p>22.2 Colloidal Photonic Crystal Gels Consist of Nonclose-packed Particles 508</p> <p>22.2.1 Highly Oriented Colloidal Photonic Crystals by Shear-Flow Effect 508</p> <p>22.2.2 Structural Characterization of Crystals Oriented by Shear Flow 510</p> <p>22.3 Colloidal Photonic Crystal Elastomer Consists of Close-packed Particles 515</p> <p>22.3.1 A Uniaxially Oriented Opal Film by Crystal Growth under Silicone Liquid 515</p> <p>22.3.2 Colloidal Photonic Crystal Elastomer Film Coated on a Rubber Sheet 518</p> <p>22.4 Applications 520</p> <p>22.4.1 Colloidal Photonic Crystal Gels 520</p> <p>22.4.2 Colloidal Photonic Crystal Elastomers 521</p> <p>22.5 Summary and Outlook 523</p> <p>References 524</p> <p><b>23 Surveying the Landscape and the Prospects in Nanophotonics 527<br /></b><i>David L. Andrews, Patrick L. Meyrueis, and Marcel Van de Voorde</i></p> <p>23.1 Retrospective 527</p> <p>23.2 Fundamental Developments 527</p> <p>23.3 Futorology 528</p> <p>23.4 Applications 529</p> <p>23.5 Summing Up 529</p> <p>Index 531</p>
Patrick Meyrueis is Emeritus Professor of Physics at the University of Strasbourg, France. He started his career as an engineer of the French Department of Industry and took up a position as Associate Professor at the University Louis Pasteur (now University of Strasbourg) in 1981 where he founded the Photonics Group, which he headed until 1987. He then moved on to become founder and head of the Photonics System Laboratory which was one of the most advanced labs in the field of planar digital optics (now Icube Institute). Patrick Meyrueis is the author of more than 200 publications, 100 patents and several books. He was the chairman of more than 20 international conferences in photonics.<br> <br> Kazuaki Sakoda is Professor in the Graduate School of Pure and Applied Sciences at Tsukuba University, Japan, and Managing Researcher of the Research Center for Functional Materials at the National Institute of Materials Science (NIMS). After his BE and ME degrees, obtained from Tokyo University, he worked as Senior Researcher at TORAY Industries, Inc. for eleven years. Kazuaki Sakoda received his PhD in Applied Physics from Tokyo University in 1992 and continued his academic career as Associate Professor in the Research Institute for Electronic Science at Hokkaido University before taking up his current positions.<br> <br> Marcel Van de Voorde has 40 years' experience in European Research Organisations including CERN-Geneva, European Commission, with 10 years at the Max Planck Institute in Stuttgart, Germany. For many years, he was involved in research and research strategies, policy and management, especially in European research institutions. He holds a Professorship at the University of Technology in Delft, the Netherland, as well as multiple visiting professorships in Europe and worldwide. He holds a doctor honoris causa and various honorary Professorships.<br> He is senator of the European Academy for Sciences and Arts, in Salzburg and Fellow of the World Academy for Sciences. He is a Fellow of various scientific societies and has been decorated by the Belgian King. He has authored of multiple scientific and technical publications and co-edited multiple books in the field of nanoscience and nanotechnology.<br>

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €