Details

Medical Coatings and Deposition Technologies


Medical Coatings and Deposition Technologies


1. Aufl.

von: David Glocker, Shrirang Ranade

219,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 24.06.2016
ISBN/EAN: 9781119308676
Sprache: englisch
Anzahl Seiten: 800

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b><i>Medical Coatings and Deposition Technologies</i></b> is an important new addition to the libraries of medical device designers and manufacturers. Coatings enable the properties of the surface of a device to be controlled independently from the underlying bulk properties; they are often critical to the performance of the device and their use is rapidly growing. This book provides an introduction to many of the most important types of coatings used on modern medical devices as well as descriptions of the techniques by which they are applied and methods for testing their efficacy.  Developers of new medical devices and those responsible for producing them will find it an important reference when deciding if a particular functionality can be provided by a coating and what limitations may apply in a given application. Written as a practical guide and containing many specific coating examples and a large number of references for further reading, the book will also be useful to students in materials science & engineering with an interest in medical devices.</p> <p>Chapters on antimicrobial coatings as well as coatings for biocompatibility, drug delivery, radiopacity and hardness are supported by chapters describing key liquid coating processes, plasma-based processes and chemical vapor deposition. Many types of coatings can be applied by more than one technique and the reader will learn the tradeoffs given the relevant design, manufacturing and economic constraints. The chapter on regulatory considerations provides important perspectives regarding the marketing of these coatings and medical devices.</p>
<p>Preface xxi</p> <p><b>Part 1 Introduction 1</b></p> <p><b>1 Historical Perspectives on Biomedical Coatings in Medical Devices 3<br /> </b><i>M. Hendriks and P.T. Cahalan</i></p> <p>1.1 Introduction 4</p> <p>1.2 Improving Physical Properties of Biomaterials: Hydrophilic, Lubricious Coatings 7</p> <p>1.3 Modulating Host-Biomaterial Interactions: Biologically Active Coatings 7</p> <p>1.4 Bioinert Coatings Redressed: Nonfouling Coatings 15</p> <p>1.5 Future Biomedical Coatings 16</p> <p>References 18</p> <p><b>Part 2 Coating Applications 27</b></p> <p><b>2 Antimicrobial Coatings and Other Surface Modifications for Infection Prevention 29<br /> </b><i>Marc W. Mittelman and Nimisha Mukherjee</i></p> <p>2.1 Introduction 29</p> <p>2.2 Genesis of Device-Related Infections 35</p> <p>2.3 Antimicrobial Coatings 38</p> <p>2.4 Non-Eluting Antimicrobial Surfaces 49</p> <p>2.5 Coating and Surface Modification Technologies 53</p> <p>2.6 Regulatory Considerations 57</p> <p>2.7 Future Challenges 58</p> <p>References 61</p> <p><b>3 Drug Delivery Coatings for Coronary Stents 75<br /> </b><i>Shrirang V. Ranade and Kishore Udipi</i></p> <p>3.1 Introduction 75</p> <p>3.2 Polymer Coatings for DES 81</p> <p>3.3 Biostable (Non-Bioabsorbable) Polymers 86</p> <p>3.4 Bioabsorbable Polymers 99</p> <p>3.5 Concluding Remarks 103</p> <p>References 104</p> <p><b>4 Coatings for Radiopacity 115<br /> </b><i>Scott Schewe and David Glocker</i></p> <p>4.1 Principles of Radiography 115</p> <p>4.2 Use of Radiopaque Materials in Medical Devices 116</p> <p>4.3 Radiopaque Fillers 117</p> <p>4.4 Types of Radiopaque Fillers 117</p> <p>4.5 Other Radiographic Materials and Coating Systems 121</p> <p>4.6 Radiopaque Coatings by Physical Vapor Deposition 122</p> <p>4.7 Challenges in Producing Radiopaque Coatings Using PVD 124</p> <p>4.8 Gold Radiopaque Coatings 125</p> <p>4.9 Tantalum Radiopaque Coatings 126</p> <p>4.10 Summary 129</p> <p>References 130</p> <p><b>5 Biocompatibility and Medical Device Coatings 131<br /> </b><i>Joe McGonigle, Thomas J. Webster, and Garima Bhardwaj</i></p> <p>5.1 Introduction 131</p> <p>5.2 Challenges with Medical Devices 134</p> <p>5.3 Examples of Products Coated to Improve Biocompatibility 148</p> <p>5.4 Types of Biocompatible Coatings 157</p> <p>5.5 Commercialization 170</p> <p>5.6 Summary 172</p> <p>References 172</p> <p><b>6 Tribological Coatings for Biomedical Devices 181<br /> </b><i>Peter Martin</i></p> <p>6.1 Introduction 181</p> <p>6.2 Hard Thin Film Coatings for Implants 187</p> <p>6.3 Binary Carbon-Based Thin Film Materials: Diamond, Hard Carbon and Amorphous Carbon 194</p> <p>6.4 Progress of DLC, ta-C and a-C:H Films for Hip and Knee Implants 200</p> <p>6.5 Wear-Resistant Coatings for Stents and Catheters 208</p> <p>6.6 Wear-Resistant Coatings for Angioplasty Devices 210</p> <p>6.7 Scalpel Blades and Surgical Instruments 211</p> <p>6.8 Multifunctional, Nanostructured, Nanolaminate, and Nanocomposite Tribological Materials 211</p> <p>References 222</p> <p><b>Part 3 Coating and Surface Modification Methods 233</b></p> <p><b>7 Dip Coating 235<br /> </b><i>Donald M. Copenhagen</i></p> <p>7.1 Description and Basic Steps 235</p> <p>7.2 Equipment and Coating Application 236</p> <p>7.3 Coating Solution Containers 237</p> <p>7.4 Coating Parameters and Controls 238</p> <p>7.5 Role of Solution Viscosity 240</p> <p>7.6 Coating Problems 241</p> <p>7.7 Process Considerations 244</p> <p><b>8 Inkjet Technology and Its Application in Biomedical Coating<br /> </b><i>Bogdan V. Antohe, David B. Wallace, and Patrick W. Cooley 247</i></p> <p>8.1 Introduction 247</p> <p>8.2 Inkjet Background 248</p> <p>8.3 Equipment Used 260</p> <p>8.4 Capabilities 268</p> <p>8.5 Limitations and Ways around Them 280</p> <p>8.6 Manufacturing Advantages and Future Directions 293</p> <p>8.7 Conclusions 299</p> <p>References 300</p> <p><b>9 Direct Capillary Printing in Medical Device Manufacture 309<br /> </b><i>William J. Grande</i></p> <p>9.1 Introduction 309</p> <p>9.2 Fundamental Elements of Direct Capillary Printing 320</p> <p>9.3 Practical Operational Considerations 337</p> <p>9.4 Manufacturing Considerations 349</p> <p>9.5 Medical Device Examples 352</p> <p>9.6 Conclusions 367</p> <p>Acknowledgments 369</p> <p>References 369</p> <p><b>10 Sol-Gel Coating Methods in Biomedical Systems 373<br /> </b><i>Bakul C. Dave</i></p> <p>10.1 Introduction 374</p> <p>10.2 Overview of Sol-Gel Coatings in Biomedical Systems 377</p> <p>10.3 The Sol-Gel Process 381</p> <p>10.4 Coating Methods and Processes 385</p> <p>10.5 Factors influencing Coatings Characteristics/Performance 390</p> <p>10.6 Summary and Concluding Remarks 394</p> <p>References 395</p> <p><b>11 Chemical Vapor Deposition 403<br /> </b><i>Kenneth K. S. Lau</i></p> <p>11.1 Introduction 403</p> <p>11.2 Process Description 405</p> <p>11.3 Process Mechanism 410</p> <p>11.4 Technology Advances 414</p> <p>11.5 Future Outlook 442</p> <p>References 443</p> <p><b>12 Introduction to Plasmas Used for Coating Processes 457<br /> </b><i>David A. Glocker</i></p> <p>12.1 Introduction 457</p> <p>12.2 DC Glow Discharges 459</p> <p>12.3 RF Glow Discharges 463</p> <p>12.4 RF Diode Glow Discharges 464</p> <p>12.5 Ionization in RF Diode Glow Discharges 466</p> <p>12.6 Inductively Coupled RF Discharges 466</p> <p>12.7 Mid-Frequency AC Discharges 468</p> <p>12.8 Pulsed DC Discharges 469</p> <p>12.9 Comparison of Plasma Properties 470</p> <p>12.10 Plasma Species 470</p> <p>12.11 Summary 471</p> <p>References 472</p> <p><b>13 Ion Implantation: Tribological Applications 473<br /> </b><i>Peter Martin</i></p> <p>13.1 Introduction 473</p> <p>13.2 Applications 474</p> <p>13.3 Nanocrystalline Diamond 487</p> <p>Reference 492</p> <p><b>14 Plasma-Enhanced Chemical Vapor Deposition 495<br /> </b><i>Kenneth K. S. Lau</i></p> <p>14.1 Introduction 495</p> <p>14.2 Process Description 497</p> <p>14.3 Plasma Effects on Materials Deposition 501</p> <p>14.4 Future Outlook 520</p> <p>References 521</p> <p><b>15 Sputter Deposition and Sputtered Coatings for Biomedical Applications 531<br /> </b><i>David A. Glocker</i></p> <p>15.1 Introduction 531</p> <p>15.2 Overview of Sputter Coating 533</p> <p>15.3 Characteristics of Sputtered Atoms 536</p> <p>15.4 Sputtering Cathodes 539</p> <p>15.5 Relationship between Process Parameters and Coating Properties 541</p> <p>15.6 Biased Sputtering 544</p> <p>15.7 Adhesion and Stress in Sputtered Coatings 545</p> <p>15.8 Sputtering Electrically Insulating Materials 546</p> <p>15.9 Recent Developments 549</p> <p>15.10 Summary and Conclusions 549</p> <p>References 550</p> <p><b>16 Cathodic Arc Vapor Deposition 553<br /> </b><i>Gary Vergason</i></p> <p>16.1 Introduction 553</p> <p>16.2 Medical Uses of Cathodic Arc Titanium Nitride Coatings 556</p> <p>16.3 Brief History and Commercial Advancement of Cathodic Arcs 557</p> <p>16.4 Review of Arc Devices 559</p> <p>16.5 Description of PVD Coating Manufacturing 561</p> <p>16.6 Macroparticle Generation and Mitigation 567</p> <p>16.7 Considerations for Coating Success 568</p> <p>16.8 Materials Used in Biomedical PVD Coatings 576</p> <p>References 576</p> <p><b>Part 4 Functional Tests 581</b></p> <p><b>17 Antimicrobial Coatings Efficacy Evaluation 583<br /> </b><i>Nimisha Mukherjee and Marc W. Mittelman</i></p> <p>17.1 Introduction 583</p> <p>17.2 In-Vitro Methods 584</p> <p>17.3 In-Vivo (Animal) Methods 590</p> <p>17.4 Equipment and Laboratory Resources 590</p> <p>17.5 Human Clinical Trial Considerations 590</p> <p>17.6 Regulatory Considerations 590</p> <p>References 596</p> <p><b>18 Mechanical Characterization of Biomaterials: Functional Tests for Hardness 605<br /> </b><i>Vincent Jardret</i></p> <p>18.1 Introduction 605</p> <p>18.2 Basic Principles of Hardness and Indentation Testing 607</p> <p>18.3 Depth-Sensing Indentation Testing 611</p> <p>18.4 Dynamic Indentation Testing: A More Advanced Hardness Measurement Technique for More Complex Material Behavior 617</p> <p>18.5 Special Case of Coatings Configuration under Indentation Testing 626</p> <p>18.6 Conclusions 628</p> <p>References 629</p> <p><b>19 Adhesion Measurement of Thin Films and Coatings: Relevance to Biomedical Applications 631<br /> </b><i>Wei-Sheng Lei, Kash Mittal, and Ajay Kumar</i></p> <p>19.1 