Details

Lignocellulosic Polymer Composites


Lignocellulosic Polymer Composites

Processing, Characterization, and Properties
Polymer Science and Plastics Engineering 1. Aufl.

von: Vijay Kumar Thakur

199,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 30.10.2014
ISBN/EAN: 9781118773987
Sprache: englisch
Anzahl Seiten: 584

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>The book presents emerging economic and environmentally friendly lignocellulosic polymer composites materials that are free from side effects studied in the traditional synthetic materials. This book brings together panels of highly-accomplished leading experts in the field of lignocellulosic polymers & composites from academia, government, as well as research institutions across the globe and encompasses basic studies including preparation, characterization, properties and theory of polymers along with applications addressing new emerging topics of novel issues.</p> <ul> <li>Provide basic information and clear understanding of the present state and the growing utility of lignocellulosic materials from different natural resources</li> <li>Includes contributions from world-renowned experts on lignocellulosic polymer composites and discusses the combination of different kinds of lignocellulosic materials from natural resources</li> <li>Discusses the fundamental properties and applications of lignocellulosic polymers in comparison to traditional synthetic materials</li> <li>Explores various processing/ mechanical/ physic-chemical aspects of lignocellulosic polymer composites</li> </ul>
<p><b>Preface xvii<br /> <br /> </b><b>Part I: LIGNOCELLULOSIC NATURAL POLYMERS BASED COMPOSITES<br /> <br /> </b><b>1 Lignocellulosic Polymer Composites: A Brief Overview 3<br /> </b><i>Manju Kumari Thakur, Aswinder Kumar Rana and Vijay Kumar Thakur<br /> <br /> </i>1.1 Introduction 3<br /> <br /> 1.2 Lignocellulosic Polymers: Source, Classification and Processing 4<br /> <br /> 1.3 Lignocellulosic Natural Fibers: Structure, Chemical Composition and  Properties 8<br /> <br /> 1.4 Lignocellulosic Polymer Composites: Classification and Applications 10<br /> <br /> 1.5 Conclusions 13<br /> <br /> <b>2 Interfacial Adhesion in Natural Fiber-Reinforced Polymer Composites 17<br /> </b><i>E. Petinakis, L. Yu, G. Simon, X. Dai, Z. Chen and K. Dean<br /> <br /> </i>2.1 Introduction 17<br /> <br /> 2.2 PLA-Based Wood-Flour Composites 18<br /> <br /> 2.3 Optimizing Interfacial Adhesion in Wood-Polymer Composites 20<br /> <br /> 2.4 Evaluation of Interfacial Properties 30<br /> <br /> 2.5 Conclusions 34<br /> <br /> <b>3 Research on Cellulose-Based Polymer Composites in Southeast Asia 41<br /> </b><i>Riza Wirawan and S.M. Sapuan<br /> <br /> </i>3.1 Introduction 42<br /> <br /> 3.2 Sugar Palm (Arenga pinnata) 44<br /> <br /> 3.3 Oil Palm (Elaeis Guineensis) 46<br /> <br /> 3.4 Durian (Durio Zibethinus) 49<br /> <br /> 3.5 Water Hyacinth (Eichhornia Crassipes) 51<br /> <br /> 3.6 Summary 57<br /> <br /> <b>4 Hybrid Vegetable/Glass Fiber Composites 63<br /> </b><i>Sandro C. Amico, Jose R. M. d’Almeida, Laura H. de Carvalhoand Maria O. H. Cioffi<br /> <br /> </i>4.1 Introduction 63<br /> <br /> 4.2 Vegetable Fiber/Glass Fiber Thermoplastic Composites 67<br /> <br /> 4.3 Intra-Laminate Vegetable Fiber/glass Fiber Thermoset Composites 69<br /> <br /> 4.4 Inter-Laminate Vegetable Fiber/glass Fiber Thermoset Composites 71<br /> <br /> 4.5 Concluding Remarks 75<br /> <br /> Acknowledgement 76<br /> <br /> References 76<br /> <br /> <b>5 Flax-Based Reinforcement Requirements for Obtaining Structural and Complex Shape Lignocellulosic Polymer Composite Parts 83<br /> </b><i>Pierre Ouagne and Damien Soulat<br /> <br /> </i>5.1 Introduction 84<br /> <br /> 5.2 Experimental Procedures 86<br /> <br /> 5.3 Results and Discussion 90<br /> <br /> 5.4 Discussions 97<br /> <br /> 5.5 Conclusions 98<br /> <br /> <b>6 Typical Brazilian Lignocellulosic Natural Fibers as Reinforcement of Thermosetting and Thermoplastics Matrices 103<br /> </b><i>Patrícia C. Miléo, Rosineide M. Leão, Sandra M. Luz, George J. M. Rocha and Adilson R. Gonçalves<br /> <br /> </i>6.1 Introduction 104<br /> <br /> 6.2 Experimental 105<br /> <br /> 6.3 Results and Discussion 110<br /> <br /> 6.4 Conclusions 122<br /> <br /> Acknowledgements 123<br /> <br /> <b>7 Cellulose-Based Starch Composites: Structure and Properties 125<br /> </b><i>Carmen-Alice Teacã, Ruxanda Bodîrlãu and Iuliana Spiridon<br /> <br /> </i>7.1 Introduction 125<br /> <br /> 7.2 Starch and Cellulose Biobased Polymers for Composite Formulations 126<br /> <br /> 7.3 Chemical Modification of Starch 127<br /> <br /> 7.4 Cellulose-Based Starch Composites 129<br /> <br /> 7.5 Conclusions/Perspectives 139<br /> <br /> <b>8 Spectroscopy Analysis and Applications of Rice Husk and Gluten Husk Using Computational Chemistry 147<br /> </b><i>Norma-Aurea Rangel-Vazquez, Virginia Hernandez-Montoya and Adrian Bonilla-Petriciolet<br /> <br /> </i>8.1 Introduction 148<br /> <br /> 8.2 Methodology 160<br /> <br /> 8.3 Results and Discussions 161<br /> <br /> 8.4 Conclusions 171<br /> <br /> <b>9 Oil Palm Fiber Polymer Composites: Processing, Characterization and Properties 175<br /> </b><i>S. Shinoj and R. Visvanathan<br /> <br /> </i>9.1 Introduction 176<br /> <br /> 9.2 Oil Palm Fiber 177<br /> <br /> 9.3 Oil Palm Fiber Composites 184<br /> <br /> 9.4 Conclusions 208<br /> <br /> <b>10 Lignocellulosic Polymer Composites: Processing, Characterization and Properties 213<br /> </b><i>Bryan L. S. Sipião, Lais Souza Reis, Rayane de Lima Moura Paiva, Maria Rosa Capri and Daniella R. Mulinari<br /> <br /> </i>10.1 Introduction 213<br /> <br /> 10.2 Palm Fibers 214<br /> <br /> 10.3 Pineapple Fibers 220<br /> <br /> Acknowledgements 227<br /> <br /> <b>Part II: CHEMICAL MODIFICATION OF CELLULOSIC MATERIALS FOR ADVANCED COMPOSITES<br /> <br /> </b><b>11 Agro-Residual Fibers as Potential Reinforcement Elements for Biocomposites 233<br /> </b><i>Nazire Deniz Yilmaz<br /> <br /> </i>11.1 Introduction 233<br /> <br /> 11.2 Fiber Sources 235<br /> <br /> 11.3 Fiber Extraction methods 239<br /> <br /> 11.4 Classification of Plant Fibers 246<br /> <br /> 11.5 Properties of Plant Fibers 247<br /> <br /> 11.6. Properties of Agro-Based Fibers 249<br /> <br /> 11.7 Modification of Agro-Based Fibers 258<br /> <br /> 11.8 Conclusion 266<br /> <br /> <b>12 Surface Modification Strategies for Cellulosic Fibers 271<br /> </b><i>Inderdeep Singh, Pramendra Kumar Bajpai<br /> <br /> </i>12.1 Introduction 271<br /> <br /> 12.2 Special Treatments during Primary Processing 273<br /> <br /> 12.3 Other Chemical Treatments 277<br /> <br /> 12.4 Conclusions 278<br /> <br /> <b>13 Effect of Chemical Functionalization on Functional Properties of Cellulosic</b> <b>Fiber-Reinforced Polymer Composites 281<br /> </b><i>Ashvinder Kumar Rana, Amar Singh Singha, Manju Kumari Thakur and Vijay Kumar Thakur<br /> <br /> </i>13.1 Introduction 282<br /> <br /> 13.2 Chemical Functionalization of Cellulosic Fibers 283<br /> <br /> 13.3 Results and Discussion 284<br /> <br /> 13.4 Conclusion 297<br /> <br /> <b>14 Chemical Modification and Properties of Cellulose-Based Polymer Composites 301<br /> </b><i>Md. Saiful Islam, Mahbub Hasan and Mansor Hj. Ahmad @ Ayob<br /> <br /> </i>14.1 Introduction 302<br /> <br /> 14.2 Alkali Treatment 303<br /> <br /> 14.3 Benzene Diazonium Salt Treatment  306<br /> <br /> 14.4 o-hydroxybenzene Diazonium Salt Treatment 310<br /> <br /> 14.5 Succinic Anhydride Treatment 313<br /> <br /> 14.6 Acrylonitrile Treatment 317<br /> <br /> 14.7 Maleic Anhydride Treatment 318<br /> <br /> 14.8 Nanoclay Treatment 318<br /> <br /> 14.9 Some other Chemical Treatment with Natural Fibers 320<br /> <br /> 14.10 Conclusions 321<br /> <br /> <b>Part III: PHYSICO-CHEMICAL AND MECHANICAL BEHAVIOUR OF CELLULOSE/ POLYMER COMPOSITES    325<br /> <br /> </b><b>15 Weathering of Lignocellulosic Polymer Composites 327<br /> </b><i>Asim Shahzad and D. H. Isaac<br /> <br /> </i>15.1 Introduction 328<br /> <br /> 15.2 UV Radiation 330<br /> <br /> 15.3 Moisture 335<br /> <br /> 15.4 Testing of Weathering Properties 342<br /> <br /> 15.5 Studies on Weathering of LPCs 345<br /> <br /> 15.6 Conclusions 362<br /> <br /> <b>16 Effect of Layering Pattern on the Physical, Mechanical and Acoustic Properties of Luffa/Coir Fiber-Reinforced Epoxy Novolac Hybrid Composites 369<br /> </b><i>Sudhir Kumar Saw, Gautam Sarkhel and Arup Choudhury<br /> <br /> </i>16.1 Introduction 369<br /> <br /> 16.2 Experimental 373<br /> <br /> 16.3. Characterization of ENR-Based Luffa/Coir Hybrid Composites 374<br /> <br /> 16.4 Results and Discussion 376<br /> <br /> 16.5 Conclusions 383<br /> <br /> Acknowledgements 383<br /> <br /> <b>17 Fracture Mechanism of Wood-Plastic Composites (WPCS): Observation and Analysis 385<br /> </b><i>Fatemeh Alavi, Amir Hossein Behravesh and Majid Mirzaei<br /> <br /> </i>17.1 Introduction 385<br /> <br /> 17.2 Fracture Mechanism 396<br /> <br /> 17.3 Toughness Characterization 398<br /> <br /> 17.4 Fracture Observation 400<br /> <br /> 17.5 Fracture Analysis 402<br /> <br /> 17.6 Conclusion 409<br /> <br /> <b>18 Mechanical Behavior of Biocomposites under Different Operating Environments 417<br /> </b><i>Inderdeep Singh, Kishore Debnath and Akshay Dvivedi<br /> <br /> </i>18.1 Introduction 417<br /> <br /> 18.2 Classification and Structure of Natural Fibers 419<br /> <br /> 18.3 Moisture Absorption Behavior of Biocomposites 421<br /> <br /> 18.4 Mechanical Characterization of Biocomposites in a Humid Environment 423<br /> <br /> 18.5 Oil Absorption Behavior and Its Effects on Mechanical Properties of Biocomposites 424<br /> <br /> 18.6 UV-Irradiation and Its Effects on Mechanical Properties of Biocomposites 425<br /> <br /> 18.7 Mechanical Behavior of Biocomposites Subjected to Thermal Loading 426<br /> <br /> 18.8 Biodegradation Behavior and Mechanical Characterization of Soil Buried Biocomposites 428<br /> <br /> 18.9 Conclusions 429<br /> <br /> <b>Part IV: APPLICATIONS OF CELLULOSE/ POLYMER COMPOSITES 433<br /> <br /> </b><b>19 Cellulose Composites for Construction Applications 435<br /> </b><i>Catalina Gómez Hoyos and Analía Vazquez<br /> <br /> </i>19.1 Polymers Reinforced with Natural Fibers for Construction Applications 435<br /> <br /> 19.2 Portland Cement Matrix Reinforced with Natural Fibers for Construction Applications 440<br /> <br /> <b>20 Jute: An Interesting Lignocellulosic Fiber for New Generation Applications 453<br /> </b><i>Murshid Iman and Tarun K. Maji<br /> <br /> </i>20.1 Introduction 453<br /> <br /> 20.2 Reinforcing Biofibers 455<br /> <br /> 20.3 Biodegradable Polymers 465<br /> <br /> 20.4 Jute-Reinforced Biocomposites 466<br /> <br /> 20.5 Applications 468<br /> <br /> 20.6 Concluding Remarks 468<br /> <br /> Acknowledgement 469<br /> <br /> <b>21 Cellulose-Based Polymers for Packaging Applications 477<br /> </b><i>Behjat Tajeddin<br /> <br /> </i>21.1 Introduction 477<br /> <br /> 21.2 Cellulose as a Polymeric Biomaterial 481<br /> <br /> 21.3 Cellulose as Coatings and Films Material 490<br /> <br /> 21.4 Nanocellulose or Cellulose Nanocomposites 492<br /> <br /> 21.5 Quality Control Tests 493<br /> <br /> 21.6 Conclusions 495<br /> <br /> <b>22 Applications of Kenaf-Lignocellulosic Fiber in Polymer Blends 499<br /> </b><i>Norshahida Sarifuddin and Hanafi Ismail<br /> <br /> </i>22.1 Introduction 499<br /> <br /> 22.2 Natural Fibers 500<br /> <br /> 22.3 Kenaf: Malaysian Cultivation 505<br /> <br /> 22.4 Kenaf Fibers and Composites 508<br /> <br /> 22.5 Kenaf Low-Density Polyethylene (LDPE)/Thermoplastic Sago Starch (TPSS) Blends 509<br /> <br /> 22.6 The Effects of Kenaf Fiber Treatment on the Properties of LDPE/TPSS Blends 512<br /> <br /> 22.7 Outlook and Future Trends 517<br /> <br /> Acknowledgement 517<br /> <br /> <b>23 Application of Natural Fiber as Reinforcement in Recycled Polypropylene Biocomposites 523<br /> </b><i>Sanjay K Nayak and Gajendra Dixit<br /> <br /> </i>23.1 Introduction 523<br /> <br /> 23.2 Recycled Polypropylene (RPP) – A matrix for Natural Fiber Composites 533<br /> <br /> 23.3 Natural Fiber-Based Composites – An Overview 534<br /> <br /> 23.4 Conclusion 545<br /> <br /> Index 551</p>
<p><b>Vijay Kumar Thakur</b>, Ph.D. is a staff scientist in the School of Mechanical and Materials Engineeringat Washington State University, U.S.A. He is editorial board member of several international journals including A<i>dvanced Chemistry Letters</i>, <i>Lignocelluloses</i>, <i>Drug Inventions Today</i> (Elsevier), <i>International Journal of Energy Engineering</i>, <i>Journal of Textile Science & Engineering</i> (U.S.A).<br />He also member of scientific bodies around the world. His former appointments include as a research scientist in Temasek Laboratories at Nanyang Technological University Singapore, visiting research fellow in the Department of Chemical and Materials Engineering at Lhu-Taiwan and post-doctorate in the Department of Materials Science and Engineering at Iowa State University, USA.<br />In his academic career, he published more than 100 research articles, patent and conference proceedings in the field of polymers and materials science. He has published ten books and twenty-five book chapters on the advanced state-of-the-art of polymers and materials science with numerous publishers. He has extensive expertise in the synthesis of natural and synthetic polymers, nano-materials, nanocomposites, biocomposites, graft copolymers, high performance capacitors and electrochromic materials.</p>

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €