Details

Medical Devices


Medical Devices

Surgical and Image-Guided Technologies
1. Aufl.

von: Martin Culjat, Rahul Singh, Hua Lee

136,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 18.10.2012
ISBN/EAN: 9781118452790
Sprache: englisch
Anzahl Seiten: 456

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>Addressing the exploding interest in bioengineering for healthcare applications, this book provides readers with detailed yet easy-to-understand guidance on biomedical device engineering. Written by prominent physicians and engineers, <i>Medical Devices: Surgical and Image-Guided Technologies</i> is organized into stand-alone chapters covering devices and systems in diagnostic, surgical, and implant procedures.</p> <p>Assuming only basic background in math and science, the authors clearly explain the fundamentals for different systems along with such topics as engineering considerations, therapeutic techniques and applications, future trends, and more. After describing how to manage a design project for medical devices, the book examines the following:</p> <ul> <li>Instruments for laparoscopic and ophthalmic surgery, plus surgical robotics</li> <li>Catheters in vascular therapy and energy-based hemostatic surgical devices</li> <li>Tissue ablation systems and the varied uses of lasers in medicine</li> <li>Vascular and cardiovascular devices, plus circulatory support devices</li> <li>Ultrasound transducers, X-ray imaging, and neuronavigation</li> </ul> <p>An absolute must for biomedical engineers, <i>Medical Devices: Surgical and Image-Guided Technologies</i> is also an invaluable guide for students in all engineering majors and pre-med programs interested in exploring this fascinating field.</p>
PREFACE xvii <p>CONTRIBUTORS xix</p> <p><b>PART I INTRODUCTION TO MEDICAL DEVICES 1</b></p> <p><b>1. Introduction 3</b><br /> <i>Martin Culjat</i></p> <p>1.1 History of Medical Devices 3</p> <p>1.2 Medical Device Terminology 6</p> <p>1.3 Purpose of the Book 10</p> <p><b>2. Design of Medical Devices 11</b><br /> <i>Gregory Nighswonger</i></p> <p>2.1 Introduction 11</p> <p>2.2 The Medical Device Design Environment 11</p> <p>2.2.1 US Regulation 12</p> <p>2.2.2 Differences in European Regulation 13</p> <p>2.2.3 Standards 14</p> <p>2.3 Basic Design Phases 15</p> <p>2.3.1 Feasibility 15</p> <p>2.3.2 Planning and Organization—Assembling the Design Team 16</p> <p>2.3.3 When to Involve Regulatory Affairs 17</p> <p>2.3.4 Conceptualizing and Review 17</p> <p>2.3.5 Testing and Refinement 20</p> <p>2.3.6 Proving the Concept 20</p> <p>2.3.7 Pilot Testing and Release to Manufacturing 22</p> <p>2.4 Postmarket Activities 25</p> <p>2.5 Final Note 25</p> <p><b>PART II MINIMALLY INVASIVE DEVICES AND TECHNIQUES 27</b></p> <p><b>3. Instrumentation for Laparoscopic Surgery 29</b><br /> <i>Camellia Racu-Keefer, Scott Um, Martin Culjat, and Erik Dutson</i></p> <p>3.1 Introduction 29</p> <p>3.2 Basic Principles 31</p> <p>3.3 Laparoscopic Instrumentation 34</p> <p>3.3.1 Trocars 34</p> <p>3.3.2 Standard Laparoscopic Instruments 37</p> <p>3.3.3 Additional Laparoscopic Instruments 42</p> <p>3.3.4 Specimen Retrieval Bags 44</p> <p>3.3.5 Disposable Instruments 44</p> <p>3.4 Innovative Applications 45</p> <p>3.5 Summary and Future Applications 46</p> <p><b>4. Surgical Instruments in Ophthalmology 49</b><br /> <i>Allen Y. Hu, Robert M. Beardsley, and Jean-Pierre Hubschman</i></p> <p>4.1 Introduction 49</p> <p>4.2 Cataract Surgery 51</p> <p>4.2.1 Basic Technique 51</p> <p>4.2.2 Principles of Phacoemulsification 52</p> <p>4.2.3 Phacoemulsification Instruments 54</p> <p>4.2.4 Phacoemulsification Systems 55</p> <p>4.2.5 Future Directions 56</p> <p>4.3 Vitreoretinal Surgery 56</p> <p>4.3.1 Basic Techniques 56</p> <p>4.3.2 Principles of Vitrectomy 57</p> <p>4.3.3 Vitrectomy Instruments 58</p> <p>4.3.4 Vitrectomy Systems 60</p> <p>4.3.5 Future Directions 60</p> <p>4.4 Other Ophthalmic Surgical Procedures 61</p> <p>4.5 Conclusion 62</p> <p><b>5. Surgical Robotics 63</b><br /> <i>Jacob Rosen</i></p> <p>5.1 Introduction 63</p> <p>5.2 Background and Leading Concepts 63</p> <p>5.2.1 Human–Machine Interfaces: System Approach 65</p> <p>5.2.2 Tissue Biomechanics 70</p> <p>5.2.3 Teleoperation 72</p> <p>5.2.4 Image-Guided Surgery 78</p> <p>5.2.5 Objective Assessment of Skill 79</p> <p>5.3 Commercial Systems 80</p> <p>5.3.1 ROBODOC® (Curexo Technology Corporation) 80</p> <p>5.3.2 daVinci (Intuitive Surgical) 83</p> <p>5.3.3 Sensei® X (Hansen Medical) 84</p> <p>5.3.4 RIO® MAKOplasty (MAKO Surgical Corporation) 86</p> <p>5.3.5 CyberKnife (Accuray) 89</p> <p>5.3.6 Renaissance™ (Mazor Robotics) 91</p> <p>5.3.7 ARTAS® System (Restoration Robotics, Inc.) 92</p> <p>5.4 Trends and Future Directions 93</p> <p><b>6. Catheters in Vascular Therapy 99</b><br /> <i>Axel Boese</i></p> <p>6.1 Introduction 99</p> <p>6.2 Historic Overview 100</p> <p>6.3 Catheter Interventions 102</p> <p>6.4 Catheter and Guide Wire Shapes and Configurations 105</p> <p>6.4.1 Catheters 105</p> <p>6.4.2 Guide Wires 113</p> <p>6.5 Conclusion 116</p> <p><b>PART III ENERGY DELIVERY DEVICES AND SYSTEMS 119</b></p> <p><b>7. Energy-Based Hemostatic Surgical Devices 121</b><br /> <i>Amit P. Mulgaonkar, Warren Grundfest, and Rahul Singh</i></p> <p>7.1 Introduction 121</p> <p>7.2 History of Energy-Based Hemostasis 122</p> <p>7.3 Energy-Based Surgical Methods and Their Effects on Tissues 125</p> <p>7.3.1 Disambiguation 126</p> <p>7.3.2 Thermal Effects on Tissues 127</p> <p>7.4 Electrosurgery 128</p> <p>7.4.1 Electrosurgical Theory 128</p> <p>7.4.2 Cutting and Coagulation Techniques 130</p> <p>7.4.3 Equipment 131</p> <p>7.4.4 Considerations and Complications 133</p> <p>7.5 Future Of Electrosurgery 134</p> <p>7.6 Conclusion 135</p> <p><b>8. Tissue Ablation Systems 137</b><br /> <i>Michael Douek, Justin McWilliams, and David Lu</i></p> <p>8.1 Introduction 137</p> <p>8.2 Evolving Paradigms in Cancer Therapy 138</p> <p>8.3 Basic Ablation Categories and Nomenclature 140</p> <p>8.4 Hyperthermic Ablation 140</p> <p>8.5 Fundamentals of In Vivo Energy Deposition 141</p> <p>8.6 Hyperthermic Ablation: Optimizing Tissue Ablation 143</p> <p>8.7 Radiofrequency Ablation 144</p> <p>8.8 RFA: Basic Principles 145</p> <p>8.9 RFA: In Vivo Energy Deposition 145</p> <p>8.10 Optimizing RFA 147</p> <p>8.11 Other Hyperthermic Ablation Techniques 149</p> <p>8.11.1 Microwave Ablation (MWA) 149</p> <p>8.11.2 MWA: Basic Principles 149</p> <p>8.11.3 MWA: In Vivo Energy Deposition 151</p> <p>8.11.4 Optimizing MWA 152</p> <p>8.12 Laser Ablation 153</p> <p>8.13 Hypothermic Ablation 154</p> <p>8.13.1 Cryoablation: Basic Concepts 154</p> <p>8.13.2 Cryoablation: In Vivo Considerations 154</p> <p>8.13.3 Optimizing Cryoablation Systems 154</p> <p>8.14 Chemical Ablation 157</p> <p>8.15 Novel Techniques 158</p> <p>8.15.1 High Intensity Focused Ultrasound (HIFU) 158</p> <p>8.15.2 Irreversible Electroporation (IRE) 159</p> <p>8.16 Tumor Ablation and Beyond 160</p> <p><b>9. Lasers in Medicine 163</b><br /> <i>Zachary Taylor, Asael Papour, Oscar Stafsudd, and Warren Grundfest</i></p> <p>9.1 Introduction 163</p> <p>9.1.1 Historical Perspective 164</p> <p>9.1.2 Basic Operational Concepts 165</p> <p>9.1.3 First Experimental MASER (Microwave Amplification by Stimulated Emission of Radiation) 166</p> <p>9.2 Laser Fundamentals 167</p> <p>9.2.1 Two-Level Systems and Population Inversion 167</p> <p>9.2.2 Multiple Energy Levels 167</p> <p>9.2.3 Mode of Operation 169</p> <p>9.2.4 Beams and Optics 171</p> <p>9.3 Laser Light Compared to Other Sources of Light 174</p> <p>9.3.1 Temporal Coherence 174</p> <p>9.3.2 Spectral Coherence (Line Width) 175</p> <p>9.3.3 Beam Collimation 177</p> <p>9.3.4 Short Pulse Duration 177</p> <p>9.3.5 Summary 178</p> <p>9.4 Laser–Tissue Interactions 178</p> <p>9.4.1 Biostimulation 178</p> <p>9.4.2 Photochemical Interactions 179</p> <p>9.4.3 Photothermal Interactions 180</p> <p>9.4.4 Ablation 180</p> <p>9.4.5 Photodisruption 181</p> <p>9.5 Lasers in Diagnostics 181</p> <p>9.5.1 Optical Coherence Tomography 181</p> <p>9.5.2 Fluorescence Angiography 184</p> <p>9.5.3 Near Infrared Spectroscopy 185</p> <p>9.6 Laser Treatments and Therapy 186</p> <p>9.6.1 Overview of Current Medical Applications of Laser Technology 186</p> <p>9.6.2 Retinal Photodynamic Therapy (Photochemical) 188</p> <p>9.6.3 Transpupillary Thermal Therapy (TTT) (Photothermal) 188</p> <p>9.6.4 Vascular Birth Marks (Photocoagulation) 190</p> <p>9.6.5 Laser Assisted Corneal Refractive Surgery (Ablation) 191</p> <p>9.7 Conclusions 196</p> <p><b>PART IV IMPLANTABLE DEVICES AND SYSTEMS 197</b></p> <p><b>10. Vascular and Cardiovascular Devices 199</b><br /> <i>Dan Levi, Allan Tulloch, John Ho, Colin Kealey, and David Rigberg</i></p> <p>10.1 Introduction 199</p> <p>10.2 Biocompatibility Considerations 200</p> <p>10.3 Materials 202</p> <p>10.3.1 316L Stainless Steel 203</p> <p>10.3.2 Nitinol 203</p> <p>10.3.3 Cobalt–Chromium Alloys 204</p> <p>10.4 Stents 204</p> <p>10.5 Closure Devices 206</p> <p>10.6 Transcatheter Heart Valves 208</p> <p>10.7 Inferior Vena Cava Filters 212</p> <p>10.8 Future Directions–Thin Film Nitinol 214</p> <p>10.9 Conclusion 216</p> <p><b>11. Mechanical Circulatory Support Devices 219</b><br /> <i>Colin Kealey, Paymon Rahgozar, and Murray Kwon</i></p> <p>11.1 Introduction 219</p> <p>11.2 History 220</p> <p>11.3 Basic Principles 221</p> <p>11.3.1 Biocompatibility and Mechanical Circulatory Support Devices 221</p> <p>11.3.2 Hemocompatibility: Microscopic Considerations 222</p> <p>11.3.3 Hemocompatibility: Macroscopic Considerations 223</p> <p>11.4 Engineering Considerations in Mechanical Circulatory Support 223</p> <p>11.4.1 Overview 223</p> <p>11.4.2 Pump Design 225</p> <p>11.4.3 Positive Displacement Pumps 225</p> <p>11.4.4 Rotary Pumps 226</p> <p>11.4.5 Pulsatile Versus Nonpulsatile Flow 228</p> <p>11.5 Devices 228</p> <p>11.5.1 The HeartMate XVE Left Ventricular Assist System 228</p> <p>11.5.2 The HeartMate II Left Ventricular Assist System 231</p> <p>11.5.3 Short-Term Mechanical Circulatory Support: The Intraaortic Balloon Pump 234</p> <p>11.5.4 Pediatric Mechanical Circulatory Support: The Berlin Heart 237</p> <p>11.6 The Future of MCS Devices 239</p> <p>11.6.1 CorAide 239</p> <p>11.6.2 HeartMate III 239</p> <p>11.6.3 HeartWare 240</p> <p>11.6.4 VentrAssist 240</p> <p>11.7 Summary 240</p> <p><b>12. Orthopedic Implants 241</b><br /> <i>Sophia N. Sangiorgio, Todd S. Johnson, Jon Moseley, G. Bryan Cornwall, and Edward Ebramzadeh</i></p> <p>12.1 Introduction 241</p> <p>12.1.1 Overview 241</p> <p>12.1.2 History 243</p> <p>12.2 Basic Principles 244</p> <p>12.2.1 Optimization for Strength and Stiffness 245</p> <p>12.2.2 Maximization of Implant Fixation to Host Bone 250</p> <p>12.2.3 Minimization of Degradation 251</p> <p>12.2.4 Sterilization of Implants and Instrumentation 253</p> <p>12.3 Implant Technologies 253</p> <p>12.3.1 Total Hip Replacement 254</p> <p>12.3.2 Technology in Total Knee Replacement 263</p> <p>12.3.3 Technology in Spine Surgery 268</p> <p>12.4 Summary 272</p> <p><b>PART V IMAGING AND IMAGE-GUIDED TECHNIQUES 275</b></p> <p><b>13. Endoscopy 277</b><br /> <i>Gregory Nighswonger</i></p> <p>13.1 Introduction 277</p> <p>13.2 Ancient Origins 278</p> <p>13.3 Modern Endoscopy 280</p> <p>13.3.1 Creating Cold Light 280</p> <p>13.3.2 Introduction of Rod-Lens Technology 280</p> <p>13.4 Principles of Modern Endoscopy 283</p> <p>13.4.1 Optics 284</p> <p>13.4.2 Mechanics 284</p> <p>13.4.3 Electronics 284</p> <p>13.4.4 Software 285</p> <p>13.5 The Imaging Chain 285</p> <p>13.5.1 Light Source (1) 286</p> <p>13.5.2 Telescope (2) 286</p> <p>13.5.3 Camera Head (3) 287</p> <p>13.5.4 Camera CCU (4) 287</p> <p>13.5.5 Video Cables (5) 287</p> <p>13.5.6 Monitor (6) 287</p> <p>13.5.7 Image Management Systems (7) 288</p> <p>13.6 Endoscopes for Today 288</p> <p>13.6.1 Rigid Endoscopes—Designs to Enhance Functionality 289</p> <p>13.6.2 Less Traumatic Ureterorenoscopes 290</p> <p>13.6.3 Advances in Flexible Endoscope Design 291</p> <p>13.6.4 Broader Functionality with New Technologies 294</p> <p>13.6.5 Enhancing Video Capabilities 299</p> <p>13.7 Endoscopy’s Future 301</p> <p><b>14. Medical Ultrasound Devices 303</b><br /> <i>Rahul Singh and Martin Culjat</i></p> <p>14.1 Introduction 303</p> <p>14.2 Basic Principles of Ultrasound 304</p> <p>14.2.1 Basic Acoustic Physics 304</p> <p>14.2.2 Reflection and Refraction 307</p> <p>14.2.3 Attenuation 307</p> <p>14.2.4 Piezoelectricity 308</p> <p>14.2.5 Ultrasound Systems 310</p> <p>14.2.6 Resolution and Bandwidth 312</p> <p>14.2.7 Beam Characteristics 314</p> <p>14.3 Ultrasound Transducer Design 316</p> <p>14.3.1 Piezoelectric Material 317</p> <p>14.3.2 Backing Layers and Damping 318</p> <p>14.3.3 Matching Layers 318</p> <p>14.3.4 Mechanical Focusing 319</p> <p>14.3.5 Electrical Matching 320</p> <p>14.3.6 Sector Scanners 320</p> <p>14.3.7 Array Transducers 322</p> <p>14.3.8 Transducer Array Fabrication 325</p> <p>14.3.9 Regulatory Considerations 327</p> <p>14.4 Applications of Medical Ultrasound 329</p> <p>14.4.1 Image Guidance Applications 330</p> <p>14.4.2 Intravascular and Intracardiac Applications 332</p> <p>14.4.3 Intraoral and Endocavity Applications 333</p> <p>14.4.4 Surgical Applications 334</p> <p>14.4.5 Ophthalmic Ultrasound 335</p> <p>14.4.6 Doppler and Doppler Applications 336</p> <p>14.4.7 Therapeutic Applications 336</p> <p>14.5 The Future of Medical Ultrasound 338</p> <p><b>15. Medical X-ray Imaging 341</b><br /> <i>Mark Roden</i></p> <p>15.1 Introduction 341</p> <p>15.2 X-ray Physics 342</p> <p>15.2.1 Photon Interactions with Matter 342</p> <p>15.2.2 Clinical Production of X-rays 343</p> <p>15.2.3 Patient Dose Considerations 346</p> <p>15.3 Two-Dimensional Image Acquisition 348</p> <p>15.4 Image Acquisition Technologies and Techniques 351</p> <p>15.4.1 Film 351</p> <p>15.4.2 Computed Radiography 354</p> <p>15.4.3 Digital Radiography 358</p> <p>15.4.4 Clinical Applications of 2D X-ray Techniques 360</p> <p>15.5 Basic 2D Processing Techniques 361</p> <p>15.5.1 Independent Pixel Operations 362</p> <p>15.5.2 Grouped Pixel Operations 363</p> <p>15.5.3 Image Transformation Operations 366</p> <p>15.6 Real-Time X-ray Imaging 367</p> <p>15.6.1 Fluoroscopy Technology 367</p> <p>15.6.2 Angiography 370</p> <p>15.7 Three-Dimensional X-ray Imaging 372</p> <p>15.8 Conclusion 373</p> <p><b>16. Navigation in Neurosurgery 375</b><br /> <i>Jean-Jacques Lemaire, Eric J. Behnke, Andrew J. Frew, and Antonio A. F. DeSalles</i></p> <p>16.1 Basics of Neurosurgery 375</p> <p>16.1.1 General Technical Issues in Neurosurgery 375</p> <p>16.1.2 Instrumentation in Neurosurgery 376</p> <p>16.1.3 Complications 377</p> <p>16.1.4 Functional Neurosurgery 378</p> <p>16.1.5 Stereotactic Neurosurgery 378</p> <p>16.1.6 Neuroimaging for Neurosurgery 379</p> <p>16.2 Introduction to Neuronavigation 381</p> <p>16.3 Neuronavigation Systems 381</p> <p>16.3.1 The Tracking System 382</p> <p>16.3.2 The Display Unit 383</p> <p>16.3.3 The Control Unit 385</p> <p>16.4 Implementation of Neuronavigation 386</p> <p>16.4.1 Surgical Planning 386</p> <p>16.4.2 Patient Registration 387</p> <p>16.4.3 Navigation 389</p> <p>16.5 Augmented Reality and Virtual Reality 390</p> <p>16.6 Summary/Future 391</p> <p>REFERENCES 395</p> <p>INDEX 425</p>
<p><b>MARTIN CULJAT, PhD,</b> is Adjunct Assistant Professor in the UCLA Departments of Bioengineering and Surgery and the Engineering Research Director of the UCLA Center for Advanced Surgical and Interventional Technology (CASIT), a research center that promotes collaboration between medicine and engineering.</p> <p><b>RAHUL SINGH, PhD,</b> is Adjunct Assistant Professor in the UCLA Departments of Bioengineering and Surgery. He leads several collaborative research projects at the UCLA Center for Advanced Surgical and Interventional Technology (CASIT).</p> <p><b>HUA LEE, PhD,</b> is Professor in the Department of Electrical and Computer Engineering at UC Santa Barbara. Well known for his pioneering research laboratory, Dr. Lee is also the author of three other books on imaging technology and engineering.</p>
<p><b>A comprehensive introduction to biomedical device engineering</b></p> <p>Addressing the exploding interest in bioengineering for healthcare applications, this book provides readers with detailed yet easy-to-understand guidance on biomedical device engineering. Written by prominent physicians and engineers, <i>Medical Devices: Surgical and Image-Guided Technologies</i> is organized into stand-alone chapters covering devices and systems in diagnostic, surgical, and implant procedures.</p> <p>Assuming only basic background in math and science, the authors clearly explain the fundamentals for different systems along with such topics as engineering considerations, therapeutic techniques and applications, future trends, and more. After describing how to manage a design project for medical devices, the book examines the following:</p> <ul> <li>Instruments for laparoscopic and ophthalmic surgery, plus surgical robotics</li> <li>Catheters in vascular therapy and energy-based hemostatic surgical devices</li> <li>Tissue ablation systems and the varied uses of lasers in medicine</li> <li>Vascular and cardiovascular devices, plus circulatory support devices</li> <li>Ultrasound transducers, X-ray imaging, and neuronavigation</li> </ul> <p>An absolute must for biomedical engineers, <i>Medical Devices: Surgical and Image-Guided Technologies</i> is also an invaluable guide for students in all engineering majors and pre-med programs interested in exploring this fascinating field.</p>

Diese Produkte könnten Sie auch interessieren:

Biomedical Imaging
Biomedical Imaging
von: Reiner Salzer
PDF ebook
120,99 €
Clinical Reasoning in Occupational Therapy
Clinical Reasoning in Occupational Therapy
von: Linda Robertson
PDF ebook
38,99 €
Clinical Reasoning in Occupational Therapy
Clinical Reasoning in Occupational Therapy
von: Linda Robertson
EPUB ebook
38,99 €