Details

Materials for Hydrogen Production, Conversion, and Storage


Materials for Hydrogen Production, Conversion, and Storage


1. Aufl.

von: Inamuddin, Tariq Altalhi, Sayed Mohammed Adnan, Mohammed A. Amin

211,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 31.01.2023
ISBN/EAN: 9781119829577
Sprache: englisch
Anzahl Seiten: 752

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

MATERIALS FOR HYDROGEN PRODUCTION, CONVERSION, AND STORAGE <p><b>Edited by one of the most well-respected and prolific engineers in the world and his team, this book provides a comprehensive overview of hydrogen production, conversion, and storage, offering the scientific literature a comprehensive coverage of this important fuel.</b> <p>Continually growing environmental concerns are driving every, or almost every, country on the planet towards cleaner and greener energy production. This ultimately leaves no option other than using hydrogen as a fuel that has almost no adverse environmental impact. But hydrogen poses several hazards in terms of human safety as its mixture of air is prone to potential detonations and fires. In addition, the permeability of cryogenic storage can induce frostbite as it leaks through metal pipes. In short, there are many challenges at every step to strive for emission-free fuel. In addition to these challenges, there are many emerging technologies in this area. For example, as the density of hydrogen is very low, efficient methods are being developed and engineered to store it in small volumes. <p>This groundbreaking new volume describes the production of hydrogen from various sources along with the protagonist materials involved. Further, the extensive and novel materials involved in conversion technologies are discussed. Also covered here are the details of the storage materials of hydrogen for both physical and chemical systems. Both renewal and non-renewal sources are examined as feedstocks for the production of hydrogen. The non-renewal feedstocks, mainly petroleum, are the major contributor to date but there is a future perspective in a renewal source comprising mainly of water splitting via electrolysis, radiolysis, thermolysis, photocatalytic water splitting, and biohydrogen routes. Whether for the student, veteran engineer, new hire, or other industry professionals, this is a must-have for any library.
<p>Preface xxi</p> <p><b>1 Transition Metal Oxides in Solar-to-Hydrogen Conversion 1<br /> </b><i>Zuzanna Bielan and Katarzyna Siuzdak</i></p> <p>1.1 Introduction 2</p> <p>1.2 Solar-to-Hydrogen Conversion Processes Utilizing Transition Metal Oxides 3</p> <p>1.2.1 Photocatalysis 3</p> <p>1.2.2 Photoelectrocatalysis 5</p> <p>1.2.3 Thermochemical Water Splitting 6</p> <p>1.3 Transition Metal Oxides in Solar-to-Hydrogen Conversion Processes 7</p> <p>1.3.1 Photocatalysis and Photoelectrocatalysis 7</p> <p>1.3.1.1 TiO 2 8</p> <p>1.3.1.2 α-Fe 2 O 3 16</p> <p>1.3.1.3 CuO/Cu 2 O 20</p> <p>1.3.2 Thermochemical Water Splitting 23</p> <p>1.3.2.1 Fe 3 O 4 /FeO Redox Pair 24</p> <p>1.3.2.2 CeO 2 /Ce 2 O 3 and CeO/CeO 2-δ Redox Pairs 25</p> <p>1.3.2.3 ZnO/Zn Redox Pair 27</p> <p>1.4 Conclusions and Future Perspectives 28</p> <p>References 29</p> <p><b>2 Catalytic Conversion Involving Hydrogen from Lignin 41<br /> </b><i>Satabdi Misra and Atul Kumar Varma</i></p> <p>List of Abbreviations 41</p> <p>2.1 Introduction 42</p> <p>2.1.1 Background of Bio-Refinery and Lignin 42</p> <p>2.1.2 Lignin as an Alternate Source of Energy 44</p> <p>2.1.3 Lignin Isolation Process 45</p> <p>2.2 Catalytic Conversion of Lignin 45</p> <p>2.2.1 Lignin Reductive Depolymerization into Aromatic Monomers 47</p> <p>2.2.2 Catalytic Hydrodeoxydation (HDO) of Lignin 48</p> <p>2.2.3 Hydrodeoxydation (HDO) of Lignin-Derived-Bio-Oil 51</p> <p>Summary and Outlook 52</p> <p>References 53</p> <p><b>3 Solar–Hydrogen Coupling Hybrid Systems for Green Energy 65<br /> </b><i>Bilge Coşkuner Filiz, Esra Balkanli Unlu, Hülya Civelek Yörüklü, Meltem Karaismailoglu Elibol, Yağmur Akar, Ali Turgay San, Halit Eren Figen and Aysel Kantürk Figen</i></p> <p>3.1 Concept of Green Sources and Green Storage 66</p> <p>3.2 Coupling of Green to Green 67</p> <p>3.3 Solar Energy–Hydrogen System 67</p> <p>3.3.1 Photoelectrochemical Hydrogen Production 68</p> <p>3.3.1.1 PEC Materials 70</p> <p>3.3.1.2 Photoelectrochemical Systems 73</p> <p>3.3.2 Electrochemical Hydrogen Production 74</p> <p>3.3.2.1 Polymer Electrolyte Membrane Electrolysis Cell (PEMEC) 75</p> <p>3.3.2.2 Alkaline Electrolysis Cell (AEC) 76</p> <p>3.3.2.3 Solid Oxide Electrolysis Cell (SOEC) 77</p> <p>3.3.3 Fuel Cell 78</p> <p>3.3.4 Photovoltaic 79</p> <p>3.4 Thermochemical Systems 80</p> <p>3.5 Photobiological Hydrogen Production 82</p> <p>3.6 Conclusion 84</p> <p>References 85</p> <p><b>4 Green Sources to Green Storage on Solar–Hydrogen Coupling 97<br /> </b><i>A. Mohan Kumar, R. Rajasekar, P. Sathish Kumar, S. Santhosh and B. Premkumar</i></p> <p>4.1 Introduction 98</p> <p>4.1.1 Hybrid System 99</p> <p>4.2 Concentrated Solar Thermal H 2 Production 101</p> <p>4.3 Thermochemical Aqua Splitting Technology for Solar–H 2 Generation 103</p> <p>4.4 Solar to Hydrogen Through Decarbonization of Fossil Fuels 105</p> <p>4.4.1 Solar Cracking 106</p> <p>4.5 Solar Thermal-Based Hydrogen Generation Through Electrolysis 107</p> <p>4.6 Photovoltaics-Based Hydrogen Production 107</p> <p>4.7 Conclusion 109</p> <p>References 110</p> <p><b>5 Electrocatalysts for Hydrogen Evolution Reaction 115<br /> </b><i>R. Shilpa, K. S. Sibi, S. R. Sarath Kumar, R. K. Pai and R.B. Rakhi</i></p> <p>5.1 Introduction 116</p> <p>5.2 Parameters to Evaluate Efficient HER Catalysts 117</p> <p>5.2.1 Overpotential (o.p) 117</p> <p>5.2.2 Tafel Plot 118</p> <p>5.2.3 Stability 119</p> <p>5.2.4 Faradaic Efficiency and Turnover Frequency 119</p> <p>5.2.5 Hydrogen Bonding Energy (HBE) 120</p> <p>5.3 Categories of HER Catalysts 121</p> <p>5.3.1 Noble Metal-Based Catalysts 121</p> <p>5.3.2 Non-Noble Metal-Based Catalysts 125</p> <p>5.3.3 Metal-Free 2D Nanomaterials 126</p> <p>5.3.4 Transition Metal Dichalcogenides 129</p> <p>5.3.5 Transition Metal Oxides and Hydroxides 130</p> <p>5.3.6 Transition Metal Phosphides 132</p> <p>5.3.7 MXenes (Transition Metal Carbides and Nitrides) 132</p> <p>Conclusion 134</p> <p>References 134</p> <p><b>6 Recent Progress on Metal Catalysts for Electrochemical Hydrogen Evolution 147<br /> </b><i>Tejaswi Jella and Ravi Arukula</i></p> <p>6.1 Introduction 148</p> <p>6.1.1 Type of Water Electrolysis Technologies 148</p> <p>6.1.1.1 Alkaline Electrolysis (AE) 149</p> <p>6.1.1.2 Proton Exchange Membrane Electrolysis (peme) 149</p> <p>6.1.1.3 Solid Oxide Electrolysis (SOE) 149</p> <p>6.2 Mechanism of Hydrogen Evolution Reaction (HER) 149</p> <p>6.2.1 Performance Evaluation of Catalyst 151</p> <p>6.3 Various Electrocatalysts for Hydrogen Evolution Reaction (her) 153</p> <p>6.3.1 Noble Metal Catalysts for HER 153</p> <p>6.3.1.1 Platinum-Based Catalysts 153</p> <p>6.3.1.2 Palladium Based Catalysts 155</p> <p>6.3.1.3 Ruthenium Based Catalysts 157</p> <p>6.3.2 Non-Noble Metal Catalysts 158</p> <p>6.3.2.1 Transition Metal Phosphides (TMP) 158</p> <p>6.3.2.2 Transition Metal Chalcogenides 162</p> <p>6.3.2.3 Transition Metal Carbides (TMC) 163</p> <p>6.4 Conclusion and Future Aspects 164</p> <p>References 165</p> <p><b>7 Dark Fermentation and Principal Routes to Produce Hydrogen 181<br /> </b><i>Luana C. Grangeiro, Bruna S. de Mello, Brenda C. G. Rodrigues, Caroline Varella Rodrigues, Danieli Fernanda Canaver Marin, Romario Pereira de Carvalho Junior, Lorena Oliveira Pires, Sandra Imaculada Maintinguer, Arnaldo Sarti and Kelly J. Dussán</i></p> <p>7.1 Introduction 182</p> <p>7.2 Biohydrogen Production from Organic Waste 183</p> <p>7.2.1 Crude Glycerol 186</p> <p>7.2.1.1 Dark Fermentation of Crude Glycerol to Biohydrogen and Bio Products 187</p> <p>7.2.2 Dairy Waste 189</p> <p>7.2.2.1 Dark Fermentation of Dairy Waste to Biohydrogen and Bioproducts 190</p> <p>7.2.3 Fruit Waste 193</p> <p>7.2.3.1 Dark Fermentation of Fruit Waste to Hydrogen and Bioproducts 194</p> <p>7.3 Anaerobic Systems 198</p> <p>7.3.1 Continuous Multiple Tube Reactor 206</p> <p>7.4 Conclusion and Future Perspectives 209</p> <p>Acknowledgements 210</p> <p>References 210</p> <p><b>8 Catalysts for Electrochemical Water Splitting for Hydrogen Production 225<br /> </b><i>Zaib Ullah Khan, Mabkhoot Alsaiari, Muhammad Ashfaq Ahmed, Nawshad Muhammad, Muhammad Tariq, Abdur Rahim and Abdul Niaz</i></p> <p>8.1 Introduction 226</p> <p>8.2 Water Splitting and Their Products 229</p> <p>8.3 Different Methods Used for Water Splitting 229</p> <p>8.3.1 Setup for Water Splitting Systems at a Basic Level 229</p> <p>8.3.2 Photocatalysis 230</p> <p>8.3.3 Electrolysis 232</p> <p>8.4 Principles of PEC and Photocatalytic H 2 Generation 232</p> <p>8.5 Electrochemical Process for Water Splitting Application 233</p> <p>8.5.1 Water Splitting Through Electrochemistry 233</p> <p>8.6 Different Materials Used in Water Splitting 233</p> <p>8.6.1 Water Oxidation (OER) Materials 233</p> <p>8.6.2 Developing Materials for Hydrogen Synthesis 235</p> <p>8.6.3 Material Stability for Water Splitting 235</p> <p>8.7 Mechanism of Electrochemical Catalysis in Water Splitting and Hydrogen Production 235</p> <p>8.7.1 Electrochemical Water Splitting with Cheap Metal-Based Catalysts 236</p> <p>8.7.2 Catalysts with Only One Atom 236</p> <p>8.7.3 Electrochemical Water Splitting Using Low-Cost Metal-Free Catalysts 237</p> <p>8.8 Water Splitting and Hydrogen Production Materials Used in Electrochemical Catalysis 238</p> <p>8.8.1 Metal and Alloys 238</p> <p>8.8.2 Metal Oxides/Hydroxides and Chalogenides 239</p> <p>8.8.3 Metal Carbides, Borides, Nitrides, and Phosphides 239</p> <p>8.9 Uses of Hydrogen Produced from Water Splitting 240</p> <p>8.9.1 Water Splitting Generates Hydrogen Energy 240</p> <p>8.9.2 Photoelectrochemical (PEC) Water Splitting 241</p> <p>8.9.3 Thermochemical Water Splitting 241</p> <p>8.9.4 Biological Water Splitting 241</p> <p>8.9.5 Fermentation 241</p> <p>8.9.6 Biomass and Waste Conversions 242</p> <p>8.9.7 Solar Thermal Water Splitting 242</p> <p>8.9.8 Renewable Electrolysis 242</p> <p>8.9.9 Hydrogen Dispenser Hose Reliability 242</p> <p>8.10 Conclusion 243</p> <p>References 243</p> <p><b>9 Challenges and Mitigation Strategies Related to Biohydrogen Production 249<br /> </b><i>Mohd Nur Ikhmal Salehmin, Ibdal Satar and Mohamad Azuwa Mohamed</i></p> <p>9.1 Introduction 249</p> <p>9.2 Limitation and Mitigation Approaches of Biohydrogen Production 252</p> <p>9.2.1 Physical Issues and Their Mitigation Approaches 252</p> <p>9.2.1.1 Operating Temperature Issue and Its Control 252</p> <p>9.2.1.2 Hydraulic Retention Time (HRT) and Optimization 252</p> <p>9.2.1.3 High Hydrogen Partial Pressure – Implication and Overcoming the Issue 253</p> <p>9.2.1.4 Membrane Fouling Issues and Solutions 254</p> <p>9.2.2 Biological Issues and Their Mitigation Approaches 256</p> <p>9.2.2.1 Start-Up Issue and Improvement Through Bioaugmentation 256</p> <p>9.2.2.2 Biomass Washout Issue and Solution Through Cell Immobilization 256</p> <p>9.2.3 Chemical Issues and Their Mitigation Approaches 257</p> <p>9.2.3.1 pH Variation and Its Regulation 257</p> <p>9.2.3.2 Limiting Nutrient Loading and Optimization 257</p> <p>9.2.3.3 Inhibitor Secretion and Its Control 258</p> <p>9.2.3.4 Byproduct Formation and Its Exploitation 260</p> <p>9.2.4 Economic Issues and Ways to Optimize Cost 260</p> <p>9.3 Conclusion and Future Direction 265</p> <p>Acknowledgements 266</p> <p>References 266</p> <p><b>10 Continuous Production of Clean Hydrogen from Wastewater by Microbial Usage 277<br /> </b><i>P. Satishkumar, Arun M. Isloor and Ramin Farnood</i></p> <p>10.1 Introduction 278</p> <p>10.2 Wastewater for Biohydrogen Production 279</p> <p>10.3 Photofermentation 281</p> <p>10.3.1 Continuous Photofermentation 283</p> <p>10.3.2 Factors Affecting Photofermentation Hydrogen Production 286</p> <p>10.3.2.1 Inoculum Condition and Substrate Concentration 286</p> <p>10.3.2.2 Carbon and Nitrogen Source 287</p> <p>10.3.2.3 Temperature 288</p> <p>10.3.2.4 pH 288</p> <p>10.3.2.5 Light Intensity 288</p> <p>10.3.2.6 Immobilization 290</p> <p>10.4 Dark Fermentation 291</p> <p>10.4.1 Continuous Dark Fermentation 292</p> <p>10.4.2 Factors Affecting Hydrogen Production in Continuous Dark Fermentation 296</p> <p>10.4.2.1 Start-Up Time 296</p> <p>10.4.2.2 Organic Loading Rate 296</p> <p>10.4.2.3 Hydraulic Retention Time 297</p> <p>10.4.2.4 Temperature 301</p> <p>10.4.2.5 pH 302</p> <p>10.4.2.6 Immobilization 302</p> <p>10.5 Microbial Electrolysis Cell 304</p> <p>10.5.1 Mechanism of Microbial Electrolysis Cell 304</p> <p>10.5.2 Wastewater Treatment and Hydrogen Production 305</p> <p>10.5.3 Factors Affecting Microbial Electrolysis Cell Performance 308</p> <p>10.5.3.1 Inoculum 308</p> <p>10.5.3.2 pH 308</p> <p>10.5.3.3 Temperature 308</p> <p>10.5.3.4 Hydraulic Retention Time 308</p> <p>10.5.3.5 Applied Voltage 310</p> <p>10.6 Conclusions 310</p> <p>References 311</p> <p><b>11 Conversion Techniques for Hydrogen Production and Recovery Using Membrane Separation 319<br /> </b><i>Nor Azureen Mohamad Nor, Nur Shamimie Nadzwin Hasnan, Nurul Atikah Nordin, Nornastasha Azida Anuar, Muhamad Firdaus Abdul Sukur and Mohamad Azuwa Mohamed</i></p> <p>11.1 Introduction 320</p> <p>11.2 Conversion Technique for Hydrogen Production 321</p> <p>11.2.1 Photocatalytic Hydrogen Generation via Particulate System 321</p> <p>11.2.2 Photoelectrochemical Cell (PEC) 324</p> <p>11.2.3 Photovoltaic-Photoelectrochemical Cell (PV-PEC) 325</p> <p>11.2.4 Electrolysis 327</p> <p>11.3 Hydrogen Recovery Using Membrane Separation (h 2 /o 2 Membrane Separation) 329</p> <p>11.3.1 Polymeric Membranes 330</p> <p>11.3.2 Porous Membranes 331</p> <p>11.3.3 Dense Metal Membranes 332</p> <p>11.3.4 Ion-Conductive Membranes 333</p> <p>11.4 Conclusion 335</p> <p>Acknowledgements 336</p> <p>References 336</p> <p><b>12 Geothermal Energy-Driven Hydrogen Production Systems 343<br /> </b><i>Santanu Ghosh and Atul Kumar Varma</i></p> <p>Abbreviations 344</p> <p>12.1 Introduction 345</p> <p>12.2 Hydrogen – A Green Fuel and an Energy Carrier 347</p> <p>12.3 Production of Hydrogen 348</p> <p>12.3.1 Fossil Fuel-Based 348</p> <p>12.3.2 Non-Fossil Fuel-Based 349</p> <p>12.4 Geothermal Energy 353</p> <p>12.4.1 Introductory View 353</p> <p>12.4.2 Types and Occurrences 354</p> <p>12.5 Hydrogen Production From Geothermal Energy 355</p> <p>12.5.1 Hydrogen Production Systems 355</p> <p>12.5.2 Working Fluids 369</p> <p>12.5.3 Assimilation of Solar and Geothermal Energy 370</p> <p>12.5.4 Chlor-Alkali Cell and Abatement of Mercury and Hydrogen Sulfide (AMIS) Unit 372</p> <p>12.5.5 Hydrogen Liquefaction 374</p> <p>12.5.6 Hydrogen Storage 375</p> <p>12.6 Economics of Hydrogen Production 377</p> <p>12.6.1 A General Overview 377</p> <p>12.6.2 Economy of Hydrogen Yield Using Geothermal Energy 379</p> <p>12.7 Environmental Impressions of Geothermal Energy-Driven Hydrogen Yield 381</p> <p>12.8 Conclusions 382</p> <p>References 384</p> <p><b>13 Heterogeneous Photocatalysis by Graphitic Carbon Nitride for Effective Hydrogen Production 397<br /> </b><i>Kiran Kumar B., B. Venkateswar Rao, Sashivinay Kumar Gaddam, Ravi Arukula and Vishnu Shanker</i></p> <p>13.1 Introduction 398</p> <p>13.1.1 Typical Heterogeneous Photocatalysis Mechanism 399</p> <p>13.1.2 Necessity of the Photocatalytic Water Splitting 400</p> <p>13.2 g-C 3 N 4 -Based Photocatalytic Water Splitting 401</p> <p>13.2.1 Influence of the g-C 3 N 4 Morphology on Photocatalytic Water Splitting 402</p> <p>13.2.1a g-C 3 N 4 Thin Nanosheets-Based Photocatalytic Water Splitting 402</p> <p>13.2.1b Porous g-C 3 N 4 -Based Photocatalytic Water Splitting 404</p> <p>13.2.1c Crystalline g-C 3 N 4 -Based Photocatalytic Water Splitting 405</p> <p>13.2.2 Metal Doped Photocatalytic Water Splitting 406</p> <p>13.2.3 Semiconductor/g-C 3 N 4 Heterojunction for Photocatalytic Water Splitting 407</p> <p>13.3 Future Remarks and Conclusion 408</p> <p>References 409</p> <p><b>14 Graphitic Carbon Nitride (g-CN) for Sustainable Hydrogen Production 417<br /> </b><i>Zaib Ullah Khan, Mabkhoot Alsaiari, Saleh Alsayari, Nawshad Muhmmad and Abdur Rahim</i></p> <p>14.1 Introduction 418</p> <p>14.2 Various Methods for Hydrogen Production 421</p> <p>14.3 Production of Hydrogen from Fossil Fuels 422</p> <p>14.3.1 Steam Reforming 422</p> <p>14.3.2 Gasification 422</p> <p>14.4 Hydrogen Production from Nuclear Energy 422</p> <p>14.4.1 Water Splitting by Thermochemistry 422</p> <p>14.5 Hydrogen Production from Renewable Energies 423</p> <p>14.5.1 Electrolysis 423</p> <p>14.5.2 Photovoltaic Solar 423</p> <p>14.5.3 Wind Method for Producing Hydrogen 423</p> <p>14.5.4 Biomass Gasification Use for Hydrogen Production 424</p> <p>14.5.5 Agricultural or Food-Processing Waste that Contains Starch and Cellulose 424</p> <p>14.6 Preparation of g-C 3 N 4 Materials 425</p> <p>14.6.1 Sol-Gel Method for Making Graphitic Carbon Nitride 426</p> <p>14.6.2 Hard and Soft-Template Method 426</p> <p>14.6.3 Template-Free Method for Making Graphitic Carbon Nitride 428</p> <p>14.7 Properties of g-C 3 N 4 Materials 429</p> <p>14.7.1 Stability 429</p> <p>14.7.1.1 Thermal Stability 429</p> <p>14.7.1.2 Chemical Stability 430</p> <p>14.7.1.3 Electrochemical Properties 430</p> <p>14.8 The Advantages of Sustainable Hydrogen Production and Their Applications 430</p> <p>14.8.1 Hydrogen Applications 430</p> <p>14.9 Hydro Processing in Petroleum Refineries and Their Usage 431</p> <p>14.9.1 Hydrocracking 431</p> <p>14.9.2 Hydrofining 431</p> <p>14.9.3 Ammonia Synthesis 432</p> <p>14.9.4 Synthesis of Methanol 433</p> <p>14.9.5 Electricity Generation from Hydrogen 433</p> <p>14.9.6 Applications for Green Hydrogen 434</p> <p>14.9.7 Replacing Existing Hydrogen 434</p> <p>14.9.8 Heating 435</p> <p>14.9.9 Energy Storage 435</p> <p>14.9.10 Alternative Fuels 435</p> <p>14.9.11 Fuel-Cell Vehicles 436</p> <p>14.10 Conclusion 436</p> <p>References 436</p> <p><b>15 Hydrogen Production from Anaerobic Digestion 441<br /> </b><i>Muhammad Farhan Hil Me, Mohd Nur Ikhmal Salehmin, Hau Seung Jeremy Wong and Mohamad Azuwa Mohamed</i></p> <p>15.1 Introduction 441</p> <p>15.2 Basic Overview of Anaerobic Digestion 443</p> <p>15.3 How to Obtain Hydrogen from Anaerobic Digestion 445</p> <p>15.3.1 Single-Stage Reactor 445</p> <p>15.3.2 Two-Stage Reactor 445</p> <p>15.3.3 Feedstock and Resulting Hydrogen 446</p> <p>15.4 Challenges and Mitigation Strategies in Biohydrogen Production 447</p> <p>15.4.1 Combating Microbial Competition 447</p> <p>15.4.2 Enhancing Biohydrogen Production Yield by Technical and Operational Adjustments 448</p> <p>15.4.3 Minimizing Inhibition by Byproducts from Pretreatments 450</p> <p>15.4.4 Minimizing Inhibition by Metal Ions 451</p> <p>15.4.5 Minimizing In-Process Inhibition 452</p> <p>15.4.5.1 Volatile Fatty Acids and Alcohols 452</p> <p>15.4.5.2 Ammonia 453</p> <p>15.4.5.3 Hydrogen 453</p> <p>15.5 Practicality of Technologies at Industrial Scale 453</p> <p>15.6 Conclusion 456</p> <p>Acknowledgements 456</p> <p>References 456</p> <p><b>16 Impact of Treatment Strategies on Biohydrogen Production from Waste-Activated Sludge Fermentation 465<br /> </b><i>Rajeswari M. Kulkarni, Dhanyashree J.K., Esha Varma, Sirivibha S.P. and Shantha M.P.</i></p> <p>16.1 Introduction 466</p> <p>16.2 Methods of Production of Hydrogen Using WAS 467</p> <p>16.2.1 Dark Fermentation 468</p> <p>16.2.2 Photofermentation 469</p> <p>16.2.3 Microbial Electrolysis Cell 470</p> <p>16.3 Physical Treatment Methods 471</p> <p>16.4 Chemical Treatment Methods 486</p> <p>16.5 Conclusions 504</p> <p>References 505</p> <p><b>17 Microbial Production of Biohydrogen (BioH 2) from Waste-Activated Sludge: Processes, Challenges, and Future Approaches 511<br /> </b><i>Abhispa Bora, T. Angelin Swetha, K. Mohanrasu, G. Sivaprakash, P. Balaji and A. Arun</i></p> <p>17.1 Introduction 512</p> <p>17.2 Hydrogen and Waste-Activated Sludge 513</p> <p>17.2.1 Hydrogen 513</p> <p>17.2.2 Waste-Activated Sludge 514</p> <p>17.3 Mechanisms of Hydrogen Production 514</p> <p>17.3.1 H 2 Production by Dark Fermentation Process 515</p> <p>17.3.2 H 2 Production by Photofermentation Process 516</p> <p>17.3.3 Using Microbial Electrolysis Cell 518</p> <p>17.4 H 2 Production by Microalgae Using Waste 520</p> <p>17.4.1 Bottlenecks of H 2 Production 520</p> <p>17.4.2 Key Factors Influencing H 2 Production 521</p> <p>17.5 Recent Endeavors to Enhance H 2 Production 522</p> <p>17.5.1 Recent Advancements in Dark Fermentation 522</p> <p>17.5.2 Recent Advances in Photofermentation 526</p> <p>17.5.3 Recent Advances in Microbial Electrolysis Cell 527</p> <p>17.6 Future Approaches 528</p> <p>17.7 Conclusion 528</p> <p>References 529</p> <p><b>18 Perovskite Materials for Hydrogen Production 539<br /> </b><i>Surawut Chuangchote and Kamonchanok Roongraung</i></p> <p>18.1 Current Problems of Technology for Hydrogen Production 540</p> <p>18.2 Principle of Perovskite Materials 540</p> <p>18.2.1 Oxide Perovskite 542</p> <p>18.2.1.1 Titanate-Based Oxide Perovskite (ATiO 3) 542</p> <p>18.2.1.2 Tantalate-Based Oxide Perovskite (ATaO 3) 544</p> <p>18.2.1.3 Niobate-Based Oxide Perovskite 545</p> <p>18.2.2 Halide Perovskite 547</p> <p>18.2.2.1 Conventional Halide Perovskite 547</p> <p>18.2.2.2 Lead-Free Halide Perovskites 548</p> <p>18.3 Synthesis Process for Perovskite Materials 549</p> <p>18.3.1 Microwaves 550</p> <p>18.3.2 Sol-Gel 550</p> <p>18.3.3 Hydrothermal/Solvothermal 551</p> <p>18.3.4 Precipitation 553</p> <p>18.3.5 Hot-Injection 553</p> <p>18.4 Hydrogen Production from Solar Water Splitting 554</p> <p>18.4.1 Photocatalytic System 555</p> <p>18.4.2 Photoelectrochemical System 556</p> <p>18.4.3 Photovoltaic–Electrocatalytic System 559</p> <p>18.5 Conclusion and Future Perspectives 562</p> <p>References 563</p> <p><b>19 Progress on Ni-Based as Co-Catalysts for Water Splitting 575<br /> </b><i>Arti Maurya, Kartick Chandra Majhi and Mahendra Yadav</i></p> <p>19.1 Introduction 576</p> <p>19.1.1 Thermodynamic Aspects of Hydrogen Production 577</p> <p>19.1.2 Different Processes for the Photocatalytic Hydrogen Evolution by Water Splitting 578</p> <p>19.1.3 Photocatalyst 578</p> <p>19.1.3.1 Homogeneous Photocatalysis 578</p> <p>19.1.3.2 Heterogeneous Photocatalysis 579</p> <p>19.2 Photocatalytic Hydrogen Generation System 581</p> <p>19.2.1 Electron Donor and Electrolyte/Sacrificial Reagent 581</p> <p>19.2.2 Loading of Co-Catalyst 581</p> <p>19.2.3 Photocatalytic Activity Efficiency 583</p> <p>19.3 Semiconductor Materials 584</p> <p>19.3.1 Oxide-Based Semiconductor and Their Composites 584</p> <p>19.3.2 Non-Oxide-Based Semiconductor and Their Composites 586</p> <p>19.3.3 Polymer/Carbon Dots/Graphene-Based and Carbon Nitride-Based Photocatalyst and Their Composites 588</p> <p>19.4 State of Art for the Nickel Used as Photocatalyst 591</p> <p>19.5 Progress of Ni-Based Photocatalyst for Hydrogen Evolution 592</p> <p>19.5.1 Metallic Form of Ni Used as Co-Catalyst 592</p> <p>19.5.2 Ni-Based Oxide and Hydroxide Used as Co-Catalyst for Hydrogen Production 594</p> <p>19.5.3 Ni-Based Sulfides Used as Co-Catalyst and Photocatalyst 596</p> <p>19.5.4 Ni-Based Phosphides Used as Co-Catalyst Towards Hydrogen Production 598</p> <p>19.5.5 Ni-Based Complex Act as Co-Catalyst for Hydrogen Production 600</p> <p>19.5.6 Other Ni-Based Co-Catalyst for Hydrogen Production 602</p> <p>19.6 Conclusion and Future Perspective 608</p> <p>Author Declaration 609</p> <p>Acknowledgment 609</p> <p>References 609</p> <p><b>20 Use of Waste-Activated Sludge for the Production of Hydrogen 625<br /> </b><i>Hülya Civelek Yörüklü, Bilge Coşkuner Filiz and Aysel Kantürk Figen</i></p> <p>20.1 Introduction 626</p> <p>20.2 WAS to Hydrogen Production 629</p> <p>20.2.1 Biohydrogen Production 629</p> <p>20.2.1.1 Dark Fermentation 629</p> <p>20.2.1.2 Photofermentation 632</p> <p>20.2.1.3 Microbial Electrolysis Cell 634</p> <p>20.2.2 Thermochemical Hydrogen Production 635</p> <p>20.2.2.1 Pyrolysis 636</p> <p>20.2.2.2 Gasification 639</p> <p>20.2.2.3 Super Critical Water Gasification 643</p> <p>20.3 Conclusion Remarks 645</p> <p>References 646</p> <p><b>21 Current Trends in the Potential Use of the Metal-Organic Framework for Hydrogen Storage 655<br /> </b><i>Maryam Yousaf, Muhammad Ahmad, Zhi-Ping Zhao, Tehmeena Ishaq and Nasir Mahmood</i></p> <p>21.1 Introduction 656</p> <p>21.2 Structure of MOFs 657</p> <p>21.3 Mechanism of H 2 Storage by MOFs 659</p> <p>21.4 Strategies to Modify the Structure of MOFs for Enhanced H 2 Storage 661</p> <p>21.4.1 Tuning the Surface Area, Pore Size, and Volume of MOFs 661</p> <p>21.4.2 Enhancement in Unsaturated Open Metal Sites 663</p> <p>21.4.3 MOFs with Interpenetration 665</p> <p>21.4.4 Linker Functionalization of MOFs 667</p> <p>21.4.5 Hybrid and Doping of MOFs 668</p> <p>21.5 Conclusions and Future Recommendations 674</p> <p>Acknowledgement 675</p> <p>References 675</p> <p><b>22 High-Density Solids as Hydrogen Storage Materials 681<br /> </b><i>Zeeshan Abid, Huma Naeem, Faiza Wahad, Sughra Gulzar, Tabassum Shahzad, Munazza Shahid, Muhammad Altaf and Raja Shahid Ashraf</i></p> <p>22.1 Introduction 682</p> <p>22.2 Metal Borohydrides 683</p> <p>22.2.1 Lithium Borohydride 683</p> <p>22.2.2 Sodium Borohydride 685</p> <p>22.2.3 Potassium Borohydride 687</p> <p>22.3 Metal Alanates 688</p> <p>22.3.1 Lithium Alanate 688</p> <p>22.3.2 Sodium Alanate 690</p> <p>22.4 Ammonia Boranes 691</p> <p>22.5 Metal Amides 693</p> <p>22.5.1 Lithium Amide 693</p> <p>22.5.2 Sodium Amide 694</p> <p>22.6 Amine Metal Borohydrides 696</p> <p>22.6.1 Amine Lithium Borohydrides 696</p> <p>22.6.2 Amine Magnesium Borohydrides 697</p> <p>22.6.3 Amine Calcium Borohydrides 698</p> <p>22.6.4 Amine Aluminium Borohydrides 699</p> <p>22.7 Conclusion 699</p> <p>References 699</p> <p>Index 707</p>
<p><b>Inamuddin, PhD, </b>is an assistant professor in the Department of Applied Chemistry, Aligarh Muslim University, Aligarh, India. He has extensive research experience in analytical chemistry, materials chemistry, electrochemistry, renewable energy, and environmental science. He has worked on different research projects funded by various government agencies and universities and is the recipient of multiple awards, including the Fast Track Young Scientist Award and the Young Researcher of the Year Award for 2020, from Aligarh Muslim University. He has published almost 200 research articles in various international scientific journals, 19 book chapters, and 145 edited books with multiple well-known publishers, including Scrivener Publishing.<b> </b>He is a member of various editorial boards for scientific and technical journals and is an editor on several of them in different capacities. <p><b>Tariq Altalhi, PhD, </b>is an assistant professor and department head in the Department of Chemistry at Taif University, Saudi Arabia. He is also the Vice Dean of the College of Science, and he leads a group involved in fundamental interdisciplinary research across numerous fields. <p><b>Sayed Mohammed Adnan, PhD, </b>is a research scholar in the Department of Chemical Engineering, Aligarh Muslim University, India. He is actively involved in research and has published several articles in reputed journals. His research areas are very broad, encompassing a multitude of scientific areas. <p><b>Mohammed A. Amin, PhD, </b>is a professor of physical chemistry at Taif University, Saudi Arabia, and a professor of physical chemistry at Ain Shams University, Cairo, Egypt. He has won numerous scholarly awards and has been a guest editor for a reputable scientific journal.
<p><b>Edited by one of the most well-respected and prolific engineers in the world and his team, this book provides a comprehensive overview of hydrogen production, conversion, and storage, offering the scientific literature a comprehensive coverage of this important fuel.</b> <p>Continually growing environmental concerns are driving every, or almost every, country on the planet towards cleaner and greener energy production. This ultimately leaves no option other than using hydrogen as a fuel that has almost no adverse environmental impact. But hydrogen poses several hazards in terms of human safety as its mixture of air is prone to potential detonations and fires. In addition, the permeability of cryogenic storage can induce frostbite as it leaks through metal pipes. In short, there are many challenges at every step to strive for emission-free fuel. In addition to these challenges, there are many emerging technologies in this area. For example, as the density of hydrogen is very low, efficient methods are being developed and engineered to store it in small volumes. <p>This groundbreaking new volume describes the production of hydrogen from various sources along with the protagonist materials involved. Further, the extensive and novel materials involved in conversion technologies are discussed. Also covered here are the details of the storage materials of hydrogen for both physical and chemical systems. Both renewal and non-renewal sources are examined as feedstocks for the production of hydrogen. The non-renewal feedstocks, mainly petroleum, are the major contributor to date but there is a future perspective in a renewal source comprising mainly of water splitting via electrolysis, radiolysis, thermolysis, photocatalytic water splitting, and biohydrogen routes. Whether for the student, veteran engineer, new hire, or other industry professionals, this is a must-have for any library.

Diese Produkte könnten Sie auch interessieren:

Regenerative Energietrager
Regenerative Energietrager
von: Martin Wietschel, Wolf Fichtner, Otto Rentz
PDF ebook
33,99 €
Fundamentals of Power System Economics
Fundamentals of Power System Economics
von: Daniel S. Kirschen, Goran Strbac
PDF ebook
104,99 €
Fuel Cells, Engines and Hydrogen
Fuel Cells, Engines and Hydrogen
von: Frederick J. Barclay
PDF ebook
110,99 €