Introduction 631</p> <p>19.2 Mechanical Test Methods of Adhesion Measurement 634</p> <p>19.3 Summary and Remarks 654</p> <p>Appendix 656</p> <p>References 665</p> <p><b>20 Functional Tests for Biocompatability 671<br /> </b><i>Joe McConigle and Thomas J. Webster</i></p> <p>20.1 Introduction 671</p> <p>20.2 Inflammation 672</p> <p>20.3 Blood Compatibility 675</p> <p>20.4 Wound Healing 685</p> <p>20.5 Encapsulation 688</p> <p>20.6 Tissue Integration 691</p> <p>20.7 Vascularization 692</p> <p>20.8 Toxicity 699</p> <p>20.9 Infection 700</p> <p>20.10 When to Move In Vivo? 701</p> <p>References 702</p> <p><b>21 Analytical Requirements for Drug Eluting Stents 707<br /> </b><i>Lori Alquier and Shrirang Ranade</i></p> <p>21.1 Introduction 707</p> <p>21.2 Instrumentation 708</p> <p>21.3 API and Excipient Characterization 709</p> <p>21.4 Analytical Methods 712</p> <p>21.5 Conclusion 719</p> <p>References 719</p> <p><b>Part 5 Regulatory Overview 723</b></p> <p><b>22 Regulations for Medical Devices and Coatings 725<br /> </b><i>Robert J. Klepinski</i></p> <p>22.1 Introduction 725</p> <p>22.2 Types of Regulated Products 726</p> <p>22.3 Scope of Regulation 732</p> <p>22.4 Marketing Clearance of Medical Devices 733</p> <p>22.5 Comparison to EU Regulation 737</p> <p>22.6 Good Manufacturing Practices 737</p> <p><b>Part 6 Future of Coating Technologies 743</b></p> <p><b>23 The Future of Biomedical Coatings Technologies 745<br /> </b><i>Shrirang Ranade and David Glocker</i></p> <p>23.1 Introduction 745</p> <p>23.2 The Continuing Evolution of Biomaterials 749</p> <p>23.3 Tissue Engineering and Regenerative Medicine 749</p> <p>23.4 Coating Process Development 750</p> <p>References 751</p>
<p><strong>Dr. David Glocker</strong> has worked in the fields of thin film deposition and plasma treatment for over 35 years. He spent fourteen years at the Eastman Kodak Company, where he led a group responsible for research on PVD coatings and coating processes and methods for the plasma modification of polymers. In 1993 he founded Isoflux Incorporated to manufacture cylindrical magnetron sputtering cathodes and develop coating processes employing that technology. Several medical device manufacturers now use Isoflux cathodes and related patents in both research and manufacturing. Dr. Glocker is an inventor or co-inventor on 32 US patents as well as a number of foreign counterparts and is the author of numerous articles and presentations. He recently retired from Isoflux and consults. <p><strong>Dr. Shrirang Ranade</strong>, Technical Development Leader at Genentech, Inc., a member of the Roche Group, has spent over 15 years working within large medical device and Pharma (F. Hoffman-La Roche, Johnson & Johnson and Boston Scientific) in the field of biomaterials, coatings and drug delivery devices. He obtained a Bachelor of Engineering from the University of Poona, a Master of Science from the University of Manchester Institute of Science & Technology and later a Ph.D. in Polymer Science from the University of Connecticut. Through his career he has been involved in research and development of medical devices for combination products in several forms: coronary drug eluting stents, balloon catheters, sinuplasty devices, orthopaedic scaffolds, biodegradable coatings and lately an implantable ocular drug delivery system.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €