Details

Micro and Nano Scale NMR


Micro and Nano Scale NMR

Technologies and Systems
Advanced Micro and Nanosystems 1. Aufl.

von: Jens Anders, Jan G. Korvink, Oliver Brand, Gary K. Fedder, Christofer Hierold, Osamu Tabata

151,99 €

Verlag: Wiley-VCH
Format: EPUB
Veröffentl.: 11.05.2018
ISBN/EAN: 9783527697335
Sprache: englisch
Anzahl Seiten: 448

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

This must-have book is the first self-contained summary of recent developments in the field of microscale nuclear magnetic resonance hardware, covering the entire technology from miniaturized detectors, the signal processing chain, and detection sequences. Chapters cover the latest advances in interventional NMR and implantable NMR sensors, as well as in using CMOS technology to manufacture miniaturized, highly scalable NMR detectors for NMR microscopy and high-throughput arrays of NMR spectroscopy detectors.
<p>Editor’s Preface xiii</p> <p>Series Editor’s Preface xv</p> <p><b>1 Magnets for Small-Scale and Portable NMR 1<br /></b><i>Bernhard Blümich, Christian Rehorn, and Wasif Zia</i></p> <p>1.1 Introduction 1</p> <p>1.2 Compact Permanent Magnets 3</p> <p>1.2.1 Types of Permanent Magnets 3</p> <p>1.2.2 Stray-Field Magnets 5</p> <p>1.2.2.1 Classification 5</p> <p>1.2.2.2 Magnets for 1D and 2D Imaging 6</p> <p>1.2.2.3 Magnets for Bulk-Volume Analysis 7</p> <p>1.2.3 Center-Field Magnets 9</p> <p>1.3 Magnet Development 10</p> <p>1.3.1 PermanentMagnet Materials 10</p> <p>1.3.2 Magnet Construction and Passive Shimming 11</p> <p>1.3.3 Overview of Center-field Magnets for Compact NMR 11</p> <p>1.3.4 Strategies for Passive Shimming 13</p> <p>1.3.5 Shim Coils for Compact NMR Magnets 14</p> <p>1.4 Concluding Remarks 16</p> <p>References 16</p> <p><b>2 Compact Modeling Techniques for Magnetic Resonance Detectors 21<br /></b><i>Suleman Shakil,Mikhail Kudryavtsev, Tamara Bechtold, Andreas Greiner,mand Jan G. Korvink</i></p> <p>2.1 Introduction 21</p> <p>2.2 Fast Simulation of EPR Resonators Based on Model OrdermReduction 22</p> <p>2.2.1 The Discretized Maxwell’s Equations 23</p> <p>2.2.2 Model Order Reduction 29</p> <p>2.2.3 Structure-PreservingModel Order Reduction 33</p> <p>2.2.4 Planar Coil EPR Resonator 34</p> <p>2.3 System Level Simulation of a Magnetic Resonance Microsensor bymMeans of ParametricModel Order Reduction 39</p> <p>2.3.1 Model Description 40</p> <p>2.3.2 ParametricModel Order Reduction 43</p> <p>2.3.3 Compact Model Simulation Results 46</p> <p>2.3.4 Device–Circuit Co-simulation 46</p> <p>2.4 Conclusions and Outlook 54</p> <p>References 55</p> <p><b>3 Microarrays andMicroelectronics for Magnetic Resonance 59<br /></b><i>Oliver Gruschke, Mazin Jouda, and Jan G. Korvink</i></p> <p>3.1 Introduction 59</p> <p>3.2 Microarrays for Magnetic Resonance 59</p> <p>3.2.1 Theoretical Background 59</p> <p>3.2.2 Microtechnologies for MR Array Fabrication 61</p> <p>3.3 Integrated Circuits 63</p> <p>3.4 CMOS Frequency Division Multiplexer 64</p> <p>3.4.1 The Low-Noise Amplifier 64</p> <p>3.4.2 The Frequency Mixer 65</p> <p>3.4.3 The Bandpass Filter 66</p> <p>3.4.4 Measurements 67</p> <p>3.4.4.1 MRI Experiment 68</p> <p>3.5 Summary 70</p> <p>References 70</p> <p><b>4 Wave Guides for Micromagnetic Resonance 75<br /></b><i>Ali Yilmaz andMarcel Utz</i></p> <p>4.1 Introduction 75</p> <p>4.2 Wave Guides: Theoretical Basics 78</p> <p>4.2.1 Propagating Electromagnetic Modes 78</p> <p>4.2.2 Characteristic Impedance and Transport Characteristics 79</p> <p>4.2.3 Theory of TEMWave Modes 79</p> <p>4.2.4 Modeling of TEM Modes 80</p> <p>4.2.4.1 Losses in Transmission Lines 82</p> <p>4.2.5 Magnetic Fields in Planar TEM Transmission Lines 82</p> <p>4.2.6 Transmission Line Detectors and Resonators 83</p> <p>4.3 Designs and Applications 84</p> <p>4.3.1 Microstrip NMR Probes in MRI 84</p> <p>4.3.2 Microfluidic NMR 87</p> <p>4.3.3 Planar Detectors 87</p> <p>4.3.4 Microstrip Detectors 88</p> <p>4.3.5 Nonresonant Detectors 90</p> <p>4.3.6 Stripline Detectors 92</p> <p>4.3.7 Parallel Plate Transmission Lines 96</p> <p>4.3.8 Applications in Solid-State Physics 97</p> <p>4.3.9 Wave Guides for Dynamic Nuclear Polarization 98</p> <p>References 100</p> <p><b>5 Innovative Coil Fabrication Techniques for Miniaturized  Magnetic Resonance Detectors 109<br /></b><i>Jan Korvink, Vlad Badilita, DarioMager, Oliver Gruschke, Nils Spengler, Shyam Sundar Adhikari Parenky,</i> <i>UlrikeWallrabe, andMarkusMeissner</i></p> <p>5.1 Wire-Bonding – A New Means to Miniaturize MR Detectors 109</p> <p>5.2 Microcoil Inserts for Magic Angle Spinning 114</p> <p>5.2.1 Backbone of the Magic Angle Coil Spinning (MACS) Technique 115</p> <p>5.2.2 Cost of Inductive Coupling 116</p> <p>5.2.3 Demonstrating the Improved Sensitivity of the MACS Technique from NMR Experiments 118</p> <p>5.2.4 Microfabricated MACS Inserts 118</p> <p>5.2.5 Double-Resonant MACS Insert 120</p> <p>5.3 Micro-Helmholtz Coil Pairs 123</p> <p>5.3.1 Helmholtz Coils in Magnetic Resonance 123</p> <p>5.3.2 Magnetic Field Profile 124</p> <p>5.3.3 Micromachining of Miniaturized Helmholtz Pairs 125</p> <p>5.4 High Filling Factor Microcoils 128</p> <p>5.4.1 Introduction 128</p> <p>5.4.2 Fabrication 130</p> <p>5.4.3 Results 130</p> <p>5.5 Coil Fabrication Using Inks 130</p> <p>References 136</p> <p><b>6 IC-Based and IC-Assisted </b><b>;;NMR Detectors 143<br /></b><i>Jonas Handwerker and Jens Anders</i></p> <p>6.1 Technological Considerations and Device Models 143</p> <p>6.1.1 ComplementaryMetal Oxide Semiconductor Technologies 143</p> <p>6.1.2 Bipolar ComplementaryMetal Oxide Semiconductor Technologies 148</p> <p>6.2 Monolithic Transceiver Electronics for NMR Applications 151</p> <p>6.2.1 Optimal Integrated RF Front-ends for μNMR Applications 151</p> <p>6.2.2 Designing NMR Receivers in CMOS and BiCMOS 155</p> <p>6.2.2.1 LNAs forWidebandand Applications 156</p> <p>6.2.2.2 LNAs for Narrowband Applications 163</p> <p>6.2.3 Co-design of the Detection Coil and the LNA for SNR Optimization 167</p> <p>6.3 Overview of the State-of-the-Art in IC-Based and IC-Assisted μNMR 167</p> <p>6.3.1 Portable NMR Systems 167</p> <p>6.3.2 NMR Spectroscopy Systems 170</p> <p>6.3.3 MR Imaging and Microscopy Systems 171</p> <p>6.3.4 Intravascular NMR Systems 173</p> <p>6.4 Summary and Conclusion 174</p> <p>References 174</p> <p><b>7 MR Imaging of Flow on theMicroscale 179<br /></b><i>Dieter Suter and Daniel Edelhoff</i></p> <p>7.1 Introduction 179</p> <p>7.2 Methods – Flow Imaging 179</p> <p>7.2.1 Time of Flight 180</p> <p>7.2.2 Phase Contrast 181</p> <p>7.2.3 Mean Flow 182</p> <p>7.2.4 Limitations 182</p> <p>7.2.4.1 Velocity Range 183</p> <p>7.2.4.2 Temporal Stability 184</p> <p>7.2.4.3 Spatial Resolution 184</p> <p>7.3 Applications of Microscopic Flow Imaging 185</p> <p>7.3.1 Experimental Setup 186</p> <p>7.3.2 Characterization of Liquid Exchange in Aneurysm Models 186</p> <p>7.3.2.1 AneurysmModels 186</p> <p>7.3.2.2 Methods 186</p> <p>7.3.2.3 Results 187</p> <p>7.3.2.4 Conclusion 189</p> <p>7.3.3 Phase–Contrast Measurements with Constant Flow 189</p> <p>7.3.3.1 Laminar Flow in a Pipe 189</p> <p>7.3.3.2 Flow andWall Shear Stress in an Aneurysm Model 190</p> <p>7.3.4 Pulsatile Flow 192</p> <p>7.4 Discussion 194</p> <p>Acknowledgments 195</p> <p>References 195</p> <p><b>8 Efficient Pulse Sequences for NMRMicroscopy 199<br /></b><i>Jürgen Hennig, Katharina Göbel-Guéniot, Linnéa Hesse, and Jochen Leupold</i></p> <p>8.1 Introduction 199</p> <p>8.2 Spatial Encoding 200</p> <p>8.2.1 k-Space and More 200</p> <p>8.2.2 Slice Selection 204</p> <p>8.3 Contrast Mechanisms 206</p> <p>8.3.1 T1-relaxation 206</p> <p>8.3.2 T2-relaxation 207</p> <p>8.3.3 T2*-decay 207</p> <p>8.4 Basic Pulse Sequences 211</p> <p>8.4.1 General Considerations 211</p> <p>8.4.2 Spin Echo Sequences 212</p> <p>8.4.3 Gradient Echo-Based Imaging 214</p> <p>8.4.3.1 FLASH-Type Gradient Echoes 214</p> <p>8.4.3.2 EPI 219</p> <p>8.4.4 Ultrashort TE 220</p> <p>8.5 Special Contrasts 222</p> <p>8.5.1 Diffusion 222</p> <p>8.5.1.1 Diffusion Limit of NMR Microscopy 224</p> <p>8.5.2 Flow 229</p> <p>8.5.2.1 Velocity Phase Imaging 229</p> <p>8.5.2.2 Time-of-Flight Imaging 230</p> <p>8.5.3 Susceptibility Mapping and QSM 230</p> <p>References 232</p> <p><b>9 Thin-Film Catheter-Based Receivers for Internal MRI 237<br /></b><i>Richard R. A. Syms, Evdokia Kardoulaki, and Ian R. Young</i></p> <p>9.1 Introduction 237</p> <p>9.2 Catheter Receivers 237</p> <p>9.2.1 Internal Imaging 238</p> <p>9.2.2 Catheter Receiver Designs 238</p> <p>9.2.3 Elongated Loop Receivers 239</p> <p>9.2.4 Tuning and Matching 240</p> <p>9.2.5 B1-Field Decoupling 241</p> <p>9.2.6 E-Field Decoupling 242</p> <p>9.3 Thin-Film Catheter Receivers 244</p> <p>9.3.1 Thin-Film Coils 244</p> <p>9.3.2 Thin-Film Interconnects 245</p> <p>9.3.3 MR-Safe Thin Film Interconnects 246</p> <p>9.4 Thin-Film Device Fabrication 249</p> <p>9.4.1 Design and Modeling 249</p> <p>9.4.2 Materials and Fabrication 249</p> <p>9.4.3 Mechanical Performance 251</p> <p>9.4.4 Electrical Performance 252</p> <p>9.5 Magnetic Resonance Imaging 255</p> <p>9.5.1 Imaging with Resonant Detectors 255</p> <p>9.5.2 Imaging with EBG Detectors 256</p> <p>9.5.3 Imaging with MI Detectors 257</p> <p>9.6 Conclusions 258</p> <p>Acknowledgments 259</p> <p>References 259</p> <p><b>10 Microcoils for BroadbandMultinuclei Detection 265<br /></b><i>Jens Anders and Aldrik H. Velders</i></p> <p>10.1 Introduction 265</p> <p>10.1.1 NMR Microcoils 266</p> <p>10.1.2 Broadband NMR Microcoils 267</p> <p>10.2 Microcoil-Based Broadband Probe NMR Spectroscopy 268</p> <p>10.2.1 Broadband Coil, Chip, and Probe Setup 269</p> <p>10.2.2 Non-tuned Broadband Planar Transceiver Coil NMR Data 269</p> <p>10.2.2.1 Homonuclear 1D NMR Experiments 269</p> <p>10.2.2.2 Heteronuclear 1D NMR Experiments 273</p> <p>10.2.2.3 Homo- and Heteronuclear 2D NMR Experiments 273</p> <p>10.2.3 Questions Arising for Broadband NMR 273</p> <p>10.3 An Engineer’s Answers to the Questions 274</p> <p>10.3.1 General Remarks 274</p> <p>10.3.2 Coils 274</p> <p>10.3.3 Impedance Matching and Front-end Electronics 278</p> <p>10.3.4 Answers to the Questions 287</p> <p>10.3.5 Remaining Spectrometer Electronics 289</p> <p>10.4 Conclusion and Outlook 289</p> <p>Acknowledgment 290</p> <p>References 291</p> <p><b>11 Microscale Hyperpolarization 297<br /></b><i>Sebastian Kiss, Lorenzo Bordonali, Jan G. Korvink, and Neil MacKinnon</i></p> <p>11.1 Introduction 297</p> <p>11.2 Theory 301</p> <p>11.2.1 Dynamic Nuclear Polarization 301</p> <p>11.2.1.1 Polarization Transfer and DNP Mechanisms 301</p> <p>11.2.1.2 DNP Instrumentation 302</p> <p>11.2.1.3 Challenges in DNP Instrumentation 303</p> <p>11.2.2 para-Hydrogen-Induced Hyperpolarization 304</p> <p>11.2.3 Spin-Exchange by Optical Pumping 309</p> <p>11.3 Microtechnological Approaches 312</p> <p>11.3.1 DNP 312</p> <p>11.3.1.1 Microtechnology for High-Field DNP Resonators 314</p> <p>11.3.1.2 Microresonators for Low- and Intermediate-Field DNP 318</p> <p>11.3.1.3 Microfluidics and DNP Resonators 322</p> <p>11.3.2 PHIP 323</p> <p>11.3.2.1 Gas-Phase Characterization of Reactors and Fluidic Networks 324</p> <p>11.3.2.2 Micro-PHIP in the Liquid Phase 327</p> <p>11.3.2.3 SABRE: A Micro-NMR Compatible PHIP Technique? 330</p> <p>11.3.2.4 Catalyst Solubility inWater 331</p> <p>11.3.2.5 Quantification 331</p> <p>11.3.2.6 High-Field SABRE 332</p> <p>11.3.3 Micro-SEOP for Nuclear Hyperpolarization 333</p> <p>11.4 Conclusion 337</p> <p>References 338</p> <p><b>12 Small-Volume Hyphenated NMR Techniques 353<br /></b><i>Andrew Webb</i></p> <p>12.1 Different Modes of Hyphenation 353</p> <p>12.2 Types of Radio-Frequency Coils Used for Small-Scale Hyphenation 355</p> <p>12.3 Hyphenation of NMR and Pressure-Driven Microseparations 357</p> <p>12.3.1 Capillary High-Pressure Liquid Chromatography 357</p> <p>12.3.2 Capillary Gas Chromatography 358</p> <p>12.4 Electrically Driven Microseparations 359</p> <p>12.4.1 Capillary Electrophoresis NMR 360</p> <p>12.4.2 Capillary Isotachophoresis NMR 362</p> <p>12.5 Off-Line Hyphenation of Microsamples with MicrocoilmDetection 363</p> <p>12.6 Continuous Monitoring of In Situ Biological Systems 368</p> <p>12.7 Studies of Microfluidic Mixing and Reaction Kinetics 368</p> <p>12.8 Measurement of Flow Profiles in Flow Cells and Microchannels 370</p> <p>12.9 Conclusion 372</p> <p>References 372</p> <p><b>13 Force-Detected Nuclear Magnetic Resonance 381<br /></b><i>Martino Poggio and Benedikt E. Herzog</i></p> <p>13.1 Introduction 381</p> <p>13.2 Motivation 381</p> <p>13.3 Principle 382</p> <p>13.4 Force versus Inductive Detection 384</p> <p>13.5 Early Force-Detected Magnetic Resonance 386</p> <p>13.6 Single-Electron MRFM 389</p> <p>13.7 Toward Nano-MRI with Nuclear Spins 390</p> <p>13.7.1 Improvements to Micro-fabricated Components 391</p> <p>13.7.2 MRI with Resolution Better than 100nm 391</p> <p>13.7.3 Nanoscale MRI of Virus Particles 392</p> <p>13.7.4 Imaging Organic Nanolayers 396</p> <p>13.8 Paths Toward Continued Improvement 398</p> <p>13.8.1 Magnetic Field Gradients 398</p> <p>13.8.2 Mechanical Transducers 400</p> <p>13.8.3 Measurement Protocols 405</p> <p>13.8.4 Nano-MRI with a Nanowire Force Sensor 408</p> <p>13.9 Comparison to Other Techniques 412</p> <p>13.10 Outlook 414</p> <p>13.11 Conclusion 416</p> <p>References 416</p> <p>Index 421</p>
Jens Anders obtained his PhD from the Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland, in 2011. He then joined the Institute of Microelectronics at the University of Ulm, Germany, first as a group leader and since 2013 as assistant professor. Prof. Anders is the recipient of several awards including the E.ON Future Award 2007, the VDE ITG ISS Study Award 2008 and the VDE Outstanding Publication award 2012. His main research interests include electronics for biomedical and materials science applications, mixed-signal circuit design, and the modeling of nonlinear circuits and systems in the absence as well as in the presence of noise.<br> Professor Anders has authored more than 90 scientific publications.<br> <br> Jan Korvink obtained his PhD from the ETH in Zurich, Switzerland, in 1993. In 1997 he moved to the Albert Ludwig University in Freiburg, Germany, where for 18 years he was professor for microsystems engineering. From 2007 to 2013 he was a director of the Freiburg Institute for Advanced Studies. Since April 2015 he is Professor and director of the Institute of Microstructure Technology at the Karlsruhe Institute of Technology. His research interests cover the development of ultra low cost micromanufacturing methods, microsystem applications in the area of magnetic resonance imaging and spectroscopy, and the design and simulation of micro- and nano-systems. He is a recipient of the European Research Council's Advanced Grant for the development of an NMR metabolomic analyser for the nematode C. elegans. He has also been awarded a Red Dot Design Concept Prize in the area of NMR hardware. <br> Professor Korvink has authored more than 300 scientific publications, and was a founding editor of this book series.<br>

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €